Projeções Multi-dimensionais

Tamanho: px
Começar a partir da página:

Download "Projeções Multi-dimensionais"

Transcrição

1 Prof. Fernando V. Paulovich Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade de São Paulo (USP) 23 de setembro de 2010

2 Introdução Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

3 Introdução Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

4 Introdução Introdução Projeção Multi-dimensional Tipicamente mapeia dados m-dimensionais em um espaço p-dimensional com p = {1, 2, 3}, preservando alguma informação sobre as relações de distância entre as instâncias O resultado é um conjunto de pontos no plano se pontos forem proximamente posicionados isso indica que os objetos que esses representam são similares e se pontos forem projetados distantes isso significa que os objetos que os mesmos representam são dissimilares

5 Introdução Introdução Projeção Multi-dimensional Seja X um conjunto de objetos em R m com δ : R m R m R um critério de proximidade entre objetos em R m, e Y um conjunto de pontos em R p para p = {1, 2, 3} e d : R p R p R um critério de proximidade em R p. Uma técnica de projeção multi-dimensional pode ser descrita como uma função f : X Y que visa tornar δ(x i, x j ) d(f(x i ), f(x j )) o mais próximo possível de zero, x i, x j X.

6 Introdução Projeção Multi-dimensional

7 Introdução Projeção Multi-dimensional δ : x i, x j R, x i, x j X

8 Introdução Projeção Multi-dimensional δ : x i, x j R, x i, x j X d : y i, y j R, y i, y j Y

9 Introdução Projeção Multi-dimensional δ : x i, x j R, x i, x j X d : y i, y j R, y i, y j Y f : X Y, δ(x i, x j ) d(f(x i ), f(x j )) 0, x i, x j X

10 Introdução Projeção Multi-dimensional IDH/ONU de 2006 (

11 Introdução Introdução Símbolo X m x i Y p y i n δ(x i, x j ) d(y i, y j ) Significado conjunto de objetos no espaço original m-dimensional. dimensão do espaço original. i-ésimo objeto do espaço original. Quando esse admitir uma representação vetorial, x i = (x i1, x i2,..., x im ) representam suas coordenadas. conjunto de pontos no espaço projetado p-dimensional. dimensão do espaço projetado. i-ésimo ponto do espaço projetado. Quando esse admitir uma representação vetorial, y i = (y i1, y i2,..., y ip ) representam suas coordenadas. número de objetos no espaço original e pontos no projetado. dissimilaridade entre os objetos i e j no espaço original. distância entre os pontos i e j no espaço projetado. Tabela: Símbolos mais freqüentes e seus significados.

12 Distâncias, Similaridades e Transformação dos Dados Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

13 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

14 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Distâncias A forma como a distância (δ(x i, x j )) entre os objetos multi-dimensionais X é calculada desempenha papel central Distância de Minkowski família de métricas de distância denominadas normas L p m L p (x i, x j ) = ( x ik x jk p ) 1 p (1) k=1 Com p = 1 obtém-se a distância Manhattan (City Block) Com p = 2 tem-se a distância Euclideana Com p = obtém-se a distância do infinito (L (x i, x j ) = max m k=1 x ik x jk )

15 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Distâncias Propriedades de uma Métrica (Distância) 1 Não-Negatividade: x i, x j X, δ(x i, x j ) 0 2 Identidade: x i, x j X, x i = x j δ(x i, x j ) = 0 3 Simetria: x i, x j X, δ(x i, x j ) = δ(x j, x i ) 4 Desigualdade Triangular: x i, x j, x k X, δ(x i, x k ) δ(x i, x j ) + δ(x j, x k )

16 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Distâncias Nem toda dissimilaridade é uma distância (métrica) não precisa obedecer as propriedades métricas Uma dissimilaridade pode ser o inverso de uma similaridade s(x i, x j ) δ(x i, x j) = 1 s(x i,x j )+1 δ(x i, x j) = e s(x i,x j ) δ(x i, x j) = 1 s (x i, x j) com s (x i, x j ) = s(x i,x j ) s min s max s min Exemplo conhecido: dissimilaridade do cosseno 1 cos(x i, x j)

17 Distâncias, Similaridades e Transformação dos Dados Transformação dos Dados Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

18 Distâncias, Similaridades e Transformação dos Dados Transformação dos Dados Introdução Problema No cálculo das dissimilaridades (ou similaridades), dois diferentes cenários podem distorcer os resultados ou torná-los tendenciosos Quando os vetores x i têm normas Euclideanas muito diferentes Quando uma (ou mais) coordenadas dos vetores está em uma escala diferente das outras coordenadas

19 Distâncias, Similaridades e Transformação dos Dados Transformação dos Dados Normalização e Padronização Normalização Para se evitar o primeiro cenário pode-se aplicar a normalização tornando os vetores unitário x ij = x ij/ x i para 1 j m Padronização O segundo cenário pode ser evitado aplicando-se um processo conhecido como standardization Se x j = 1 n n i=1 xij é a média da coordenada j e 1 σ j = n n i=1 (xij xj)2 seu desvio padrão, essa transformação é obtida fazendo-se x ij = (x ij x j)/σ j para 1 i n e 1 j m, criando novas coordenadas que têm média igual a 0 e desvio padrão igual a 1

20 Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

21 Introdução Aqui apresentaremos as técnicas de projeção mais relevantes para visualização, divididas em três grandes grupos baseadas em força (Force-Direct Placement (FDP)) de decomposição espectral de redução de dimensionalidade

22 Force-Directed Placement Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

23 Force-Directed Placement Introdução Force-Directed Placement São as técnicas de projeção mais simples, baseadas em Modelos de Molas Tenta levar um sistema de objetos conectados por molas a um estado de equilíbrio Sistema iterativo que usa as forças geradas pelas molas para puxar ou empurrar os objetos até se atingir uma posição de equilíbrio As forças no sistema são calculadas proporcionais a diferença entre as dissimilaridades δ(x i, x j) e as distâncias d(y i, y j)

24 Force-Directed Placement Modelo de Molas Os objetos são modelados como partículas ponto-massa ligadas entre si por meio de molas conjunto de partículas está sujeito às leis de Newton f = m a (2) Resolve-se um sistema de equação diferenciais ordinárias de segunda ordem { v = a = f/m p = v (3)

25 Force-Directed Placement Abordagem de Chalmers Uma aproximação do Modelo de Molas Para cada instância x i duas listas são criadas V i armazena as referências aos objetos vizinhos de x i mantida do começo ao fim das iterações S i armazenas objetos escolhidos aleatoriamente que não pertençam a V i construida a cada iteração Em uma iteração se a distância de algum elemento de S i for menor que a maior distância para os elementos de V i, esse elemento é adicionado à V i As forças são calculadas considerando os elementos presentes em S i e V i

26 Force-Directed Placement Modelo Híbrido Primeiro uma amostragem aleatória S de n objetos é projetada no plano usando-se o método de Chalmers Então os objetos restantes são interpolados Para cada n n objetos restantes é comparado com a amostra S a fim de determinar o objeto mais próximo Essa informação é então usada para se realizar a interpolação Essa abordagem é acelerada empregando uma abordagem de árvore métrica, onde pivôs são usados para diminuir a quantidade de cálculos de distância Acomplexidade do algoritmo é reduzida de O(n 3 2 ) para O(n 5 4 )

27 Force-Directed Placement Force Scheme Force Scheme é uma abordagem mais precisa, mas com custo computacional alto, O(n 2 ) 1: para n=1 até k faça 2: para todo y i Y faça 3: para todo y j Y com y j y i faça 4: Calcular v como sendo o vetor de y i para y j. 5: Mover y j em direção de v uma fração de. 6: fim para 7: fim para 8: Normalizar as coordenadas da projeção na faixa [0, 1] em ambas as dimensões. 9: fim para = δ(x i, x j ) δ min δ max δ min d(y i, y j ) (4)

28 Force-Directed Placement Sammon s Mapping Minimiza a seguinte função de perda 1 S = i<j δ(x i, x j ) i<j (d(y i, y j ) δ(x i, x j )) 2 δ(x i, x j ) (5) Essa função é minimizada usando um método iterativo que emprega seu gradiente para se encontrar um mínimo local A m-ésima iteração desse método é definida como y pq (m + 1) = y pq (m) MF pq (m) (6) Onde y pq denota a coordenada q do ponto p, pq (m) = S(m) / 2 S(m) y pq (m) ypq(m) 2 (7)

29 Decomposição Espectral Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

30 Decomposição Espectral Classical Scaling Sejam x i (i = 1,..., n) as coordenadas de n pontos em um espaço Euclideano m-dimensional, onde x i = (x i1,..., x im ) T, e seja B a matrix do produto interno entre vetores, [B] ij = b ij = x T i x j Com distância Euclideana entre os pontos i e j dada por ˆδ(x i, x j ) = (x i x j ) T (x i x j ) (8) A partir de uma matriz da distâncias {ˆδ(x i, x j )}, encontrar a matriz do produto interno B, e a partir de B calcular as coordenadas dos pontos

31 Decomposição Espectral Classical Scaling A matrix B pode ser reescrita como A é a matrix [A] ij = a ij = 1 2 ˆδ(x i, x j ) H é a matrix de centragem B = HAH (9) Usando decomposição espectral, B pode ser escrita em como B = VΛV T Como B = XX T, a matrix de coordenadas X é dada por X = V 1 Λ 1 2 1,

32 Decomposição Espectral Isometric Feature Mapping (ISOMAP) Ao invés de empregar distâncias Euclideanas (ou outra dissimilaridade δ(x i, x j )) entre os objetos multi-dimensionais, emprega-se distâncias geodésicas Então a Classical Scaling é aplicada considerando essas distâncias geodésicas

33 Redução de Dimensionalidade Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

34 Redução de Dimensionalidade de Redução Definição para redução de dimensionalidade buscam encontrar uma representação de menor dimensão que capture o conteúdo original dos dados de acordo com algum critério Redução de Dimensionalidade Linear Uma técnica de redução de dimensionalidade f : X Y é dita ser linear se f(αx i + βx j ) = αf(x i ) + βf(x j ) para todo x i, x j X e α, β R

35 Redução de Dimensionalidade Principal Component Analysis PCA é uma técnica de redução linear Consegue capturar a maior parte da variabilidade com poucas dimensões Elimina grande parte do ruído existente, etc. Primeiro a matriz de covariância C m m dos atributos é criada, com c ij = cov(a i, a j ) Então decomposição espectral é aplicada encontrando A redução por fim é encontrada fazendo C = UΛU T, (10) S = X [u 1, u 2,..., u p ] (11)

36 Sumário 1 Introdução 2 Distâncias, Similaridades e Transformação dos Dados Distâncias e Similaridades Transformação dos Dados 3 Force-Directed Placement Decomposição Espectral Redução de Dimensionalidade

37 Primeiro, um subconjunto de objetos multi-dimensionais, chamados de pontos de controle, é escolhido e projetado no R p Fazendo-se uso das relações de vizinhança dos objetos no R m é construído um sistema linear cuja solução é a projeção dos objetos restantes no fecho convexo de seus k vizinhos mais próximos

38 Seja V i = {p i1,..., p iki } um conjunto k i pontos em uma vizinhança de um ponto p i e p i sejam as coordenadas de p i no R d Suponha que p i sejam dadas pela seguinte equação p i p j V i α ij p j = 0 0 α ij 1; α ij = 1 (12) Quando α ij = 1 k i teremos p i no centróide dos pontos em V i

39 A partir dessa equação um conjunto de sistemas lineares é definido Lx 1 = 0, Lx 2 = 0, Lx d = 0 (13) Onde x 1, x 2,..., x d são os vetores contendo as coordenadas cartesianas dos pontos e L é a matriz n n cuja as entradas são dadas por 1 i = j l ij = α ij p j V i 0 caso contrário

40 Os pontos de controle são inseridos no sistema como novas linhas na matrix Assim, dado um conjunto de pontos de controle S c = {p c1,..., p cnc }, é possível re-escrever o sistema Ax = b (14) Onde A é uma matrix retangular (n + nc) n dada por ( ) { L 1 xj é um ponto de controle A =, c C ij = 0 caso contrário E b é o vetor: { 0 i n b i = n < i n + nc x ic

41 (a) Grafo de vizinhança. (b) Matrix Laplaciana.

42 O sistema linear com os pontos de controle apresenta rank-completo e pode ser resolvido aplicando-se mínimos quadrados Encontrar x que minimize Ax b 2, isto é, x = (A T A) 1 A T b

Fundamentos dos Dados

Fundamentos dos Dados Fundamentos dos Dados SCC5836 Visualização Computacional Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade

Leia mais

Técnicas de Visualização para Dados Multivariados

Técnicas de Visualização para Dados Multivariados Técnicas de Visualização para Dados Multivariados SCC5836 Visualização Computacional Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br Instituto de Ciências Matemáticas

Leia mais

Fundamentos dos Dados

Fundamentos dos Dados Fundamentos dos Dados SCC5836 Visualização Computacional Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade

Leia mais

Modelagem Computacional. Parte 8 2

Modelagem Computacional. Parte 8 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 8 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 10 e 11] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Modelagem Computacional. Parte 7 2

Modelagem Computacional. Parte 7 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 7 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Consultas por Similaridade em Domínios de Dados Complexos

Consultas por Similaridade em Domínios de Dados Complexos Consultas por Similaridade em Domínios de Dados Complexos Guilherme Felipe Zabot Orientador: Profº Dr Caetano Traina Jr Roteiro Objetivo Introdução Dados Complexos Representação de Dados Complexos Extração

Leia mais

Aula 7 Medidas de Distância. Profa. Elaine Faria UFU

Aula 7 Medidas de Distância. Profa. Elaine Faria UFU Aula 7 Medidas de Distância Profa. Elaine Faria UFU - 2017 Agradecimentos Este material é baseado No livro Tan et al, 2006 Nos slides do prof Andre C. P. L. F. Carvalho Agradecimentos Ao professor André

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT32 12 a Lista de exercícios

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 9 de maio de 2013 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Mapas Auto-Organizáveis de Kohonen (SOM) SOM é uma rede neural artificial (Kohonen (1995))

Mapas Auto-Organizáveis de Kohonen (SOM) SOM é uma rede neural artificial (Kohonen (1995)) Mapas Auto-Organizáveis de Kohonen (SOM) SOM é uma rede neural artificial (Kohonen (1995)) que realiza simultaneamente agrupamento e visualização SOM usa aprendizagem não supervisionada para mapear dados

Leia mais

Laboratório de Simulação Matemática. Parte 6 2

Laboratório de Simulação Matemática. Parte 6 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 6 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 6] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

Laboratório de Simulação Matemática. Parte 7 2

Laboratório de Simulação Matemática. Parte 7 2 Matemática - RC/UFG Laboratório de Simulação Matemática Parte 7 2 Prof. Thiago Alves de Queiroz 2/2017 2 [Cap. 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning, 2010. Thiago

Leia mais

3.6 Erro de truncamento da interp. polinomial.

3.6 Erro de truncamento da interp. polinomial. 3 Interpolação 31 Polinômios interpoladores 32 Polinômios de Lagrange 33 Polinômios de Newton 34 Polinômios de Gregory-Newton 35 Escolha dos pontos para interpolação 36 Erro de truncamento da interp polinomial

Leia mais

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel

MÉTODOS MULTIVARIADOS. Rodrigo A. Scarpel MÉTODOS MULTIVARIADOS Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo INTRODUÇÃO Semana Conteúdo Introdução aos métodos multivariados 1 Análise de componentes principais 2 Aplicações de análise

Leia mais

Modelagem Computacional. Parte 6 2

Modelagem Computacional. Parte 6 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 6 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 6 e 7] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1

FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 FUNDAMENTOS DE SISTEMAS LINEARES PARTE 1 Prof. Iury V. de Bessa Departamento de Eletricidade Faculdade de Tecnologia Universidade Federal do Amazonas Revisão O que é um corpo (campo)? O que é um espaço

Leia mais

Parte 0: Normas de Vetor e Matriz

Parte 0: Normas de Vetor e Matriz Cálculo Numérico SME0104 ICMC-USP Lista : Sistemas Lineares Métodos Diretos Parte 0: Normas de Vetor e Matriz 1. Dadas as matrizes: 3 5 7 A = 3 6 B = 1 7 1 (a) Calcule A 1, B 1 e C 1 (b) Calcule A, B e

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Introdução 2 Alguns Conceitos de Álgebra Linear 3 Sistemas Lineares 4 Métodos Computacionais 5 Sistemas Triangulares 6 Revisão Introdução Introdução Introdução

Leia mais

2 Processo de Agrupamentos

2 Processo de Agrupamentos 20 2 Processo de Agrupamentos A análise de agrupamentos pode ser definida como o processo de determinação de k grupos em um conjunto de dados. Para entender o que isso significa, observe-se a Figura. Y

Leia mais

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o

INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 2007/2008 Semestre: 1 o INSTITUTO SUPERIOR TÉCNICO Mestrado Integrado em Engenharia Física Tecnológica Ano Lectivo: 27/28 Semestre: o MATEMÁTICA COMPUTACIONAL Exercícios [4 Sendo A M n (C) mostre que: (a) n A 2 A n A 2 ; (b)

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de agosto de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

SME0300 Cálculo Numérico Aula 6

SME0300 Cálculo Numérico Aula 6 SME0300 Cálculo Numérico Aula 6 Maria Luísa Bambozzi de Oliveira marialuisa @ icmc. usp. br Sala: 3-241 Página: tidia-ae.usp.br 20 de agosto de 2015 Aula Passada Equações Não-Lineares: Determinar raiz

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 27 de fevereiro de 2015 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

5. Seja A uma matriz qualquer. Assinale a afirmativa

5. Seja A uma matriz qualquer. Assinale a afirmativa UFRJ Instituto de Matemática Disciplina: Algebra Linear II - MAE 125 Professor: Bruno, Gregório, Luiz Carlos, Mario, Milton, Monique e Umberto Data: 12 de julho de 2013 Terceira Prova 1. Considere no espaço

Leia mais

Cálculo Numérico. Resumo e Exercícios P1

Cálculo Numérico. Resumo e Exercícios P1 Cálculo Numérico Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Aritmética de ponto flutuante Operar com o número de algarismos significativos exigido. Arredondar após cada conta. Método de escalonamento

Leia mais

SISTEMAS LINEARES PROF. EDÉZIO

SISTEMAS LINEARES PROF. EDÉZIO SOLUÇÕES NUMÉRICAS DE SISTEMAS LINEARES PROF. EDÉZIO Considere o sistema de n equações e n incógnitas: onde E : a x + a x +... + a n x n = b E : a x + a x +... + a n x n = b. =. () E n : a n x + a n x

Leia mais

Cálculo Numérico BCC760

Cálculo Numérico BCC760 Cálculo Numérico BCC760 Resolução de Sistemas de Equações Lineares Simultâneas Departamento de Computação Página da disciplina http://www.decom.ufop.br/bcc760/ 1 Introdução! Definição Uma equação é dita

Leia mais

SUPPORT VECTOR MACHINE - SVM

SUPPORT VECTOR MACHINE - SVM SUPPORT VECTOR MACHINE - SVM Definição 2 Máquinas de Vetores Suporte (Support Vector Machines - SVMs) Proposto em 79 por Vladimir Vapnik Um dos mais importantes acontecimentos na área de reconhecimento

Leia mais

2 Núcleos: suas propriedades e classificações

2 Núcleos: suas propriedades e classificações 2 Núcleos: suas propriedades e classificações O objetivo desse capítulo é o de apresentar as funções núcleos (7), suas propriedades (10) e suas classificações (3). 2.1 Núcleos no espaço de Hilbert Um espaço

Leia mais

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Apontamentos III. Espaços euclidianos. Álgebra Linear aulas teóricas. Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Apontamentos III Espaços euclidianos Álgebra Linear aulas teóricas 1 o semestre 2017/18 Lina Oliveira Departamento de Matemática, Instituto Superior Técnico Índice Índice i 1 Espaços euclidianos 1 1.1

Leia mais

1 Álgebra linear matricial

1 Álgebra linear matricial MTM510019 Métodos Computacionais de Otimização 2018.2 1 Álgebra linear matricial Revisão Um vetor x R n será representado por um vetor coluna x 1 x 2 x =., x n enquanto o transposto de x corresponde a

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

Método de restrições ativas para minimização com restrições lineares

Método de restrições ativas para minimização com restrições lineares Método de restrições ativas para minimização com restrições lineares Marina Andretta ICMC-USP 27 de outubro de 2018 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 27 de outubro de 2018 1 /

Leia mais

Introdução aos Métodos Numéricos

Introdução aos Métodos Numéricos Introdução aos Métodos Numéricos Instituto de Computação UFF Departamento de Ciência da Computação Otton Teixeira da Silveira Filho Conteúdo Erros e Aproximações Numéricas Sistemas de Equações Lineares.

Leia mais

SCC0173 Mineração de Dados Biológicos

SCC0173 Mineração de Dados Biológicos SCC0173 Mineração de Dados Biológicos Preparação de Dados: Parte B Prof. Ricardo J. G. B. Campello SCC / ICMC / USP 1 Créditos O material a seguir consiste de adaptações e extensões: dos originais gentilmente

Leia mais

Introdução às Redes Neurais Artificiais

Introdução às Redes Neurais Artificiais Introdução às Redes Neurais Artificiais Clusterização: Conceitos Básicos Prof. João Marcos Meirelles da Silva www.professores.uff.br/jmarcos Departamento de Engenharia de Telecomunicações Escola de Engenharia

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 27 de março de 2015 Marina Andretta/Franklina Toledo (ICMC-USP) sme0301 - Métodos Numéricos para Engenharia

Leia mais

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/

INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: 2002/ INSTITUTO SUPERIOR TÉCNICO Licenciatura em Engenharia Física Tecnológica Licenciatura em Engenharia e Gestão Industrial Ano Lectivo: / ANÁLISE NUMÉRICA Exercícios Considere o sistema linear 6 x 5 y = a)

Leia mais

UNIVERSIDADE FEDERAL DO ABC

UNIVERSIDADE FEDERAL DO ABC UNIVERSIDADE FEDERAL DO ABC BC49 Cálculo Numérico - LISTA - sistemas lineares de equações Profs André Camargo, Feodor Pisnitchenko, Marijana Brtka, Rodrigo Fresneda Métodos diretos Analise os sistemas

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares DMPA IM UFRGS Cálculo Numérico Índice Sistema de Equações Lineares 1 Sistema de Equações Lineares 2 com pivoteamento parcial 3 Método de Jacobi Método Gauss-Seidel Sistema de Equações Lineares n equações

Leia mais

Resolução de Sistemas Lineares. Ana Paula

Resolução de Sistemas Lineares. Ana Paula Resolução de Sistemas Lineares Sumário 1 Aula Anterior 2 Decomposição LU 3 Decomposição LU com Pivotamento 4 Revisão Aula Anterior Aula Anterior Aula Anterior Aula Anterior Eliminação de Gauss Transforma

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Análise de Agrupamento

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Análise de Agrupamento statística: plicação ao Sensoriamento Remoto SR 204 - NO 2017 nálise de grupamento amilo aleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ nálise de grupamento (luster nalysis)

Leia mais

Resolvendo algebricamente um PPL

Resolvendo algebricamente um PPL Capítulo 6 Resolvendo algebricamente um PPL 6.1 O método algébrico para solução de um modelo linear A solução de problemas de programação linear com mais de duas variáveis, não pode ser obtida utilizando-se

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares É um dos modelos mais u3lizados para representar diversos problemas de Engenharia (cálculo estrutural, circuitos elétricos, processos químicos etc.) Conservação da carga: i 1 i 2 i 3 = 0 i 3 i 4 i 5 =

Leia mais

Método de restrições ativas para minimização em caixas

Método de restrições ativas para minimização em caixas Método de restrições ativas para minimização em caixas Marina Andretta ICMC-USP 20 de outubro de 2014 Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear 20 de outubro de 2014 1 / 25 Problema com

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Introdução Solução de equações não lineares

Leia mais

Nota importante: U é a matriz condensada obtida no processo de condensação da matriz

Nota importante: U é a matriz condensada obtida no processo de condensação da matriz Decomposição P T LU A denominada decomposição P T L U é um processo que pode ser extremamente útil no cálculo computacional, na resolução de sistemas de equações lineares. Propriedade Seja A uma matriz

Leia mais

Interpolação polinomial: Diferenças divididas de Newton

Interpolação polinomial: Diferenças divididas de Newton Interpolação polinomial: Diferenças divididas de Newton Marina Andretta ICMC-USP 16 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500

Leia mais

Aula 8 - Reconhecimento e Interpretação. Prof. Adilson Gonzaga

Aula 8 - Reconhecimento e Interpretação. Prof. Adilson Gonzaga Aula 8 - Reconhecimento e Interpretação Prof. Adilson Gonzaga Elementos de Visão Computacional: Visão Computacional Processamento de Baio Nível Processamento de Nível Intermediário Processamento de Alto

Leia mais

Reconstrução de Geometria a Partir da Conectividade 27

Reconstrução de Geometria a Partir da Conectividade 27 3 Reconstrução de Malha por Minimização Neste capítulo apresentaremos a formalização do problema de reconstrução da geometria de malhas seguindo a proposta de Sorkine (16) e o método computacional que

Leia mais

G3 de Álgebra Linear I

G3 de Álgebra Linear I G de Álgebra Linear I 7 Gabarito ) Considere a transformação linear T : R R cuja matriz na base canônica E = {(,, ), (,, ), (,, )} é [T] E = a) Determine os autovalores de T e seus autovetores correspondentes

Leia mais

Transformação de Coordenadas

Transformação de Coordenadas Geração de Malhas SME5827 Transformação de Coordenadas Afonso Paiva ICMC-USP 28 de agosto de 2013 Cálculo Vetorial Revisitado Notação de Einstein Cálculo Vetorial Revisitado Notação de Einstein Índices

Leia mais

4 Visualização por pontos

4 Visualização por pontos 4 Visualização por pontos Uma vez gerados os pontos, estes são renderizados e recebem efeitos de profundidade e iluminação, através da definição da cor, opacidade e tamanho. Além disso, os pontos pertencentes

Leia mais

O teorema do ponto fixo de Banach e algumas aplicações

O teorema do ponto fixo de Banach e algumas aplicações O teorema do ponto fixo de Banach e algumas aplicações Andressa Fernanda Ost 1, André Vicente 2 1 Acadêmica do Curso de Matemática - Centro de Ciências Exatas e Tecnológicas - Universidade Estadual do

Leia mais

Método de Newton truncado

Método de Newton truncado Método de Newton truncado Marina Andretta ICMC-USP 8 de outubro de 2018 Baseado no livro Numerical Optimization, de J. Nocedal e S. J. Wright. Marina Andretta (ICMC-USP) sme5720 - Otimização não-linear

Leia mais

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3

Prova tipo A. Gabarito. Data: 8 de outubro de ) Decida se cada afirmação a seguir é verdadeira ou falsa. 1.a) Considere os vetores de R 3 Prova tipo A P2 de Álgebra Linear I 2004.2 Data: 8 de outubro de 2004. Gabarito Decida se cada afirmação a seguir é verdadeira ou falsa..a Considere os vetores de R 3 v = (, 0,, v 2 = (2,, a, v 3 = (3,,

Leia mais

G2 de Álgebra Linear I

G2 de Álgebra Linear I G de Álgebra Linear I 7. Gabarito ) Considere o conjunto de vetores W = {(,, ); (, 5, ); (,, ); (3,, ); (, 3, ); (,, )}. (a) Determine a equação cartesiana do sub-espaço vetorial V gerado pelos vetores

Leia mais

Exercícios de Mínimos Quadrados

Exercícios de Mínimos Quadrados INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA Exercícios de Mínimos Quadrados 1 Provar que a matriz de mínimos quadrados é denida positiva, isto é,

Leia mais

Ajuste de dados por mínimos quadrados

Ajuste de dados por mínimos quadrados Cálculo Numérico por mínimos quadrados Prof. Daniel G. Alfaro Vigo dgalfaro@dcc.ufrj.br Departamento de Ciência da Computação IM UFRJ Motivação: População do Brasil Ano População (milhões) 1960 70, 992343

Leia mais

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B =

Departamento de Matemática da Universidade de Coimbra. Licenciatura em Matemática. e B = Departamento de Matemática da Universidade de Coimbra Optimização Numérica Licenciatura em Matemática Ano lectivo 2006/2007 Folha 1 1. Considere as matrizes A = [ 1 1 1 2 ] e B = [ 1 3 1 2 (a) Verifique

Leia mais

Noções de Álgebra Linear

Noções de Álgebra Linear Noções de Álgebra Linear 1. Espaços vetoriais lineares 1.1. Coordenadas 2. Operadores lineares 3. Subespaços fundamentais 4. Espaços normados 5. Espaços métricos 6. Espaços de Banach 7. Espaços de Hilbert

Leia mais

Marina Andretta. 02 de agosto de 2010

Marina Andretta. 02 de agosto de 2010 Introdução Marina Andretta ICMC-USP 02 de agosto de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 02 de agosto de 2010 1 / 19 Otimização Otimizar significa encontrar a melhor maneira

Leia mais

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0)

A = Utilizando ponto flutuante com 2 algarismos significativos, 2 = 0, x (0) MAP 22 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre Sistemas Lineares : Utilizando o método de eliminação de Gauss, calcule o determinante e a seguir a inversa da matriz abaixo. Efetue todos os

Leia mais

Método de Newton modificado

Método de Newton modificado Método de Newton modificado Marina Andretta ICMC-USP 14 de setembro de 2010 Marina Andretta (ICMC-USP) sme0212 - Otimização não-linear 14 de setembro de 2010 1 / 36 Método de Newton Como já vimos, o método

Leia mais

Programa Princípios Gerais Forças, vetores e operações vetoriais

Programa Princípios Gerais Forças, vetores e operações vetoriais Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção

Leia mais

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução

3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução 3 Extração de Regras Simbólicas a partir de Máquinas de Vetores Suporte 3.1 Introdução Como já mencionado na seção 1.1, as SVMs geram, da mesma forma que redes neurais (RN), um "modelo caixa preta" de

Leia mais

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira 22 de novembro de 2017

BCC465 - TÉCNICAS DE MULTI-OBJETIVO. Gladston Juliano Prates Moreira   22 de novembro de 2017 BCC465 - TÉCNICAS DE OTIMIZAÇÃO MULTI-OBJETIVO Aula 04 - Otimização Não-linear Gladston Juliano Prates Moreira email: gladston@iceb.ufop.br CSILab, Departamento de Computação Universidade Federal de Ouro

Leia mais

Autovalores e Autovetores

Autovalores e Autovetores Algoritmos Numéricos II / Computação Científica Autovalores e Autovetores Lucia Catabriga 1 1 DI/UFES - Brazil Junho 2016 Introdução Ideia Básica Se multiplicarmos a matriz por um autovetor encontramos

Leia mais

Técnicas de Visualização para Árvores, Grafos e Redes

Técnicas de Visualização para Árvores, Grafos e Redes Técnicas de Visualização para Árvores, Grafos e Redes SCC5836 Visualização Computacional Prof. Fernando V. Paulovich http://www.icmc.usp.br/~paulovic paulovic@icmc.usp.br Instituto de Ciências Matemáticas

Leia mais

ÁLGEBRA LINEAR I - MAT0032

ÁLGEBRA LINEAR I - MAT0032 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR I - MAT003 10 a Lista de

Leia mais

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009

Notas para o Curso de Algebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 Notas para o Curso de Álgebra Linear Il Dayse Haime Pastore 20 de fevereiro de 2009 2 Sumário 1 Matrizes e Sistemas Lineares 5 11 Matrizes 6 12 Sistemas Lineares 11 121 Eliminação Gaussiana 12 122 Resolução

Leia mais

Algoritmos Numéricos 2 a edição

Algoritmos Numéricos 2 a edição Algoritmos Numéricos 2 a edição Capítulo 2: Sistemas lineares c 2009 FFCf 2 2.1 Conceitos fundamentais 2.2 Sistemas triangulares 2.3 Eliminação de Gauss 2.4 Decomposição LU Capítulo 2: Sistemas lineares

Leia mais

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017

MAP Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 1 Preliminares MAP3121 - Métodos Numéricos e Aplicações Escola Politécnica 1 Semestre de 2017 EPREC - Entrega em 27 de julho de 2017 A decomposição de Cholesky aplicada a Finanças O exercício-programa

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Interpolação polinomial: Polinômio de Lagrange

Interpolação polinomial: Polinômio de Lagrange Interpolação polinomial: Polinômio de Lagrange Marina Andretta ICMC-USP 09 de maio de 2012 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina Andretta (ICMC-USP) sme0500 - cálculo

Leia mais

SEL-0339 Introdução à Visão Computacional. Aula 7 Reconhecimento de Objetos

SEL-0339 Introdução à Visão Computacional. Aula 7 Reconhecimento de Objetos Departamento de Engenharia Elétrica - EESC-USP SEL-0339 Introdução à Visão Computacional Aula 7 Reconhecimento de Objetos Prof. Dr. Marcelo Andrade da Costa Vieira Prof. Dr. Adilson Gonzaga mvieira@sc.usp.br

Leia mais

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Francisco A. Rodrigues Departamento de Matemática Aplicada e Estatística - SME Conceitos básicos Classificação não-supervisionada:

Leia mais

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados

MAP CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados MAP 2121 - CÁLCULO NUMÉRICO (POLI) Lista de Exercícios sobre o Método dos Mínimos Quadrados 1: Usando o método dos mínimos quadrados de maneira conveniente, aproxime os pontos da tabela abaixo por uma

Leia mais

Mineração de Dados em Biologia Molecular

Mineração de Dados em Biologia Molecular Mineração de Dados em Biologia Molecular Principais tópicos André C. P. L. F. de Carvalho Monitor: Valéria Carvalho Métodos baseados em distância Aprendizado baseado em instâncias Conceitos básicos KNN

Leia mais

Resolução de sistemas de equações lineares: Fatorações de matrizes

Resolução de sistemas de equações lineares: Fatorações de matrizes Resolução de sistemas de equações lineares: Fatorações de matrizes Marina Andretta/Franklina Toledo ICMC-USP 5 de fevereiro de 2014 Baseado no livro Análise Numérica, de R. L. Burden e J. D. Faires. Marina

Leia mais

Sistemas de Equações Lineares Algébricas

Sistemas de Equações Lineares Algébricas Sistemas de Equações Lineares Algébricas A 11 x 1 + A 12 x 2 +... + A 1n x n = b 1 A 21 x 1 + A 22 x 2 +... + A 2n x n = b 2............... A n1 x1 + A n2 x 2 +... + A nn x n = b n A 11 A 12... A 1n x

Leia mais

Quarto projeto computacional (data de entrega: 05/06/17)

Quarto projeto computacional (data de entrega: 05/06/17) Quarto projeto computacional (data de entrega: 05/06/17) 1. Escreva um programa em MATLAB (ou na sua linguagem favorita) que implemente numericamente o modelo de neurônio integra-e-dispara com vazamento

Leia mais

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO

EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO Cálculo Numérico EXERCICIOS EXTRAIDOS DE PROVAS ANTERIORES o sem/08 EXERCICIOS RESOLVIDOS - INT-POLIN - MMQ - INT-NUMERICA - EDO x. Considere a seguinte tabela de valores de uma função f: i 0 f(x i ).50

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade

UNIVERSIDADE FEDERAL DE PERNAMBUCO Lista de Exercícios / Cálculo Numérico 1ª Unidade 1) Analise as alternativas abaixo e marque V para verdadeiro e F para falso. No segundo caso, explique como as tornaria verdadeiras: ( ) O método das secantes é utilizado para solucionar um problema de

Leia mais

Matrizes e Linearidade

Matrizes e Linearidade Matrizes e Linearidade 1. Revisitando Matrizes 1.1. Traço, Simetria, Determinante 1.. Inversa. Sistema de Equações Lineares. Equação Característica.1. Autovalor & Autovetor 4. Polinômios Coprimos 5. Função

Leia mais

ÁLGEBRA LINEAR - MAT0024

ÁLGEBRA LINEAR - MAT0024 UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERICANA Instituto Latino-Americano de Ciências da Vida e Da Natureza Centro Interdisciplinar de Ciências da Natureza ÁLGEBRA LINEAR - MAT0024 10 a Lista de exercícios

Leia mais

Determinação numérica de autovalores e autovetores: Método das Potências Inversas

Determinação numérica de autovalores e autovetores: Método das Potências Inversas Determinação numérica de autovalores e autovetores: Marina Andretta/Franklina Toledo ICMC-USP 3 de setembro de 2012 Marina Andretta/Franklina Toledo (ICMC-USP) sme0300 - Cálculo Numérico 3 de setembro

Leia mais

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras.

EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR. QUESTÃO 1: Indique as afirmativas verdadeiras. EXERCÍCIOS DE MATEMÁTICA COMPUTACIONAL: PRIMEIRO BIMESTRE: EDGARD JAMHOUR QUESTÃO 1: Indique as afirmativas verdadeiras. ( ) O número Pi não pode ser representado de forma exata em sistemas numéricos de

Leia mais

Algebra Linear. 1. Espaços Vetoriais Lineares. 2. Coordenadas em Espaços Lineares. 3. Operadores Lineares. 4. Transformação de Similaridade

Algebra Linear. 1. Espaços Vetoriais Lineares. 2. Coordenadas em Espaços Lineares. 3. Operadores Lineares. 4. Transformação de Similaridade Algebra Linear 1 Espaços Vetoriais Lineares Coordenadas em Espaços Lineares 3 Operadores Lineares 4 Transformação de Similaridade Matriz como Operador Norma de Vetores e Produto Interno pag1 Teoria de

Leia mais

Métodos Numéricos - Notas de Aula

Métodos Numéricos - Notas de Aula Métodos Numéricos - Notas de Aula Prof a Olga Regina Bellon Junho 2007 Introdução Sistemas Lineares Sistemas lineares são sistemas de equações com m equações e n incógnitas formados por equações lineares,

Leia mais

CC-226 Introdução à Análise de Padrões

CC-226 Introdução à Análise de Padrões CC-226 Introdução à Análise de Padrões Probabilidades e Estatísticas Descritivas Carlos Henrique Q. Forster 1 1 Divisão de Ciência da Computação Instituto Tecnológico de Aeronáutica 3 de março de 2008

Leia mais

Técnicas de Visualização para Dados Multivariados

Técnicas de Visualização para Dados Multivariados Técnicas de Visualização para Dados Multivariados SCC5836/SCC0252 Visualização Computacional Profa. Maria Cristina cristina@icmc.usp.br Instituto de Ciências Matemáticas e de Computação (ICMC) Universidade

Leia mais

Aula 19: Lifting e matrizes ideais

Aula 19: Lifting e matrizes ideais Aula 19: Lifting e matrizes ideais Otimização Linear e Inteira Túlio A. M. Toffolo http://www.toffolo.com.br BCC464/PCC174 2018/2 Departamento de Computação UFOP Previously... Branch-and-bound Formulações

Leia mais

Modelagem Computacional. Parte 2 2

Modelagem Computacional. Parte 2 2 Mestrado em Modelagem e Otimização - RC/UFG Modelagem Computacional Parte 2 2 Prof. Thiago Alves de Queiroz 2/2016 2 [Cap. 2 e 3] BURDEN, R. L.; FAIRES, J. D. Numerical Analysis (9th ed). Cengage Learning,

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z

SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé. Solução Numérica de Sistema Lineares A = MÉTODOS DIRETOS. x y z SME602 - Cálculo Numérico - - Prof. Murilo F. Tomé Solução Numérica de Sistema Lineares NORMAS DE VETORES E MATRIZES 1. Dado o vetor v = (, 1, 8, 2) T, calcule v 1, v 2 e v. 2. Dada a matriz: A = 5 7 2

Leia mais

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA

Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Exercícios de ANÁLISE E SIMULAÇÃO NUMÉRICA Licenciaturas em Engenharia do Ambiente e Química 2 o Semestre de 2005/2006 Capítulo IV Aproximação de Funções 1 Interpolação Polinomial 1. Na tabela seguinte

Leia mais

Álgebra Linear Exercícios Resolvidos

Álgebra Linear Exercícios Resolvidos Álgebra Linear Exercícios Resolvidos Agosto de 001 Sumário 1 Exercícios Resolvidos Uma Revisão 5 Mais Exercícios Resolvidos Sobre Transformações Lineares 13 3 4 SUMA RIO Capítulo 1 Exercícios Resolvidos

Leia mais

Redes Neurais e Sistemas Fuzzy

Redes Neurais e Sistemas Fuzzy Redes Neurais e Sistemas Fuzzy O ADALINE e o algoritmo LMS O ADALINE No contexto de classificação, o ADALINE [B. Widrow 1960] pode ser visto como um perceptron com algoritmo de treinamento baseado em minimização

Leia mais