REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR

Tamanho: px
Começar a partir da página:

Download "REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR"

Transcrição

1 REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE- AÇÚCAR THIAGO RAMOS TRIGO 1 PAULO CESAR DA SILVA BATISTA JÚNIOR 1 FERNANDO BUARQUE DE LIMA NETO 2 RESUMO Este artigo apresenta um maneira de implementar suporte a decisão de colheita da cana-deaçúcar utilizando redes neurais artificiais(rna) e planilha eletrônica simples. Na proposta, as RNAs são responsáveis pela predição de indicadores de desempenho da colheita. A planilha eletrônica, em seguida, é responsável por fornecer as informações necessárias ao suporte a decisão de colheita de lotes plantados com cana-de-açúcar. Neste trabalho incluímos uma série de simulações onde se avalia boa precisão e aplicabilidade da proposta. PALAVRAS-CHAVE: Redes Neurais Artificiais; Suporte a Decisão; Colheita de Canade-Açúcar. USING NEURAL NETWORK ON DECISION OF SUGAR CANE HARVEST ABSTRACT This article presents a way to implement decision support to the harvest of the sugar-cane by using artificial neural networks (ANN) and simple electronic spreadsheet. In this proposal, ANNs are responsible for forecasting performance indicators for the harvest. After that, an electronic spreadsheet is responsible for giving the necessary information to the decision maker for harvesting plots cultivated with sugar-cane. In this work a series of simulations are included where you can evaluate the precision and applicability of the proposal. KEYWORDS: Artificial Neural Networks; Decision Support Systems; Sugar-Cane harvest. 1. INTRODUÇÃO O Brasil é um país em desenvolvimento que tem perspectiva de crescimento de 5% para o ano de 2005 [1] e é notório que o Brasil tem no agronegócio uma de suas grandes chances de superação econômica. Um importante segmento de agronegócio, o setor sucroalcooeiro, movimenta cerca de R$ 40 bilhões por ano (em torno de 2,35% do PIB 1 {trt, Graduandos em Engenharia da Computação. Departamento de Sistemas Computacionais Escola Politécnica de Pernambuco Universidade de Pernambuco. 2 Doutor em Ciência da Computação. Departamento de Sistemas Computacionais Escola Politécnica de Pernambuco Universidade de Pernambuco.

2 nacional). Na safra 2004/2005 a moagem de cana-de-açúcar foi de 380 milhões de toneladas que produziram 14 bilhões de litros de álcool e 24 milhões de toneladas de açúcar [2]. Todos esses indicadores favoráveis somente são possíveis graças ao grande parque instalado e à competência técnica dos times agrícolas das unidades de produção nos tratos culturais e também na seleção dos lotes a serem cortados. Além de experiência esses profissionais têm disponível, dados históricos das safras anteriores e informações de pré-colheitas para auxiliálos no processo decisório da colheita. Porém, tratar grandes volumes de dados nem sempre é fácil. Imaginemos agora um cenário mais rico e claro em informação, por exemplo, quando o gerente agrícola tiver, antes dos lotes serem colhidos, alguns indicadores de avaliação de desempenho dos mesmos, tais como: TCH, PCC e Fibra 3. Com essas informações antecipadamente em mãos, a colheita poderia ser feita de acordo com as necessidades industriais, porém com mais adequação agronômica. Por exemplo, se em determinado dia a indústria precisar de matéria prima mais rica em bagaço selecionar-se-ia o conjunto que produzisse esse recurso com a máxima qualidade possível. Predições futuras baseadas em dados históricos são aplicações usuais com técnicas de Inteligência Artificial; em particular, Redes Neurais Artificiais são bastante eficazes na área da predição 4 de informações [Welstead94]. Dando continuidade ao trabalho pioneiro de Buarque [BUARQUE98], depois estendido por Pacheco [PACHECO05], o presente trabalho busca experimentar novas configurações de redes neurais artificiais que apresentam resultados satisfatórios para a predição de PCC, TCH e Fibra, além de aplicar esses resultados, de forma simplificada, no suporte a decisão da colheita da cana-de-açúcar. 2. REDES NEURAIS ARTIFICIAIS E SIMULAÇÕES REALIZADAS 2.1. O PROBLEMA: COLHEITA DA CANA-DE-AÇÚCAR Devido a grande quantidade de fatores que podem influenciar os indicadores de desempenho, e as diferentes curvas de maturação da cana-de-açúcar, a escolha do momento apropriado para se proceder a colheita de um lote se torna uma tarefa bastante complicada. Na 3 TCH tonelada de cana por hectare; PCC percentagem de açúcar bruto é um índice que está relacionado diretamente ao valor econômico da tonelada da cana; Fibra bagaço da cana para produção de energia elétrica nos termogeradores das usinas. [BUARQUE98]. 4 Previsão/Predição classe de problemas que consiste em extrapolações nas aproximações das séries temporais disponíveis, a fim de que sejam possíveis predições de valores futuros[buarque98].

3 maioria das usinas a decisão de colheita é baseada na experiência do gestor agrícola. Esses gestores dispõem de alguns dados referentes a colheitas passadas, mas a manipulação desses dados, buscando extrair informações que possam dar suporte a decisão de colheita, é bastante tediosa. Isto devido à enxurrada de dados, geralmente, dispostos em longos relatórios que refletem apenas o passado. Este trabalho procura mostrar como utilizar essa rica fonte de informações para ser um aliado no momento de decisão do corte (futuro) FUNDAMENTOS BÁSICOS Na sua forma mais geral, uma rede neural é uma técnica computacional projetada para simular o funcionamento do cérebro humano na resolução de uma tarefa particular. O primeiro neurônio artificial teve sua primeira concepção em 1943 com uma modelagem matemática do neurônio biológico feita por Warren McCulloch e Walter Pitts, um neuroanatomista e um matemático, respectivamente, a partir daí, muitos outros trabalhos foram apresentados sobre o tema e o assunto que se expandiu rapidamente devido ás grandes contribuições práticas da técnica [BRAGA00]. Não é objetivo detalhar RNA, mas é importante notar que esta maneira de computar dados pode aprender com os dados que lhe são apresentados exatamente o que é feito neste trabalho MODELAGEM DO PROBLEMA Fazer uma seleção de quais as informações serão relevantes nas predições mencionadas acima é algo bastante complexo devido a quantidade de fatores envolvidos na colheita (variedade da cana, data do plantio, idade no corte, topografia, tipo do solo, compactação do solo, temperatura, pluviometria, umidade do ar, déficit hídrico, nutrientes minerais, pragas, etc). Portanto, deve-se fazer uma análise minuciosa sobre quais destes fatores se deve utilizar. Em nosso modelo, os dados históricos utilizados para fazer predição foram escolhidos empiricamente. São eles, entradas: safra; estágio de maturação, idade do corte; época do plantio (ano, mês e dia); época do corte (ano, mês e dia) e tipo do solo; e saídas: PCC, TCH e Fibra. Antes das informações alimentarem a rede neural elas são pré-processadas a fim de eliminar as redundâncias, inconsistências e faltas existentes nos dados. Os dados utilizados são reais (do noroeste de São Paulo), os mesmos utilizados em [BUARQUE98].

4 Toda a massa de dados, 1671 padrões (um padrão corresponde a um conjunto de dados que representam um lote de uma determinada safra), foi divida em três conjuntos proporcionais a 50%, 25% e 25%. O primeiro conjunto é destinado ao treinamento da rede neural, o segundo conjunto é destinado à validação e o terceiro, é destinado à simulação. Na fase da simulação é testada a eficiência da rede, os dados os quais ainda não haviam sido apresentados à rede (os últimos 25% dos padrões), o são e sua performance real é, então, obtida pela comparação dos valores gerados contra os esperados AJUSTANDO UMA REDE NEURAL AO PROBLEMA DA CANA-DE-AÇÚCAR O modelo adotado contém 10 (dez) entradas e 3 (três) saídas supracitadas no tópico 2.3 parágrafo 2. A figura 1 representa graficamente nossa rede neural, nela as 10 entradas foram representadas na forma de 38 neurônios (devido às normalizações 5 ) e as três saídas como três neurônios. Grande parte das simulações objetivaram descobrir qual conjunto de parâmetros das RNA gera o melhor resultado nas previsões. Essa seleção dos parâmetros é um processo para o qual não há métodos que afirmem com total segurança a configuração ideal para um determinado problema. Por isso a busca por uma configuração ótima é, às vezes, dispendiosa em termos de tempo e esforço. As redes neurais utilizadas foram do tipo MLP (Multi-Layer Perceptron) com treinamento supervisionado e algoritmo de treinamento BackPropagation Error [HAYKIN01]. Figura 1 topologia de rede neural utilizada nas simulações 5 Normalizações são operações de preprocessamento que objetivam padronizar escalas de variáveis e incrementar sua representação conforme necessidade das aplicações.

5 Os parâmetros variados foram: número de camadas escondidas; número de neurônios nas camadas escondidas; taxa de aprendizagem; funções de ativação; quantidade de ciclos. Eles tiveram seus valores alterados como o exposto abaixo: Número de camadas escondidas utilizaram-se uma e duas camadas intermediárias; Número de neurônios na(s) camada(s) escondida(s) para as redes com uma camada escondidas criamos topologias com 4, 8, 10, 20 e 38 neurônios nessa camada; para as redes com duas camadas tivemos os seguintes pares (1,3), (2,2), (3,5), (2,6), (3,7), (2,8), (14,6), (11,9), (25,13), (30,8) onde, no par (a, b), o a representa a quantidade de neurônios na primeira camada e o b, a quantidade na segunda camada escondida; Taxa de aprendizagem utilizaram-se os valores 0,1, 0,2, 0,4, 0,6 ; Função de Ativação utilizadas as funções sigmóides: logística e tangente hiperbólica; Quantidade de ciclos 500, 1000, 3000, 5000, e Considerando que foram treinadas redes neurais com todas as combinações possíveis dos parâmetros apresentados acima redes foram treinadas, i.e. (((4x5 + 4 x 10) x 2) x 6)) SIMULAÇÕES REALIZADAS As simulações acima foram executadas na linguagem Batchman do simulador RNA: SNNS (Stuttgard Neural Network Simulator) [3]. Em nossos scripts feitos com a linguagem batchman foram especificados os arquivos que contêm os padrões de treinamento que serão importados, a rede a ser treinada, o algoritmo de treinamento, a função de inicialização dos pesos e a taxa de aprendizagem. É relevante a importância de fazer uma correta inicialização dos pesos, pois uma inicialização incorreta (determinar um intervalo entre 1.0 e 0.0 é um exemplo) pode fazer com que a rede não convirja durante o treinamento. 3. RESULTADOS E DISCUSSÃO 3.1. PREDIÇÃO DE PCC, TCH E FIBRA Depois da compilação dos resultados das simulações, foram feitas comparações entre os resultados esperados e os resultados gerados pela rede, e daí, foi calculada a margem de acerto da rede. Os melhores resultados das simulações deste trabalho foram comparados aos obtidos em [PACHECO05] e [BUARQUE98], vide tabela 1 e tabela 2. Como se pode observar, neste trabalho obtivemos melhoria em TCH e Fibra; o PCC flutuou pouco para pior.

6 Tabela 1 - Comparação dos resultados Resultados PCC 1 TCH 1 FIBRA 1 Esse Artigo 95,401 79,475 92,736 [PACHECO05] 95,620 78,070 92,520 [BUARQUE98] 95,330 49,200 89,680 1 taxa de acerto em porcentagem Tabela 2 - Comparação das configurações das redes neurais VARIÁVEIS ESTE ARTIGO [PACHECO05] [BUARQUE98] Entrada camada não disponível camada não disponível Saída Func. Ativ. Log Log não disponível TX APREND 0,4 0,1 não disponível CICLOS não disponível Comparando as redes de melhor resultado deste trabalho com a de [PACHECO05] vemos que os fatores que podem ter gerado esse melhor desempenho foi o fato de utilizarmos mais entradas e uma maior taxa de aprendizagem, este último é um fator determinante na velocidade de convergência da rede. Como trabalhos posteriores podemos utilizar técnicas de PCA para reduzir essa quantidade de variáveis de entrada, otimizando o processo. As figuras 2, 3 e 4 mostram a precisão da predição desta rede neural, as predições dos gráficos foram feitas com 25% da massa de dados que correspondiam ao conjunto de teste. No eixo das ordenadas encontram-se os valores reais e da predição e o eixo das abscissas ordena os padrões de onde foram extraídas as informações utilizadas no eixo das ordenadas, esses 20 padrões foram selecionados aleatoriamente. Vale salientar que a quantidade de ciclos utilizados (2795 ciclos) para obtermos esses resultados é bem inferior ao conseguido no artigo de Pacheco [PACHECO05] onde foram necessários ciclos. Isto significa uma economia de mais de 72% no tempo de treinamento da rede.

7 PCC - Real x Predição PCC Real Previsão Figura 2 predição do PCC TCH - Real x Predição 170 TCH Real Previsão Figura 3 predição do TCH Fibra - Real x Predição Fibra Real Previsão Figura 4 predição da Fibra 3.2. USANDO PREDIÇÕES PARA TOMADA DE DECISÕES Os resultados de PCC, TCH, Fibra acima foram obtidos com as redes neurais trabalhando com valores nunca apresentados a elas antes. Isso indica um provável auxilio ao gestor agrícola para tomar suas decisões de colheita de forma simplificada e antecipadamente. A figura 5 mostra um exemplo de uma planilha eletrônica utilizada como sistema de suporte a decisão [BUARQUE98]. A idéia consiste em utilizar a planilha para variar algum dos indicares (no exemplo utilizou-se o PCC) de forma que o sistema aproxime as tonelagens

8 dos lotes com uma meta a ser atingida. Note que o PCC, TCH e Fibra, nesta planilha são os resultados das predições das redes neurais. Figura 5 planilha usada para auxiliar decisão de colheita e atingimento de meta [BUARQUE98] Após o processamento das informações, a planilha pode ainda exibir graficamente, em formato de mapa, as sugestões dos melhores lotes a serem cortados (sim e não), ver figura 6.

9 Figura 6 planilha usada para visualmente auxiliar colheita de lotes [BUARQUE98] 4. CONCLUSÃO Os experimentos incluídos neste trabalho além de corroborar o poder das Redes Neurais Artificiais em aplicações de predição, melhoraram o desempenho para o mesmo conjunto de dados obtido em [BUARQUE98] e [PACHECO05], Pelo exposto no trabalho também fica claro que as redes neurais artificiais podem ser utilizadas de forma integrada com ferramentas simples de suporte a decisão gerencial. Aliando essa ferramenta aos conhecimentos do gestor agrícola, a possibilidade de colheitas mais rentáveis é bastante plausível. Ou seja, os gerentes agrícolas, tendo a previsão desses indicadores poderão selecionar os lotes para serem cortados de acordo com suas necessidades e ainda com alguma garantia de sucesso. Finalmente, sugere-se que as técnicas comentadas aqui não fiquem limitadas apenas à cana-de-açúcar; elas podem ser estendidas para diversas outras culturas agrícolas desde que sejam feitas modelagens adequadas dos problemas. 5. AGRADECIMENTOS Os autores deste artigo agradecem ao CNPq, pelo financiamento parcial desta pesquisa (Projeto intelicolheita, CNPq-PDPG/TI nº506595/2004-8).

10 6. REFERÊNCIAS BIBLIOGRÁFICAS [BRAGA00] BRAGA, A. de P - LUDEMIR. T. B. - CARVALHO, A.C.P. de L. F. Redes Neurais Artificiais Teoria e aplicação Rio de Janeiro: LTC, p. [WESTEAD94] WELSTEAD, Stephen T. Neural Network and Fuzzy Logic Applications in C/C++, John Wiley and Sons, USA, [HAYKIN01] HAYKIN, S. Redes de Múltiplas Camadas. In: Redes Neurais : Princípios e prática 2.ed. Porto Alegre: Bookman, [BUARQUE98] BUARQUE DE LIMA NETO, F.; LUDERMIR, T. Suporte a Decisão Gerencial Baseado em Redes Neurais Artificiais ndss Dissertação de Mestrado apresentada ao Departamento de Informática da Universidade Federal de Pernambuco Recife, PE, Brasil. [PACHECO05] PACHECO, D. F.; REGUEIRA, F. R.; BUARQUE DE LIMA NETO, F. Utilização de redes neurais artificiais em colheitas de cana-de-açúcar para a predição de PCC, TCH e fibra In: Revista ACOOLBrás Mar/2005. p [1] Reportagem Especial do Jornal da Globo de 30/11/2004 [2] [3]

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR RESUMO

REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR RESUMO REDES NEURAIS ARTIFICIAIS EM COLHEITA DE CANA-DE-AÇÚCAR THIAGO RAMOS TRIGO 1 PAULO CESAR DA SILVA BATISTA JÚNIOR 1 FERNANDO BUARQUE DE LIMA NETO 2 RESUMO Este artigo apresenta um maneira de implementar

Leia mais

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro

Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Uma aplicação de Inteligência Computacional e Estatística Clássica na Previsão do Mercado de Seguros de Automóveis Brasileiro Tiago Mendes Dantas t.mendesdantas@gmail.com Departamento de Engenharia Elétrica,

Leia mais

Complemento II Noções Introdutória em Redes Neurais

Complemento II Noções Introdutória em Redes Neurais Complemento II Noções Introdutória em Redes Neurais Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais

Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Previsão do Índice da Bolsa de Valores do Estado de São Paulo utilizandoredes Neurais Artificiais Redes Neurais Artificiais Prof. Wilian Soares João Vitor Squillace Teixeira Ciência da Computação Universidade

Leia mais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais

Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Previsão do Mercado de Ações Brasileiro utilizando Redes Neurais Artificiais Elisângela Lopes de Faria (a) Marcelo Portes Albuquerque (a) Jorge Luis González Alfonso (b) Márcio Portes Albuquerque (a) José

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica

Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica Identificação de Caracteres com Rede Neuronal Artificial com Interface Gráfica João Paulo Teixeira*, José Batista*, Anildio Toca**, João Gonçalves**, e Filipe Pereira** * Departamento de Electrotecnia

Leia mais

Projeto de Redes Neurais e MATLAB

Projeto de Redes Neurais e MATLAB Projeto de Redes Neurais e MATLAB Centro de Informática Universidade Federal de Pernambuco Sistemas Inteligentes IF684 Arley Ristar arrr2@cin.ufpe.br Thiago Miotto tma@cin.ufpe.br Baseado na apresentação

Leia mais

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO

PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO PRODUÇÃO INDUSTRIAL DE SUÍNOS E O USO DE REDES NEURAIS ARTIFICIAIS PARA PREDIÇÃO DE ÍNDICES ZOOTÉCNICOS NA FASE DE GESTAÇÃO E MATERNIDADE RESUMO HÉLITON PANDORFI 1 IRAN JOSÉ OLIVEIRA DA SILVA 2 JEFFERSON

Leia mais

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS

PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-7515-371-4 PROTÓTIPO DE SOFTWARE PARA APRENDIZAGEM DE REDES NEURAIS ARTIFICIAIS Rejane de Barros Araújo rdebarros_2000@yahoo.com.br

Leia mais

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia

Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Técnicas de Mineração de Dados Aplicadas a Reservatórios visando à Gestão Ambiental na Geração de Energia Aluno: Gabriel Leite Mariante Orientador: Marley Maria Bernardes Rebuzzi Vellasco Introdução e

Leia mais

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS

5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS 5º CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS TÍTULO DO TRABALHO: REDES NEURAIS APLICADAS EM INDÚSTRIAS PETROQUÍMICAS DE FABRICAÇÃO DE FIBRAS DE POLIÉSTER. AUTORES: Lívia Maciel

Leia mais

Aplicações Práticas com Redes Neurais Artificiais em Java

Aplicações Práticas com Redes Neurais Artificiais em Java com em Java Luiz D Amore e Mauro Schneider JustJava 2009 17 de Setembro de 2009 Palestrantes Luiz Angelo D Amore luiz.damore@metodista.br Mauro Ulisses Schneider mauro.schneider@metodista.br http://blog.mauros.org

Leia mais

Redes Neurais. Profa. Flavia Cristina Bernardini

Redes Neurais. Profa. Flavia Cristina Bernardini Redes Neurais Profa. Flavia Cristina Bernardini Introdução Cérebro & Computador Modelos Cognitivos Diferentes Cérebro Computador Seqüência de Comandos Reconhecimento de Padrão Lento Rápido Rápido Lento

Leia mais

Inteligência Artificial. Redes Neurais Artificiais

Inteligência Artificial. Redes Neurais Artificiais Curso de Especialização em Sistemas Inteligentes Aplicados à Automação Inteligência Artificial Redes Neurais Artificiais Aulas Práticas no Matlab João Marques Salomão Rodrigo Varejão Andreão Matlab Objetivos:

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações.

A metodologia utilizada neste trabalho consiste basicamente de três etapas: ensaio, pré-processamento e simulações. SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GCE 20 14 a 17 Outubro de 2007 Rio de Janeiro - RJ GRUPO XIV GRUPO DE ESTUDO DE CONSERVAÇÃO DE ENERGIA ELÉTRICA UTILIZAÇÃO DE REDES

Leia mais

Aula 2 RNA Arquiteturas e Treinamento

Aula 2 RNA Arquiteturas e Treinamento 2COP229 Aula 2 RNA Arquiteturas e Treinamento 2COP229 Sumário 1- Arquiteturas de Redes Neurais Artificiais; 2- Processos de Treinamento; 2COP229 1- Arquiteturas de Redes Neurais Artificiais -Arquitetura:

Leia mais

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida

Matlab - Neural Networw Toolbox. Ana Lívia Soares Silva de Almeida 27 de maio de 2014 O que é a Neural Networw Toolbox? A Neural Network Toolbox fornece funções e aplicativos para a modelagem de sistemas não-lineares complexos que não são facilmente modelados com uma

Leia mais

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais.

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais. 1. Introdução A previsão de vendas é fundamental para as organizações uma vez que permite melhorar o planejamento e a tomada de decisão sobre o futuro da empresa. Contudo toda previsão carrega consigo

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas e técnicas

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

REDES NEURAIS PARA PREDIÇÃO DE VARIÁVEIS CLIMÁTICAS RELEVANTES PARA A AGRICULTURA 1

REDES NEURAIS PARA PREDIÇÃO DE VARIÁVEIS CLIMÁTICAS RELEVANTES PARA A AGRICULTURA 1 ISSN 1413-6244 Empresa Brasileira de Pesquisa Agropecuária Centro Nacional de Pesquisa e Desenvolvimento de Instrumentação Agropecuária Ministério da Agricultura e do Abastecimento Rua XV de Novembro,

Leia mais

A implementação e o estudo. de redes neurais artificiais em ferramentas de software comerciais,

A implementação e o estudo. de redes neurais artificiais em ferramentas de software comerciais, Artigos A implementação e o estudo de redes neurais artificiais em ferramentas de software comerciais Cleber Gustavo Dias Professor do Departamento de Ciências Exatas Uninove. São Paulo SP [Brasil] diascg@uninove.br

Leia mais

SISTEMAS INTELIGENTES DE APOIO À DECISÃO

SISTEMAS INTELIGENTES DE APOIO À DECISÃO SISTEMAS INTELIGENTES DE APOIO À DECISÃO As organizações estão ampliando significativamente suas tentativas para auxiliar a inteligência e a produtividade de seus trabalhadores do conhecimento com ferramentas

Leia mais

Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal

Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal Ajuste de modelos de redes neurais artificiais na precipitação pluviométrica mensal 1 Introdução Antonio Sergio Ferraudo 1 Guilherme Moraes Ferraudo 2 Este trabalho apresenta estudos de série de precipitação

Leia mais

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS

OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS OTIMIZAÇÃO DE REDES NEURAIS PARA PREVISÃO DE SÉRIES TEMPORAIS Trabalho de Conclusão de Curso Engenharia da Computação Adélia Carolina de Andrade Barros Orientador: Prof. Dr. Adriano Lorena Inácio de Oliveira

Leia mais

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP

Revista Hispeci & Lema On Line ano III n.3 nov. 2012 ISSN 1980-2536 unifafibe.com.br/hispecielemaonline Centro Universitário UNIFAFIBE Bebedouro-SP Reconhecimento de face utilizando banco de imagens monocromáticas e coloridas através dos métodos da análise do componente principal (PCA) e da Rede Neural Artificial (RNA) [Recognition to face using the

Leia mais

REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES.

REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES. REDES NEURAIS ARTIFICIAIS E MODELO DE MARKOWITZ: COMPARANDO TÉCNICAS QUE APÓIAM A TOMADA DE DECISÃO NOS INVESTIMENTOS EM AÇÕES. Paulo Henrique Kaupa (Uninove) paulo.kaupa@gmail.com Renato Jose Sassi (Uninove)

Leia mais

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001

Figura 5.1.Modelo não linear de um neurônio j da camada k+1. Fonte: HAYKIN, 2001 47 5 Redes Neurais O trabalho em redes neurais artificiais, usualmente denominadas redes neurais ou RNA, tem sido motivado desde o começo pelo reconhecimento de que o cérebro humano processa informações

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

SISTEMAS DE APOIO À DECISÃO SAD

SISTEMAS DE APOIO À DECISÃO SAD SISTEMAS DE APOIO À DECISÃO SAD Conceitos introdutórios Decisão Escolha feita entre duas ou mais alternativas. Tomada de decisão típica em organizações: Solução de problemas Exploração de oportunidades

Leia mais

Classificação de QoS em Conteúdo Multimídia para Rede VPN utilizando Rede Neural Multilayer Perceptron

Classificação de QoS em Conteúdo Multimídia para Rede VPN utilizando Rede Neural Multilayer Perceptron Classificação de QoS em Conteúdo Multimídia para Rede VPN utilizando Rede Neural Multilayer Perceptron Paula Letícia S. Lima 1, Helvio Seabra V. Filho 1, Rian Sérgio A. Lima 1, Ananias Pereira Neto 1 1

Leia mais

Aplicação do algoritmo genético na otimização da produção em indústrias de açúcar e álcool

Aplicação do algoritmo genético na otimização da produção em indústrias de açúcar e álcool Aplicação do algoritmo genético na otimização da produção em indústrias de açúcar e álcool Lucélia Costa Oliveira¹; Mário Luiz Viana Alvarenga² ¹ Aluna do curso de Engenharia de Produção e bolsista do

Leia mais

Pós-Graduação em Engenharia Elétrica Inteligência Artificial

Pós-Graduação em Engenharia Elétrica Inteligência Artificial Pós-Graduação em Engenharia Elétrica Inteligência Artificial João Marques Salomão Rodrigo Varejão Andreão Inteligência Artificial Definição (Fonte: AAAI ): "the scientific understanding of the mechanisms

Leia mais

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS

PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS PREVISÃO DE TEMPERATURA ATRAVÉS DE REDES NEURAIS ARTIFICIAIS Alexandre Pinhel Soares 1 André Pinhel Soares 2 Abstract : The temperature monitoring is a quasi-continuous and judicious task that gives a

Leia mais

Inteligência Computacional [2COP229]

Inteligência Computacional [2COP229] Inteligência Computacional [2COP229] Mestrado em Ciência da Computação Sylvio Barbon Jr barbon@uel.br (2/24) Tema Aula 1 Introdução ao Reconhecimento de Padrões 1 Introdução 2 Componentes clássicos da

Leia mais

ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL

ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL ESTUDO DOS DADOS DA LIXIVIAÇÃO DOS MATERIAIS DE ELETRODOS DE PILHAS EM HCl POR REDE NEURAL Macêdo, M. I. F 1, Rosa, J. L. A. 2, Gonçalves, F. 2, Boente, A. N. P. 2 1 Laboratório de Tecnologia de Materiais,

Leia mais

Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos UFPE UFPE UFPE UFPE UFPE CELPE

Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos UFPE UFPE UFPE UFPE UFPE CELPE 21 a 25 de Agosto de 2006 Belo Horizonte - MG Previsão de Carga em Médio Prazo via Redes Neurais Artificiais e Algoritmos Genéticos Nóbrega Neto, O. Aquino, R. R. B. Ferreira, A. A. Lira, M. M. S. Silva,

Leia mais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA CRISTIAN COSMOSKI RANGEL DE ABREU TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR

Leia mais

Radar de Penetração no Solo e Meio- Ambiente

Radar de Penetração no Solo e Meio- Ambiente UNIVERSIDADE DE SÃO PAULO INSTITUTO DE ASTRONOMIA, GEOFÍSICA E CIÊNCIAS ATMOSFÉRICAS DEPARTAMENTO DE GEOFÍSICA Curso 3ª Idade Radar de Penetração no Solo e Meio- Ambiente Vinicius Rafael Neris dos Santos

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Redes neurais aplicadas na identificação de variedades de soja

Redes neurais aplicadas na identificação de variedades de soja Redes neurais aplicadas na identificação de variedades de soja Fábio R. R. Padilha Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ Rua São Francisco, 5 - Sede Acadêmica, 987-,

Leia mais

REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA

REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA REDES NEURAIS PARA IDENTIFICAÇÃO DE PADRÕES NA DETECÇÃO DE QUEIMADAS NA FLORESTA AMAZÔNICA Luiz Pinheiro Duarte Neto 1, Lauro Yasumasa Nakayama 2, Juliano João Bazzo 3 1 Instituto Nacional de Pesquisas

Leia mais

Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal

Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal Anais do CNMAC v.2 ISSN 1984-820X Mineração de Dados Meteorológicos pela Teoria dos Conjuntos Aproximativos para Aplicação na Previsão de Precipitação Sazonal Juliana Aparecida Anochi Instituto Nacional

Leia mais

Módulo 6: Inteligência Artificial

Módulo 6: Inteligência Artificial Módulo 6: Inteligência Artificial Assuntos: 6.1. Aplicações da IA 6.2. Sistemas Especialistas 6.1. Aplicações da Inteligência Artificial As organizações estão ampliando significativamente suas tentativas

Leia mais

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial

Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial Automatização do processo de determinação do número de ciclos de treinamento de uma Rede Neural Artificial André Ricardo Gonçalves; Maria Angélica de Oliveira Camargo Brunetto Laboratório Protem Departamento

Leia mais

INSTITUTO DE TECNOLOGIA FACULDADE DE ENGENHARIA DA COMPUTAÇÃO SITEC2010 - Semana do Instituto de Tecnologia Aluno: Edson Adriano Maravalho Avelar Orientador: Prof. Dr. Kelvin Lopes Dias 1 Motivação Aumento

Leia mais

Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais

Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais Classificação de pacientes com transtorno de dislexia usando Redes Neurais Artificiais Raimundo José Macário Costa Programa de Engenharia de Sistemas, COPPE/UFRJ E-mail: macario@cos.ufrj.br Telma Silveira

Leia mais

3 Metodologia de Previsão de Padrões de Falha

3 Metodologia de Previsão de Padrões de Falha 3 Metodologia de Previsão de Padrões de Falha Antes da ocorrência de uma falha em um equipamento, ele entra em um regime de operação diferente do regime nominal, como descrito em [8-11]. Para detectar

Leia mais

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES

MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES MINERAÇÃO DE DADOS PARA DETECÇÃO DE SPAMs EM REDES DE COMPUTADORES Kelton Costa; Patricia Ribeiro; Atair Camargo; Victor Rossi; Henrique Martins; Miguel Neves; Ricardo Fontes. kelton.costa@gmail.com; patriciabellin@yahoo.com.br;

Leia mais

Relatório de uma Aplicação de Redes Neurais

Relatório de uma Aplicação de Redes Neurais UNIVERSIDADE ESTADUAL DE MONTES CLAROS CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE CIÊNCIAS DA COMPUTACAÇÃO ESPECIALIZAÇÃO EM ENGENHARIA DE SISTEMAS DISCIPLINA: REDES NEURAIS PROFESSOR: MARCOS

Leia mais

SISTEMA AUTOMÁTICO DE PULVERIZAÇÃO UTILIZANDO TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS. PERNOMIAN, Viviane Araujo. DUARTE, Fernando Vieira

SISTEMA AUTOMÁTICO DE PULVERIZAÇÃO UTILIZANDO TÉCNICAS DE PROCESSAMENTO DIGITAL DE IMAGENS. PERNOMIAN, Viviane Araujo. DUARTE, Fernando Vieira REVISTA CIENTÍFICA ELETRÔNICA DE AGRONOMIA ISSN 1677-0293 PERIODICIDADE SEMESTRAL ANO III EDIÇÃO NÚMERO 5 JUNHO DE 2004 -------------------------------------------------------------------------------------------------------------------------------

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Estudos Comparativos Recentes - Behavior Scoring Roteiro Objetivo Critérios de Avaliação

Leia mais

Estudos para Localização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes

Estudos para Localização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes 1 Estudos para ização de Faltas em Redes Subterrâneas Integrando o Software PSCAD/EMTDC e Ferramentas Inteligentes D. S. Gastaldello, A. N. Souza, H. L. M. do Amaral, M. G. Zago e C. C. O. Ramos Resumo--

Leia mais

MÓDULO DE VALIDAÇÃO CRUZADA PARA TREINAMENTO DE REDES NEURAIS ARTIFICIAIS COM ALGORITMOS BACKPROPAGATION E RESILIENT PROPAGATION

MÓDULO DE VALIDAÇÃO CRUZADA PARA TREINAMENTO DE REDES NEURAIS ARTIFICIAIS COM ALGORITMOS BACKPROPAGATION E RESILIENT PROPAGATION CDD:006.3 MÓDULO DE VALIDAÇÃO CRUZADA PARA TREINAMENTO DE REDES NEURAIS ARTIFICIAIS COM ALGORITMOS BACKPROPAGATION E RESILIENT PROPAGATION CROSS VALIDATION MODULE FOR THE TRAINING OF ARTIFICIAL NEURAL

Leia mais

IMPLEMENTAÇÃO DE UM MODELO DE PREVISÃO DE VAZÃO EM TEMPO REAL COM REDES NEURAIS

IMPLEMENTAÇÃO DE UM MODELO DE PREVISÃO DE VAZÃO EM TEMPO REAL COM REDES NEURAIS IMPLEMENTAÇÃO DE UM MODELO DE PREVISÃO DE VAZÃO EM TEMPO REAL COM REDES NEURAIS Cristiane Pires Andrioli 1 e Mario Thadeu Leme de Barros 2 RESUMO Este trabalho trata de um novo esquema de previsão de vazões

Leia mais

INTRODUÇÃO AO GEOPROCESSAMENTO GEOPROCESSAMENTO. Introdução ao Geoprocessamento. Conceitos básicos 18/06/2015. Conceitos básicos

INTRODUÇÃO AO GEOPROCESSAMENTO GEOPROCESSAMENTO. Introdução ao Geoprocessamento. Conceitos básicos 18/06/2015. Conceitos básicos GEOPROCESSAMENTO INTRODUÇÃO AO GEOPROCESSAMENTO Prof. Esp. André Aparecido da Silva Introdução ao Geoprocessamento Conceitos básicos Conceitos básicos Componentes de um SIG Entrada de Dados em Geoprocessamento

Leia mais

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil

RENATO DE FREITAS LARA. Departamento de Ciência da Computação - Universidade Presidente Antônio Carlos (UNIPAC) - Barbacena - MG Brasil RECONHECIMENTO DE CADEIAS DE NÚMEROS NAS ETIQUETAS IDENTIFICADORAS DOS BLOCOS DE AÇO, UTILIZANDO PROCESSAMENTO DIGITAL DE IMAGENS E REDES NEURAIS ARTIFICIAIS RENATO DE FREITAS LARA Departamento de Ciência

Leia mais

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA

TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA TÍTULO: PROPOSTA DE METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS MLP PARA A PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES DE POTÊNCIA CATEGORIA: CONCLUÍDO ÁREA: ENGENHARIAS E ARQUITETURA SUBÁREA: ENGENHARIAS

Leia mais

REDES NEURAIS APLICADAS A SISTEMAS DE SEGURANÇA BIOMÉTRICOS

REDES NEURAIS APLICADAS A SISTEMAS DE SEGURANÇA BIOMÉTRICOS 1 REDES NEURAIS APLICADAS A SISTEMAS DE SEGURANÇA BIOMÉTRICOS Juliana Lyrio Louzada, Paulo R. Baceiredo Azevedo, Gizelle Kupac Vianna Curso de Sistema de informação, Universidade Estácio de Sá Campus Nova

Leia mais

PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS

PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS PREVISÃO DE SÉRIES TEMPORAIS DE FALHAS EM MANUTENÇÃO INDUSTRIAL USANDO REDES NEURAIS Rubião G. Torres Jr 1 Maria Augusta Soares Machado 2 Reinaldo Castro Souza 3 Resumo: A aplicação de dois modelos de

Leia mais

ANÁLISE DE PRÉ-PROCESSAMENTO NO DESEMPENHO DE PREVISÃO DE SÉRIES TEMPORAIS FINANCEIRAS

ANÁLISE DE PRÉ-PROCESSAMENTO NO DESEMPENHO DE PREVISÃO DE SÉRIES TEMPORAIS FINANCEIRAS Universidade Federal de Pernambuco Centro de Informática Graduação em Ciência da Computação ANÁLISE DE PRÉ-PROCESSAMENTO NO DESEMPENHO DE PREVISÃO DE SÉRIES TEMPORAIS FINANCEIRAS PROPOSTA DE TRABALHO DE

Leia mais

Sistemas Híbridos Aplicados à Filtragem de Sinais de Alarme de Proteção de uma Subestação Telecomandada

Sistemas Híbridos Aplicados à Filtragem de Sinais de Alarme de Proteção de uma Subestação Telecomandada Proceedings of the IV Brazilian Conference on Neural Networks - IV Congresso Brasileiro de Redes Neurais pp. 215-219, July 20-22, 1999 - ITA, São José dos Campos - SP - Brazil Sistemas Híbridos Aplicados

Leia mais

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS Trabalho de Conclusão de Curso Engenharia da Computação Nome do Aluno: Carolina Baldisserotto Orientador: Prof. Adriano

Leia mais

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba

COPPE/UFRJ. CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba COPPE/UFRJ CPE 721 - Redes Neurais Feedforward Prof.: Luiz Calôba PROGRAMA PARA DEMONSTRAÇÃO DO PROCESSO DE APRENDIZADO DOS NEURÔNIOS DA CAMADA INTERMEDIÁRIA DE UMA REDE NEURAL FEEDFORWARD DE 2 CAMADAS,

Leia mais

IN0997 - Redes Neurais

IN0997 - Redes Neurais IN0997 - Redes Neurais Aluizio Fausto Ribeiro Araújo Universidade Federal de Pernambuco Centro de Informática - CIn Departamento de Sistemas da Computação aluizioa@cin.ufpe.br Conteúdo Objetivos Ementa

Leia mais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais

Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 1 Previsão de Falhas em Manutenção Industrial Usando Redes Neurais 2 Rubião Gomes Torres Júnior 1 Maria Augusta Soares Machado, Dsc,1 Jorge Muniz Barreto rubtor@attglobal.net mmachado@ibmecrj.br barreto@inf.ufsc.br

Leia mais

Relatório da Aula Prática sobre Redes Neurais Artificiais

Relatório da Aula Prática sobre Redes Neurais Artificiais Relatório da Aula Prática sobre Redes Neurais Artificiais Instituto de Informática UFRGS Carlos Eduardo Ramisch Cartão: 134657 INF01017 Redes Neurais e Sistemas Fuzzy Porto Alegre, 16 de outubro de 2006.

Leia mais

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS

UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS UNISINOS - UNIVERSIDADE DO VALE DO RIO DOS SINOS Curso: Informática Disciplina: Redes Neurais Prof. Fernando Osório E-mail: osorio@exatas.unisinos.br EXEMPLO DE QUESTÕES DE PROVAS ANTIGAS 1. Supondo que

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recife - PE GRUPO XV GRUPO DE ESTUDO DE SISTEMAS DE INFORMAÇÃO E TELECOMUNICAÇÃO PARA SISTEMAS

Leia mais

OBJETIVOS. Aplicar técnicas de inteligência artificial na solução de problemas de controle e automação. EMENTA

OBJETIVOS. Aplicar técnicas de inteligência artificial na solução de problemas de controle e automação. EMENTA Curso: ENGENHARIA ELÉTRICA Unidade Curricular: INTELIGÊNCIA ARTIFICIAL Professor(es): HANS ROLF KULITZ Período Letivo: OPTATIVA Carga Horária: 30 h TEÓRICAS E 30 h PRÁTICA OBJETIVOS Geral: Aplicar técnicas

Leia mais

Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais

Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais Computer on the Beach 2015 - Artigos Completos 308 Previsão de Cheias do Rio Itajaí-Açu Utilizando Redes Neurais Artificiais Daniel Gomes Soares¹, Raimundo Celeste Ghizoni Teive² ¹Curso de Ciência da Computação

Leia mais

Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais

Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais Avaliação do potencial produtivo em montados de sobro com recurso a redes neuronais artificiais Susana Dias (Investigadora/Colaboradora da Universidade de Évora e Docente do Instituto Politécnico de Elvas)

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

E-mail: rbrunow@uss.br

E-mail: rbrunow@uss.br ! " # $! &%'! ()*) ( +!, -,./!, ' *3.45 6 3 7 3 8 3 *3.49: 3 8 *- ; ,?3. @*

Leia mais

Simulador de Redes Neurais Multiplataforma

Simulador de Redes Neurais Multiplataforma Simulador de Redes Neurais Multiplataforma Lucas Hermann Negri 1, Claudio Cesar de Sá 2, Ademir Nied 1 1 Departamento de Engenharia Elétrica Universidade do Estado de Santa Catarina (UDESC) Joinville SC

Leia mais

PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS

PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS PREVISÃO DO PREÇO DA SOJA UTILIZANDO REDES NEURAIS 1 William Hajime Yonenaga e 2 Reginaldo Santana Figueiredo 1 Programa de Pós-Graduação em Engenharia de Produção, 2 Departamento de Engenharia de Produção

Leia mais

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Paulo Carvalho Diniz Junior CPGEI / UTFPR Avenida Sete de Setembro, 3165 Curitiba-PR - CEP 80.230-910 E-mail: paulo.carvalho.diniz@gmail.com

Leia mais

Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz

Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz Laboratório de Dependabilidade e Segurança Lades Profs. Luiz Laranjeira, Nilton Silva, e Fabrício Braz RENASIC/CD-CIBER CD Ciber CTC - Comitê Técnico Científico RENASIC CD Comitê Diretor ASTECA VIRTUS

Leia mais

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net

Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Classificação Automática dos Usuários da Rede Social Acadêmica Scientia.Net Vinícius Ponte Machado 1, Bruno Vicente Alves de Lima 2, Heloína Alves Arnaldo 3, Sanches Wendyl Ibiapina Araújo 4 Departamento

Leia mais

USO DE REDES NEURAIS PARA PREVISÃO DO CONSUMO DE ENERGIA EM HOTÉIS

USO DE REDES NEURAIS PARA PREVISÃO DO CONSUMO DE ENERGIA EM HOTÉIS VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a 2 de agosto de 200 Campina Grande Paraíba - Brasil August 8 2, 200 Campina Grande Paraíba Brazil USO DE REDES

Leia mais

CURSO DE GRADUAÇÃO PRESENCIAL SISTEMAS DE INFORMAÇÃO

CURSO DE GRADUAÇÃO PRESENCIAL SISTEMAS DE INFORMAÇÃO FUNDAÇÃO UNIVERSIDADE DO TOCANTINS CURSO DE GRADUAÇÃO PRESENCIAL SISTEMAS DE INFORMAÇÃO Identificação do Curso Nome do Curso: Sistemas de Informação Titulação: Bacharelado Modalidade de ensino: Presencial

Leia mais

ANEXO 1 RELAÇÃO DESCRITIVA DAS TAREFAS

ANEXO 1 RELAÇÃO DESCRITIVA DAS TAREFAS ANEXO 1 RELAÇÃO DESCRITIVA DAS TAREFAS Neste anexo estão delineadas, de forma sugestiva, as possíveis maneiras de se executar o Projeto de inovação do processo de monitoramento de safra da Conab com duração

Leia mais

ANÁLISE DE CRÉDITO AO CONSUMIDOR UTILIZANDO REDES NEURAIS

ANÁLISE DE CRÉDITO AO CONSUMIDOR UTILIZANDO REDES NEURAIS ANÁLISE DE CRÉDITO AO CONSUMIDOR UTILIZANDO REDES NEURAIS Alexandre Leme Sanches (FATEC BP ) alex_sanches68@hotmail.com Amanda Zeni (FATEC BP ) zeniamanda_007@hotmail.com Redes Neurais Artificiais são

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS

UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS UMA ABORDAGEM DE PODA PARA MÁQUINAS DE APRENDIZADO EXTREMO VIA ALGORITMOS GENÉTICOS Alisson S. C. Alencar, Ajalmar R. da Rocha Neto Departamento de Computação, Instituto Federal do Ceará (IFCE). Programa

Leia mais

Nathalie Portugal Vargas

Nathalie Portugal Vargas Nathalie Portugal Vargas 1 Introdução Trabalhos Relacionados Recuperação da Informação com redes ART1 Mineração de Dados com Redes SOM RNA na extração da Informação Filtragem de Informação com Redes Hopfield

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

MODELOS PARA PREVISÃO DE DEMANDA NO RESTAURANTE UNIVERSITÁRIO UTILIZANDO TÉCNICAS DE REDES NEURAIS

MODELOS PARA PREVISÃO DE DEMANDA NO RESTAURANTE UNIVERSITÁRIO UTILIZANDO TÉCNICAS DE REDES NEURAIS 31 de Julho a 02 de Agosto de 2008 MODELOS PARA PREVISÃO DE DEMANDA NO RESTAURANTE UNIVERSITÁRIO UTILIZANDO TÉCNICAS DE REDES NEURAIS Liliane Lopes Cordeiro (DMA - UFV) lililopescordeiro@yahoo.com.br Heverton

Leia mais

Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional. Bicos Automação Análise Técnica. Sistemas

Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional. Bicos Automação Análise Técnica. Sistemas Aperfeiçoando o desempenho da pulverização com Dinâmica de fluidos computacional Bicos Automação Análise Técnica Sistemas Dinâmica de fluidos computacional (DFC) DCF é uma ciência da previsão: Vazão do

Leia mais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais

Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Análise de Risco de Crédito em Correspondentes Bancários através de Redes Neurais Marcelo França Corrêa, Marley Vellasco ICA: Applied Computational Intelligence Laboratory Department of Electrical Engineering

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Implementação de um Teste de Aptidão Vocacional Inteligente utilizando Redes Neurais

Implementação de um Teste de Aptidão Vocacional Inteligente utilizando Redes Neurais Implementação de um Teste de Aptidão Vocacional Inteligente utilizando Redes Neurais Ricardo B. Rodrigues 1, Sofia Mara de Souza 1 1 Departamento de Ciência da Computação Centro Universitário UnirG (UNIRG)

Leia mais

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5

1. Introdução... 2. 2. As origens da RNA... 3. 3. O nosso cérebro... 5. 3.1. Plasticidade e modulação sináptica... 5 Sumário 1. Introdução... 2 2. As origens da RNA... 3 3. O nosso cérebro... 5 3.1. Plasticidade e modulação sináptica... 5 4. As redes neurais artificiais... 7 4.1. Estrutura da RNA... 7 4.3. Modelos de

Leia mais

Análise de Tendências de Mercado por Redes Neurais Artificiais

Análise de Tendências de Mercado por Redes Neurais Artificiais Análise de Tendências de Mercado por Redes Neurais Artificiais Carlos E. Thomaz 1 e Marley M.B.R. Vellasco 2 1 Departamento de Engenharia Elétrica (IAAA), FEI, São Paulo, Brasil 2 Departamento de Engenharia

Leia mais

2010-2014 NUVEM TECNOLOGIA LTDA. WWW.NUVEM.NET

2010-2014 NUVEM TECNOLOGIA LTDA. WWW.NUVEM.NET Sediada em Cuiabá, Mato Grosso, a Nuvem Tecnologia Ltda desenvolve softwares para empresas de médio e grande porte no centro-oeste do país. A partir do know-how adquirido sobre rastreabilidade, lançou

Leia mais

Renato Maia Silva. Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP. Dissertação de Mestrado

Renato Maia Silva. Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP. Dissertação de Mestrado Renato Maia Silva Redes Neurais Artificiais aplicadas à Detecção de Intrusão em Redes TCP/IP Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo

Leia mais