RPM 35 - Por que o espaço tem três dimensões

Documentos relacionados
Coordenadas e distância na reta e no plano

GEOMETRIA DE POSIÇÃO

Capítulo 2. Retas no plano. 1. Retas verticais e não-verticais. Definição 1

Conceitos e Controvérsias

Aula Distância entre duas retas paralelas no espaço. Definição 1. Exemplo 1

Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos

Capítulo Coordenadas no Espaço. Seja E o espaço da Geometria Euclidiana tri-dimensional.

Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR

Geometria Euclidiana Espacial e Introdução à Geometria Descritiva

Conceitos Primitivos: são conceitos adotados sem definição.

AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos

Lembremos que um paralelogramo é um quadrilátero (figura geométrica com quatro lados) cujos lados opostos são paralelos.

ANTÔNIO LUIZ PEREIRA E SEVERINO TOSCANO MELO

Coordenadas Cartesianas

Geometria Euclideana Plana

Objetivos. em termos de produtos internos de vetores.

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Teorema do ângulo externo e sua consequencias

Aula 5 Equações paramétricas de retas e planos

Tópicos de Matemática. Teoria elementar de conjuntos

Retas e círculos, posições relativas e distância de um ponto a uma reta

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por

Posição relativa entre retas e círculos e distâncias

Material Teórico - Módulo: Vetores em R 2 e R 3. O Conceito de Vetor. Terceiro Ano do Ensino Médio

GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA

GGM /11/2010 Dirce Uesu Pesco Geometria Espacial

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. TPC nº 7 entregar no dia

Geometria Plana - Aula 01

AULA Paralelismo e perpendicu- 11 larismo

Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria

INTRODUÇÃO À TEORIA DOS CONJUNTOS

Geometria (euclidiana)

Elementos de Lógica Matemática. Uma Breve Iniciação

Sistemas de equações lineares com três variáveis

Volume de Sólidos. Principio de Cavalieri

Ainda Sobre o Teorema de Euler para Poliedro Convexos

O PRINCÍPIO DAS GAVETAS Paulo Cezar Pinto Carvalho - IMPA

Análise I. Notas de Aula 1. Alex Farah Pereira de Agosto de 2017

1. Encontre as equações simétricas e paramétricas da reta que:

Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff

Equações da reta no plano

Aula 24 mtm B GEOMETRIA ESPACIAL

2 Igualdade e Operações com pares ordenados. 1 Conjunto R 2. 3 Vetores. 2.1 Igualdade. 1.2 Coordenadas Cartesianas no Plano

Aula 4 Colinearidade, coplanaridade e dependência linear

Geometria Analítica II - Aula 4 82

LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I

Aulas 10 e 11 / 18 e 20 de abril

Plano Cartesiano e Retas. Vitor Bruno Engenharia Civil

Geometria Analítica. Geometria Analítica 28/08/2012

Equações paramétricas das cônicas

Material Teórico - Módulo de Geometria Espacial 1 - Fundamentos. Pontos, Retas e Planos - Parte 2. Terceiro Ano - Médio

Aula 3 A Reta e a Dependência Linear

Aula 10 Produto interno, vetorial e misto -

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

Relatório Sobre a Exposição do Tema A Reta de Euler

Um pouco de história. Ariane Piovezan Entringer. Geometria Euclidiana Plana - Introdução

GEOMETRIA ANALÍTICA 2017

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Ponto 1) Representação do Ponto

O TRIÂNGULO PSEUDO-RETÂNGULO E A HIPÉRBOLE EQUILÁTERA

0 < c < a ; d(f 1, F 2 ) = 2c

Geometria. Roberta Godoi Wik Atique

META Introduzir os axiomas de medição de segmentos e ângulos. OBJETIVOS Determinar o comprimento de um segmento e a distância entre

1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.

Coordenadas no espaço. Prof. Rossini Bezerra FBV

Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

Soluções do Capítulo 8 (Volume 2)

Exercícios de testes intermédios

Geometria Analítica - Aula

III.2 Se os segmentos A B e A B são congruentes ao segmento AB então os segmentos A B e A B também são congruentes.

TEMA 3 GEOMETRIA FICHAS DE TRABALHO 10.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Curvas Planas em Coordenadas Polares

Plano cartesiano, Retas e. Alex Oliveira. Circunferência

Material Teórico - Módulo de Geometria Anaĺıtica 1. Terceiro Ano - Médio. Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M.

A função afim. Pré-Cálculo. A função afim. Proposição. Humberto José Bortolossi. Parte 5. Definição

6. FUNÇÃO QUADRÁTICA 6.1. CONSIDERAÇÕES PRELIMINARES

Álgebra Linear I - Aula 8. Roteiro

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

GEOMETRIA MÉTRICA ESPACIAL

Aula 15 Superfícies quádricas - cones quádricos

Enumerabilidade. Capítulo 6

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Fabio Augusto Camargo

Aula 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 se define da seguinte maneira:

A respeito da soma dos ângulos internos e da soma dos ângulos externos de um quadrilátero, temos os seguintes resultados:

Exercícios de exames e provas oficiais

Exercícios de Matemática Geometria Analítica

Escola Secundária de Alberto Sampaio Ficha Formativa de Matemática A Geometria II O produto escalar na definição de lugares geométricos

Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Pré-Cálculo. Humberto José Bortolossi. Aula de junho de Departamento de Matemática Aplicada Universidade Federal Fluminense

Concluimos dai que o centro da circunferência é C = (6, 4) e o raio é

Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhança entre triângulos. Nono ano do Ensino Fundamental

Pré-Cálculo. Humberto José Bortolossi. Aula de maio de Departamento de Matemática Aplicada Universidade Federal Fluminense

Transcrição:

Página 1 de 6 Conceitos e Controvérsias Elon Lages Lima POR QUE O ESPAÇO TEM TRÊS DIMENSÕES? Introdução Precedendo o lançamento do primeiro número da RPM, que ocorreu no segundo semestre de 1982, a Sociedade Brasileira de Matemática divulgou um folheto contendo uma pequena amostra das seções que a nova revista traria. Um dos quadros daquele folheto apresentava uma lista de dez perguntas a serem respondidas por mim na seção Conceitos e Controvérsias. A oito delas eu de fato respondi, mas as duas últimas ficaram até hoje sem minha resposta. A fim de resgatar metade da dívida, discutirei agora a pergunta número 10 da lista. A pergunta formulada era: Quantas dimensões tem o espaço?. Mas, como ninguém duvida que vivemos num espaço com três dimensões, é melhor pôr a questão sob a forma do título acima. O objetivo a que me proponho fica sendo o de explicitar, entre as proposições básicas da Geometria que ensinamos, quais as que exprimem, direta ou indiretamente, a tridimensionalidade do espaço. A priori, é evidente que alguns dos teoremas que demonstramos no estudo costumeiro da Geometria Espacial devem fazer uso, ainda que implicitamente, dessa tridimensionalidade. Um dos primeiros postulados da Geometria Espacial assegura que, fora de qualquer plano dado, existe pelo menos um ponto do espaço. Isso significa que a dimensão do espaço é pelo menos igual a três. Entretanto, os textos usuais de Geometria não costumam declarar explicitamente qual, entre os postulados que admitem, é aquele que impede que o espaço tenha quatro, cinco ou mais dimensões. O único livro elementar de Geometria que conheço onde a tridimensionalidade do espaço é mencionada explicitamente é a Introdução à Geometria Espacial, de Paulo Cezar P. Carvalho. No que segue, destacarei quatro proposições geométricas que caracterizam a tridimensionalidade do espaço e provarei que elas são logicamente equivalentes umas às outras. Dimensão e separação Um ponto tem dimensão zero, por definição. É natural admitir isso, pois não há mesmo lugar para nos movimentarmos dentro de um ponto. Por outro lado, sentimos que uma reta deve ter dimensão 1, pois só tem comprimento, mas não largura nem altura. Já Euclides dizia: Um ponto é aquilo que não tem partes e uma linha é um comprimento sem largura. Mas que propriedades geométricas traduzem esse sentimento intuitivo de que uma reta é unidimensional? Em primeiro lugar, uma reta contém ao menos dois pontos, logo contém o segmento que os liga. Contendo segmentos, a reta não tem dimensão zero. Além disso (e principalmente), se retirarmos de uma reta r qualquer um dos seus pontos P, ela ficará decomposta como reunião de duas partes disjuntas e, chamadas as semi-retas (abertas) de origem P, com as seguintes propriedades:

Página 2 de 6 1) Se os pontos A e B da reta r pertencem a uma dessas semi-retas (por exemplo, e ), então o segmento AB está contido nessa mesma semi-reta ( ). 2) Se o ponto está numa dessas semi-retas (digamos ) e o ponto está na outra ( ), então o segmento contém o ponto P. Para expressar as propriedades 1) e 2) resumidamente, diz-se que todo ponto separa a reta r. Diz-se ainda que uma reta tem dimensão 1 porque é separada por qualquer dos seus pontos. Por outro lado, retirando qualquer reta r do plano, ele fica decomposto como reunião de dois conjuntos disjuntos e, chamados os semiplanos (abertos) de fronteira r, com as seguintes propriedades: Consideremos agora um plano. Nenhum dos seus pontos P o separa: se A e B são pontos quaisquer de, diferentes de P, é possível ligar A e B por um segmento ou, na pior hipótese, por uma poligonal com dois lados, sem passar por P. 1) Se os pontos A e B do plano pertencem ambos a um desses semiplanos (digamos, e ), então o segmento está contido nesse semiplano ( ). 2) Se o ponto pertence a um desses semiplanos e o ponto pertence ao outro, então o segmento intersecta a reta r. Resumindo essas duas propriedades, diz-se que toda reta separa o plano. Por ser separado por qualquer de suas retas e não ser separado por nenhum dos seus pontos, o plano tem dimensão 2. Observação. Sejam e os semiplanos abertos que a reta r determina no plano. Sejam ainda A um ponto em e B um ponto em. Qualquer poligonal no plano que comece em A e termine em B deve cortar a reta r. Com efeito, ordenemos os vértices ao longo da poligonal, consecutivamente, partindo de A e chegando a B. Seja U o último vértice que ainda está em. Então, pois. Logo podemos falar no vértice V, que vem imediatamente depois de U na poligonal. Como U era o último em, este vértice V pertence a. Pela propriedade 2), concluímos que o segmento UV (portanto a poligonal dada) corta a reta r. Vejamos agora o que acontece no espaço E, no qual estamos imersos. Evidentemente, um ponto P não separa o espaço E: dados os pontos A,, diferentes de P, podemos ligar A a B por um segmento, ou por uma poligonal de dois lados, sem passar por P. Tampouco uma reta r separa o espaço: dados os pontos A, B fora de r, na pior hipótese (em que o segmento AB contém um ponto de r), tomamos um

Página 3 de 6 ponto C fora do plano determinado por AB e r; então a poligonal liga A a B sem passar pela reta r. A experiência nos mostra, entretanto, que, se retirarmos do espaço E um plano arbitrário, os pontos restantes se repartem em dois subconjuntos disjuntos S e, chamados os semi-espaços (abertos) que têm como fronteira comum o plano. Os semi-espaços S e gozam das seguintes propriedades: 1) Se os pontos A e B pertencem ambos a um desses semi-espaços, então o segmento está inteiramente contido nesse semi-espaço. 2) Se o ponto pertence ao semi-espaço S e o ponto pertence ao outro semiespaço, então o segmento intersecta o plano. As afirmações 1) e 2) exprimem que todo plano separa o espaço. Por ser separado por qualquer dos seus planos, mas não por um ponto ou por uma reta, o espaço que nos rodeia tem dimensão 3. Para facilitar referências posteriores, destaquemos a proposição: A) Todo plano separa o espaço. Se o espaço em que vivemos tivesse quatro dimensões (ou mais), um plano não o separaria, do mesmo modo que uma reta não separa o espaço tridimensional. Com efeito, podemos imaginar, num espaço quadrimensional Q, dois pontos A, B fora de um plano. Se o segmento AB intersecta, então AB e determinam um subespaço tridimensional. Fora de E existe um ponto C. A poligonal liga os pontos A e B sem passar pelo plano. Observações: 1) De modo análogo ao caso do plano, visto antes, mostra-se que, se A e B são pontos pertencentes a semi-espaços distintos determinados por um plano, então toda poligonal que comece em A e termine em B deve conter algum ponto de. 2) Sejam A e B dois pontos não pertencentes ao plano. Se o segmento AB contiver algum ponto de, então A e B estão situados em semi-espaços distintos determinados por. Dimensão e interseção A propriedade que tem o espaço de ser separado por qualquer dos seus planos é uma constatação intuitiva, decorrente da experiência que temos em relação ao ambiente que nos envolve. Ela é uma formulação, em termos geométricos, da afirmação de que o espaço não possui mais do que três dimensões. Há outras proposições geométricas que traduzem a mesma idéia. Qualquer uma delas pode ser admitida como postulado, demonstrando-se as outras a partir dela, como um teorema. No que se segue, veremos outras formas alternativas de caracterizar geometricamente a tridimensionalidade do espaço. Uma dessas alternativas, que examinaremos agora, consiste na seguinte proposição: B) Se dois planos têm um ponto em comum, eles têm uma reta em comum. Como se sabe, isso equivale a dizer que dois planos no espaço não podem ter apenas um ponto em comum. Com efeito, se os planos e, que têm o ponto A em comum, forem obrigados a ter outro ponto B em comum, então a reta AB está contida em e pois a reta que tem dois dos seus pontos num plano está toda contida nesse plano. A propriedade B) significa que o espaço em que vivemos não possui suficiente amplitude para conter dois planos com apenas um ponto em comum. Sua tridimensionalidade permite que uma reta e um plano se intersectem num único ponto mas não há lugar suficiente para afastar um plano do outro de modo a que eles se cortem num ponto apenas.

Página 4 de 6 Talvez entendamos melhor a situação se imaginarmos, mais uma vez, um espaço quadridimensional Q contendo o plano. Neste plano, fixamos um ponto A e, fora dele, outro ponto B. A reta AB e o plano determinam um subespaço tridimensional E. Como Q tem dimensão 4, podemos tomar um ponto C, fora de E. Então C não pode estar na reta AB, logo A, B e C determinam um plano. Os planos e, no espaço Q a 4 dimensões, têm em comum apenas o ponto A. Com efeito, se houvesse outro ponto, comum a e, o plano conteria os três pontos não colineares Dimensão e perpendicularismo A, e B, todos pertencentes ao espaço E, logo teríamos, uma contradição, pois e. Vemos assim que num espaço a quatro dimensões podese ter um par de planos e ' tais que a interseção ' se reduz a um ponto. Portanto, uma forma de dizer que o espaço que nos cerca tem apenas três dimensões é adotar como postulado a proposição B) acima enunciada, segundo a qual a interseção de dois planos não paralelos é uma reta. A tridimensionalidade do espaço pode ainda ser caracterizada mediante a seguinte proposição. C) Por um ponto dado num plano passa uma única reta perpendicular a esse plano. Lembremos que uma reta se diz perpendicular a um plano quando é perpendicular a duas (e portanto a todas as) retas que passam por seu pé nesse plano. Observemos ainda que, se um ponto P está fora do plano, o fato de que exista uma única reta AP, perpendicular a, com, nada tem a ver com a tridimensionalidade do espaço. O ponto A, pé da perpendicular baixada de P sobre o plano, é simplesmente o ponto de situado à mínima distância de P. Não pode haver outro ponto B em situado a essa mesma distância mínima de P porque, nesse caso, todos os pontos do segmento AB, base do triângulo isósceles ABC, pertenceriam a e estariam mais próximos de P do que A e B. Podemos contrastar essa situação com o caso de um ponto P e uma reta r no espaço. Se P não pertence a r, existe uma, e somente uma, perpendicular a r passando por P. Ela é a reta PA, onde A é o ponto de r mais próximo de P. Mas, se, existem no espaço infinitas retas perpendiculares a r e contendo. A reunião delas é o plano perpendicular a r contendo. Por assim dizer, a única perpendicular ao plano a partir de um dos seus pontos define a única dimensão adicional do espaço, além das duas dimensões desse plano. Dimensão e coordenadas Seja IR o conjunto dos números reais. O símbolo IR 3 representa o conjunto cujos elementos são os ternos ordenados com x, y e z em IR. Um sistema de coordenadas no espaço E é uma bijeção (ou correspondência biunívoca) IR 3. Dado o ponto P em E, se diz-se que x, y e z são as coordenadas do ponto P no sistema. Quando não há dúvidas a respeito do sistema de coordenadas que se está usando, escreve-se, em vez de. Dizemos que IR 3 é um sistema de coordenadas retilíneas quando o seguinte for válido: Se e, então o ponto pertence ao segmento de reta se, e somente se, tem-se,,, com. A quarta maneira que mencionaremos como caracterização da tridimensionalidade do espaço E é expressa pela proposição abaixo:

Página 5 de 6 D) Dado qualquer plano, existe um sistema de coordenadas retilíneas IR 3 tal que se, e somente se,. Os sistemas de coordenadas retilíneas constituem a base da Geometria Analítica Espacial. A tridimensionalidade do espaço se traduz então pelo fato de que cada um dos seus pontos tem a posição determinada por 3 coordenadas. Noutras palavras, dim porque E admite IR 3 como modelo aritmético. Do ponto de vista da Geometria Analítica, um espaço Q a quatro dimensões admitiria um sistema de coordenadas retilíneas IR 4. Num tal espaço seria muito fácil dar exemplo de dois planos e com um único ponto em comum. Se representarmos por as coordenadas de um ponto arbitrário de Q, basta considerar o plano II formado pelos pontos do tipo, cujas duas últimas coordenadas são iguais a zero, e o plano, cujos pontos têm as duas últimas coordenadas nulas. Então a interseção se reduz ao único ponto, origem do sistema de coordenadas. Equivalência lógica das hipóteses propostas A breve discussão que acabamos de fazer destaca quatro afirmações que, cada uma a seu modo, contêm a propriedade de que o espaço onde vivemos tem três dimensões. Elas são: A) Todo plano separa o espaço. B) Se dois planos têm um ponto em comum, eles têm uma reta em comum. C) Por um ponto dado num plano passa uma única perpendicular a esse plano. D) Dado qualquer plano, existe um sistema de coordenadas retilíneas no espaço tal que os pontos desse plano são aqueles que têm a terceira coordenada igual a zero. Vamos agora provar que essas afirmações são logicamente equivalentes, isto é, admitindo qualquer uma delas como axioma, as outras podem ser demonstradas. Nessas demonstrações, usaremos os conceitos e resultados elementares da Geometria Espacial que são formulados e estabelecidos sem recurso à tridimensionalidade do espaço. Nossa referência básica é o livro Introdução à Geometria Espacial, de Paulo Cezar P. Carvalho, da Coleção do Professor de Matemática da SBM. Devemos então provar as implicações A) B) C) D) A). 1 a implicação: A) B). Sejam e planos que têm o ponto P em comum. Sejam M, N pontos de tais que M, N e P não sejam colineares. Podemos admitir que M não pertence a pois, se esse fosse o caso, a reta MP estaria contida em e a demonstração estaria acabada. Tomemos um ponto no prolongamento do segmento MP. Então M e pertencem a semi-espaços opostos do plano. (Observação 2, seção 2.) Assim, o ponto N e um dos pontos M ou (digamos ) estão em semi-espaços opostos relativamente a. Logo a reta corta num ponto Q, diferente de P (pois M, N e P não são colineares). O ponto Q pertence a e a, portanto a reta PQ está contida em e em. Antes de demonstrar a próxima implicação, reafirmamos que, se o ponto P está fora do plano, a existência e a unicidade da perpendicular baixada de P sobre não estão ligadas à tridimensionalidade do espaço. O mesmo ocorre com a existência da perpendicular a levantada por um ponto P em : basta tomar um ponto qualquer fora de, baixar por ele uma reta r perpendicular a e, em seguida, passar por P uma reta s paralela a r. A reta r é a perpendicular procurada. Assim, apenas a unicidade da perpendicular a um plano levantada por um ponto desse plano é que caracteriza a tridimensionalidade do espaço. Dito isso, provemos a 2 a implicação: B) C).

Página 6 de 6 Admitida a validez de B), suponhamos, por absurdo, que existam duas retas distintas r e s, ambas perpendiculares ao plano e ambas contendo o ponto P. Seja o plano determinado pelas retas r e s. Em virtude da hipótese B), a interseção dos planos e é uma reta t. Sendo perpendiculares a, tanto r como s são perpendiculares a t. Por sua vez t, sendo perpendicular a r e s (ambas contidas em ), é perpendicular a toda reta de passando por P. Então t seria perpendicular a si mesma, o que é absurdo. 3 a implicação: C) D). Consideremos dois eixos ortogonais OX e OY sobre o plano dado e um eixo OZ, perpendicular a. O sistema de coordenadas IR 3, que vamos estabelecer no espaço, atribuirá a cada ponto P do plano as coordenadas, onde são as coordenadas de P relativamente aos eixos OX e OY. Se o ponto Q do espaço não estiver sobre o plano, sejam as coordenadas, no sistema OXY, do ponto Q 0, pé da perpendicular baixada de Q sobre. Poremos então, onde z é a ordenada de Q no sistema definido no plano Q 0 OZ pelos eixos OQ 0 (das abcissas) e OZ (das ordenadas). [Quem garante que Q pertence ao plano Q 0 OZ? Resposta: considere, neste plano, a reta, perpendicular a OQ 0, logo paralela a OZ e por conseguinte perpendicular a. Pela unicidade C), as retas Q 0 Q Q 0 Q' coincidem, portanto Q pertence ao plano Q 0 OZ.] A aplicação IR 3 é claramente sobrejetiva. Para provar a injetividade, sejam P, pontos do espaço, com e. Se, então, em particular, e. Assim, as perpendiculares baixadas de P, sobre o plano têm o mesmo pé P 0. Segue-se da unicidade C) que essas perpendiculares PP 0 e coincidem. Os pontos P e estão no plano P 0 OZ e, relativamente ao sistema de eixos OP 0 e OZ nesse plano, têm a mesma abcissa e a mesma ordenada. Logo. Isso conclui a prova de que IR 3 é uma bijeção. Os argumentos tradicionais da Geometria Analítica Espacial se aplicam ipsis litteris para mostrar que é um sistema de coordenadas retilíneas. 4 a implicação: D) A). Para provar que um plano arbitrário separa o espaço E, supondo válida a hipótese D), introduzimos no espaço um sistema de coordenadas retilíneas, relativamente às quais os pontos de são aqueles que cumprem a condição. Portanto, se chamarmos de S o conjunto dos pontos do espaço cuja terceira coordenada z é positiva e de o conjunto dos pontos com, teremos reunião disjunta. Sejam e pontos fora de. Então e. O ponto pertence ao segmento se, e somente se,, com. Se A e pertencem a S, então e, logo para todo, portanto o segmento está contido em S. Analogamente se vê que A,. Finalmente, se e, então e, logo o número é positivo, com e, logo, para, o ponto do segmento dado por pertence ao plano. Isso mostra que vale a condição A) e conclui a demonstração.