GEOMETRIA DE POSIÇÃO
|
|
|
- Anna Mendonça Garrido
- 9 Há anos
- Visualizações:
Transcrição
1 GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou espessura. Representada por letras minúsculas. s t r 1.3- Plano É bidimensional, possuindo largura e comprimento infinitos. Não possui espessura. Representado por letras minúsculas do alfabeto grego Espaço É tridimensional, possuindo três dimensões infinitas. É o nosso mundo físico. Representa o conjunto de todos os pontos no espaço. 2- Postulados ou Axiomas e Teorema 2.1- Postulados São proposições aceitas como verdadeiras, muito embora não admitam uma demonstração formal. São inspiradas na experiência, observação e intuição Teoremas São as proposições que podem ser demonstradas Postulados da Reta P1) Por um ponto passam infinitas retas. E estas formam um chamado feixe de retas concorrentes.
2 P2) Numa reta bem como fora dela passam infinitos pontos r P3) Dois pontos distintos determinam uma única reta que os contém. P4) Um ponto qualquer de uma reta a divide em duas semi-retas Postulados do Plano P1) Num plano, bem como fora dele, existem infinitos pontos. P2) Toda reta que tem dois pontos distintos, num plano, fica inteiramente contida no plano. P3) Por três pontos não situados na mesma reta passa um plano e somente um. P4) Uma reta de um plano divide-o em duas regiões denominadas semi-planos. 1 2 P5) Um plano divide o espaço em duas regiões que podemos denominar semi-espaços.
3 P6) Por uma reta do espaço passam infinitos planos. 3- Determinação do Plano Um plano fica determinado de quatro maneiras distintas Três pontos distintos não-colineares Uma reta e um ponto não-pertencente a essa reta 3.3- Duas retas distintas concorrentes 3.4- Duas retas paralelas distintas 4- Posições relativas de duas retas Duas retas no espaço podem ser: coplanares ou reversas Retas coplanares- Duas retas são coplanares quando estão contidas num mesmo plano. Elas podem ser: concorrentes, paralelas ou coincidentes. a) Concorrentes Duas retas r e s são concorrentes quando t6em um único ponto em comum, isto é, r s = {P}. b) Paralelas Duas retas coplanares r e s são paralelas quando não têm ponto em comum, isto é: r s =
4 c) Coincidentes Duas retas r e s são coincidentes quando têm todos os seus pontos comuns Retas Reversas Duas retas r e s são reversas quando não existe um plano que contenha ambas. É claro que r s =. Casos particulares: 1) retas perpendiculares: r s 2) retas ortogonais: r s Observações: 1) Quando o ângulo formado por duas retas reversas r e s é 90º, dizemos que r e s são ortogonais. Caso contrário são não-ortogonais. 2) Tanto as retas perpendiculares como as ortogonais formam ângulos de 90º; a diferença entre elas é que as perpendiculares são coplanares e as ortogonais, não. Postulado de Euclides ou das retas paralelas - Por um ponto fora de uma reta, passa uma única reta paralela á reta dada. 5- Posições relativas de uma reta e um plano 5.1- Reta contida no plano A reta tem dois pontos em comum com o plano.
5 5.2- Reta concorrente ou incidente (secante) com o plano A reta tem um único ponto em comum com o plano Reta paralela ao plano A reta não tem um ponto em comum com o plano. T1) Se uma reta é paralela a um plano, então ela é paralela ou reversa a qualquer reta do plano. T2) Se uma reta não está contida num plano e é paralela a uma reta do plano, então ela é paralela ao plano. 6- Posições relativas de dois planos 6.1- Planos coincidentes Dois planos são coincidentes ou iguais quando têm todos os pontos comuns Planos concorrentes ou secantes Dois planos são concorrentes ou secantes quando têm uma única reta em comum Planos paralelos distintos Dois planos são paralelos distintos quando não têm ponto comum. T3) Se dois planos distintos são paralelos, então toda reta de um deles é paralela ao outro. T4) Se dois planos distintos são paralelos, então qualquer reta concorrente com um deles também é concorrente com o outro. T5) Se um plano contém duas retas concorrentes, ambas paralelas a um outro plano, então esses planos são paralelos.
6 7- Perpendicularismo entre reta e plano Uma reta concorrente com um plano é perpendicular ao plano quando é perpendicular a todas as retas do plano que passam pelo ponto de intersecção T6) Se uma reta r é perpendicular a um plano, então ela é perpendicular ou ortogonal a toda reta de.. T7) Se uma reta forma ângulo reto com duas retas concorrentes de um plano, então ela é perpendicular ao plano. 8- Perpendicularismo entre Planos Dois planos são perpendiculares entre si quando um deles contém uma reta perpendicular ao outro. T8) Se uma reta é perpendicular a um plano, então todo plano que a contém é perpendicular ao primeiro plano. OBS: Existem infinitos planos perpendiculares a um plano dado; esses planos podem ser paralelos entre si ou secantes.
Conceitos Primitivos: são conceitos adotados sem definição.
Geometria Plana Geometria Espacial Conceitos Primitivos: são conceitos adotados sem definição. 1. Ponto P Características: Não possui dimensão Sua representação geométrica é indicada por letra maiúscula
GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA
GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
GGM /11/2010 Dirce Uesu Pesco Geometria Espacial
GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer
MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não
Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:
Geometria Espacial de Posição
Geometria Espacial de Posição Prof.: Paulo Cesar Costa www.pcdamatematica.com Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele
MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.
FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam
Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )
4. Posições relativas entre uma reta e um plano
RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições
Desenho Computacional. Parte I
FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,
Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.
SEI Ensina MILITAR Matemática Posição Relativa 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. 2. Considere as seguintes
Perpendicularismo no Espaço. Geometria Básica Profa Lhaylla Crissaff
Perpendicularismo no Espaço Geometria Básica Profa Lhaylla Crissaff 2017.2 Perpendicularismo entre retas Definição: Como duas retas concorrentes estão sempre num mesmo plano, definimos o ângulo entre as
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos 10.1 Introdução O ensino de Geometria para alunos do segundo ano do segundo grau faz o aluno se deparar com guras geométricas tridimensionais.
a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.
01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.
Mat. Professore: Gabriel Ritter Monitor: Fernanda Aranzate
Professore: PC Gabriel Ritter Monitor: Fernanda Aranzate Introdução à geometria espacial 31 ago RESUMO Na geometria espacial, trabalhamos em três dimensões. 1) Postulados de determinação 1.1) Determinação
Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.
Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos
Avaliação 1 Solução Geometria Espacial MAT 050
Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados
Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por
GEOMETRIA ESPACIAL Axiomas da Geometria Diferencial: Incidência Axioma I 1 : Para todo ponto P e para todo ponto Q distinto de P, existe uma única reta l que passa por P e Q. Axioma I 2 : Toda reta possui
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
Aula I Elementos Primitivos e Axiomas de Incidência e Ordem 1
Aula I Elementos Primitivos e Axiomas de Incidência e Ordem 1 Os elementos básicos do estudo da Geometria são as idéias de ponto, reta e plano. Apesar dessas palavras serem conceitos importantes e intuitivos,
Geometria. Uma breve introdução
Geometria Uma breve introdução Etimologia Geometria, em grego antigo γεωμετρία, geo- "terra", -metria "medida Origem (lazer ou necessidade?) Geometria Euclidiana Euclides de Alexandria, matemático grego
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições
DESENHO GEOMÉTRICO. Os entes geométrico são conceitos primitivos e não tem definição. É através de modelos comparativos que tentamos explicar los.
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CAMPUS DE CUITÉ CENTRO DE EDUCAÇÃO E SAÚDE CES DISCIPLINA: DESENHO GEOMÉTRICO SEMESTRE: 2009.1 CURSO: MATEMÁTICA PROFESSORA: GLAGEANE SOUZA ALUNO(A): DESENHO GEOMÉTRICO
AULA Paralelismo e perpendicu- 11 larismo
AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes
Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)
UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo
INTRODUÇÃO À GEOMETRIA ESPACIAL
Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ Matemática 2º Ano 1º Bimestre/2014 Plano de Trabalho INTRODUÇÃO À GEOMETRIA ESPACIAL Tarefa 1 Cursista: Wendel do Nascimento Pinheiro
CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras
Código da Disciplina CCE0985. Aula 3.
Código da Disciplina CCE0985 Aula 3 e-mail:[email protected] http://cleliamonasterio.blogspot.com/ O que é geometria? Palavra de origem grega: GEO (terra) METRIA (medida). Há 5.000 anos, era
Geometria Euclidiana Espacial e Introdução à Geometria Descritiva
UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.
Geometria Euclideana Plana
Geometria Euclideana Plana A partir de agora, iremos iniciar nosso estudo axiomático da Geometria Euclidiana Plana. Vimos que os postulados de Euclides não são suficientes para demonstrar todos os resultados
Geometria Analítica. Geometria Analítica 28/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação
Geometria de Posição. Conceitos primitivos. Prof. Jarbas
Geometria de Posição Conceitos primitivos Prof. Jarbas Conceitos primitivos A partir do mundo real, matemáticos da antiguidade, como Euclides (séc. III a.c.) estabeleceram entes com os quais construíram
1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 2: Conceitos Básicos Sistemas de Projeção Método da Dupla Projeção de Monge Professor: Eng. Daniel Funchal,
ESTUDO DA RETA 26/08/2017 CONCORRENTES COPLANARES
TRI 1 Aula 6 Profª Mariana Gusmão Dept. Expressão Gráfica ESTUDO DA RETA COPLANARES CONCORRENTES Posição relativa entre retas: 1. Não possuem pontos em comum (paralelas, reversas e ortogonais); 2. Possuem
DESENHO GEOMÉTRICO ETECVAV
DESENHO GEOMÉTRICO ETECVAV 1. DEFINIÇÕES Desenho Geométrico é a "expressão gráfica da forma, considerando-se as propriedades relativas à sua extensão, ou seja, suas dimensões" (REIS, p.08) Existem três
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
d) Por dois pontos distintos passa uma única reta
INTRODUÇÃO À GEOMETRIA Ponto, reta e plano Você já tem ideia intuitiva sobre ponto, reta e plano. Vejamos alguns exemplos: Um furo de agulha num papel dá ideia de ponto. Uma corda bem esticada dá ideia
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado
Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.
1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos
GEOMETRIA ANALI TICA PONTO MEDIANA E BARICENTRO PLANO CARTESIANO DISTÂNCIA ENTRE DOIS PONTOS CONDIÇÃO DE ALINHAMENTO DE TRÊS PONTOS
GEOMETRIA ANALI TICA PONTO PLANO CARTESIANO Vamos representar os pontos A (-2, 3) e B (4, -3) num plano cartesiano. MEDIANA E BARICENTRO A mediana é o segmento que une o ponto médio de um dos lados do
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
Introdução à geometria espacial
Introdução à geometria espacial FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ / SEEDUC - RJ Tutora: Ana Paula Cursista: Marta Cristina de Oliveira Matrículas: 09137050 / 09269929
Geometria Plana - Aula 01
Geometria Plana - Aula 01 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula O que é um sistema axiomático. Conceitos
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
Geometria (euclidiana)
Geometria (euclidiana) Professor: [email protected] página da disciplina na web: http://professor.ufabc.edu.br/~jair.donadelli/geometria Professor: [email protected] MA13 Geometria
Plano de Trabalho 2. Introdução à Geometria Espacial
FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 1º Bimestre/2013 Plano de Trabalho 2 Introdução à Geometria Espacial Cursista: Izabel Leal Vieira Tutor: Cláudio Rocha de Jesus 1 SUMÁRIO INTRODUÇÃO........................................
Conceitos básicos de Geometria:
Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente
Teorema de Tales no plano
MA620 - Aula 3 p. 1/ Teorema de Tales no plano Teorema de Tales: (no plano) Se duas retas paralelas são cortadas por duas retas concorrentes, então as medidas dos segmentos correspondentes determinados
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
a) Postulado 1 - Por dois pontos...passa uma e só uma reta
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
EXERCÍCIOS COMPLEMENTARES
Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão
3. Representação diédrica de pontos, rectas e planos
3. Representação diédrica de pontos, rectas e planos Geometria Descritiva 2006/2007 Geometria de Monge Utilizam-se simultaneamente dois sistemas de projecção paralela ortogonal. Os planos de projecção
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres ([email protected]) REPRESENTAÇÃO
PLANO DE AULA. Assunto: Introdução à Geometria Espacial. Tema: Conceitos primitivos de Geometria Espacial
Curso de Formação Continuada para professores de matemática SEEDUC/CECIERJ Tutora: Daiana da Silva Leite Grupo: 2 Cursista: Jozilaine Moreira Franklin dos Santos Série: 2ª série do Ensino Médio PLANO DE
MATEMÁTICA. Geometria Espacial
MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os
Revisão de Círculos. Geometria Básica Profa Lhaylla Crissaff
Revisão de Círculos Geometria Básica Profa Lhaylla Crissaff 2017.2 1 Definição Circunferência é uma figura geométrica formada por todos os pontos que estão a uma mesma distância de um ponto fixado no plano.
UNIVERSIDADE ESTADUAL PAULISTA - UNESP.
UNIVERSIDADE ESTADUAL PAULISTA - UNESP. CAMPUS DE PRESIDENTE PRUDENTE FACULDADE DE CIÊNCIAS E TECNOLOGIA - FCT. CURSO: Matemática DISCIPLINA: Desenho Geométrico e Geometria Descritiva ALUNO (A):... Profª.:
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos
REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V
SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e
1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:
EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma
CONSTRUÇÕES GEOMÉTRICAS
CONSTRUÇÕES GEOMÉTRICAS 2014 ROF. CRISTIANO ARBEX INTRODUÇÃO Este material tem o objetivo de mostrar as principais construções geométricas utilizadas em Desenho Técnico. ara cada definição apresentada
Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO
1 Curso: Engenharia Disciplina: Desenho Técnico Prof.ª Me. Aline Ribeiro CONSTRUÇÕES GEOMÉTRICAS 1. DESENHO GEOMÉTRICO 1.1. O que é desenho geométrico Desenho Geométrico é o conjunto de técnicas utilizadas
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
SISTEMAS DE PROJEÇÃO
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso
Formação Continuada em Matemática Fundação Cecierj/consórcio CEDERJ
Formação Continuada em Matemática Fundação Cecierj/consórcio CEDERJ Matemática 2ºAno-1º Bimestre/2013 PLANO DE TRABALHO 2 Cursista: Werbert Augusto Coutinho Tutor(a): Daiana da Silva Leite Grupo: 2 INTRODUÇÃO
Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011
Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.
MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,
Agrupamento de Escolas Diogo Cão, Vila Real
grupamento de Escolas iogo Cão, Vila Real MTEMÁTIC - 9º FICH E TRLHO 4 2º PERÍOO FEVEREIRO - 2016 Nome: Nº Turma: ata: 1 Quais das seguintes equações são do 2º grau completas? 1.1 x 2 + 12 = 0 1.2 x 2
Geometria Descritiva Básica (Versão preliminar)
Geometria Descritiva Básica (Versão preliminar) Prof. Carlos Kleber 5 de novembro de 2008 1 Introdução O universo é essencialmente tridimensonal. Mas nossa percepção é bidimensional: vemos o que está à
A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (D) (C)
ESTUDO DA RETA A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (A) (C) (D) (B) (a) B (p) A C D Baixando de todos os pontos da reta perpendiculares
Lista 4 com respostas
Lista 4 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Estude a posição relativa das retas r e s. (a) r : X = (1, 1, 1) + λ( 2, 1, 1), s : (b) r : { { x y z = 2
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
Geometria Analítica. Geometria Analítica Geometria É importante compreender a geometria, para dar resposta a questões como: 15/08/2012
Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br Geometria A Geometria é um ramo da matemática preocupado com questões de forma, tamanho e posição relativa de figuras
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
MAT 112 Turma Vetores e Geometria. Prova 2 29 de junho de 2017
MAT 112 Turma 2017146 Vetores e Geometria Prof. Paolo Piccione Prova 2 29 de junho de 2017 Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale as alternativas
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
Projeções: conceitos. Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção
Projeções Projeções: conceitos Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção Pontos no espaço 3D projetados em um plano 2D centro
Geometria. Roberta Godoi Wik Atique
Geometria Roberta Godoi Wik Atique 1 Introdução A Geometria é uma ciência muito antiga. Conhecimentos geométricos não triviais já eram dominados no Egito antigo, na Babilônia e na Grécia. Na forma como
O Plano no Espaço. Sumário
17 Sumário 17.1 Introdução....................... 2 17.2 Equações paramétricas do plano no espaço..... 2 17.3 Equação cartesiana do plano............. 15 17.4 Exercícios........................ 21 1 Unidade
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme
Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP
Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação
n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações
n. 19 Estudo da reta: vetor normal, posições relativas, intersecção, sistemas de equações Vetor normal (ortogonal) a uma reta - R plano: (x, y) Considere a reta r do plano cartesiano, de equação ax + by
Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta
Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.
3.5 Posições relativas
3.5 Posições relativas Geometria Descritiva 2006/2007 Paralelismo Paralelismo de duas rectas É condição necessária e suficiente para que duas rectas, não de perfil, sejam paralelas que as suas projecções
Capítulo Equações da reta no espaço. Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
Capítulo 11 1. Equações da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que AP = t AB Fig. 1: Reta r passando por A e B. Como o ponto
Uma equação de duas variáveis representa, geometricamente, uma reta no plano. Exemplo: x + y = 1
Uma equação de duas variáveis representa, geometricamente, uma reta no plano. Exemplo: x + y = 1 Na forma da função afim: y = x + 1 Temos uma variável livre: x. O valor de y depende do valor de x escolhido,
RPM 35 - Por que o espaço tem três dimensões
Página 1 de 6 Conceitos e Controvérsias Elon Lages Lima POR QUE O ESPAÇO TEM TRÊS DIMENSÕES? Introdução Precedendo o lançamento do primeiro número da RPM, que ocorreu no segundo semestre de 1982, a Sociedade
Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade
1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção
