Geometria Espacial de Posição
|
|
|
- Felipe di Castro Neiva
- 9 Há anos
- Visualizações:
Transcrição
1 Geometria Espacial de Posição Prof.: Paulo Cesar Costa
2 Noções primitivas POSTULADOS Postulados da existência Numa reta e fora dela existem infinitos pontos. Num plano e fora dele existem infinitos pontos.
3 Postulados da determinação Dois pontos distintos determinam uma reta. Três pontos não colineares determinam um plano. Postulado da inclusão Se uma reta possui dois pontos distintos num plano, então ela está contida no plano.
4 Postulado de Euclides (ou postulado das paralelas) Por um ponto fora da reta passa uma única paralela à reta dada. OBS: geometrias não-euclidianas Riemann transformou o plano euclidiano em uma superfície esférica, adotando as retas como sendo circunferências máximas e modificou o postulado das paralelas: por um ponto fora de uma reta não existe qualquer reta paralela à reta dada.
5 POSIÇÕES RELATIVAS DE DUAS RETAS NO ESPAÇO Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) duas retas são coplanares ou são reversas. b) duas retas concorrentes são coplanares. c) duas retas coplanares são concorrentes. d) duas retas não coplanares são reversas. e) duas retas paralelas não tem ponto comum. f) duas retas que não tem ponto comum são paralelas. g) duas retas que tem um ponto comum são concorrentes. h) duas retas que não tem um ponto comum são reversas. i) duas retas coplanares são paralelas ou concorrentes.
6 DETERMINAÇÃO DE PLANOS 1. por três pontos não-colineares 2. por uma reta e um ponto fora dela 3. por duas retas concorrentes 4. Por duas retas paralelas e distintas
7 POSIÇÕES RELATIVAS DE RETA E PLANO 1. reta contida no plano 2. reta secante ao plano. P 3. Reta paralela ao plano
8 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) i) Uma reta e um plano secantes têm um ponto comum. Uma reta e um plano que têm um ponto comum são secantes. Uma reta e um plano que não tem ponto comuns são paralelos. Uma reta e um plano paralelos não tem ponto comum Se uma reta e um plano possuem dois pontos distintos comuns, a reta está contida no plano. Se um reta é paralela a um plano e por um ponto do plano traçarmos uma reta paralela à reta dada, então a reta traçada está contida no plano. Se, de duas reta paralelas distintas, uma é paralela a um plano, então a outra é paralela a esse plano ou está contida nele. Se duas retas distintas são paralelas a um plano, então uma reta é paralela à outra. Uma reta paralela a um plano é paralela a qualquer reta desse plano.
9 j) k) l) m) n) o) p) Uma reta paralela a um plano é paralela à infinitas retas desse plano. Se um plano é paralelo a uma reta, então toda reta desse plano é reversa à reta dada.. Dado uma reta e um plano, existe no plano uma reta paralela à reta dada. Dadas duas retas distintas, existe um plano que contém uma delas e é paralelo à outra Por um ponto fora de uma reta existe um único plano paralela a ela. Dados uma reta e um plano paralelos, existe no plano uma reta concorrente com a reta dada. Por um ponto fora de um plano existem infinitas retas paralelas a esse plano.
10 POSIÇÕES RELATIVAS DE DOIS PLANOS
11 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) Se dois planos são secantes, então qualquer reta de um deles é concorrente com o outro. Se dois planos são secantes, então uma reta de um deles pode ser concorrente com uma reta do outro. Se dois planos são secantes, então um reta de um deles pode ser reversa com uma reta do outro. Se dois planos distintos são paralelos, então uma reta de um deles é paralela ao outro. Se dois planos distintos são paralelos, então uma reta de um e outra do outro podem ser concorrentes. Se dois planos distintos são paralelos, então toda reta de um deles é paralela a qualquer reta do outro. Se dois planos distintos são paralelos, uma reta de um e uma reta do outro são reversas ou paralelas. Se uma reta é paralela a dois planos, então esses planos são paralelos.
12 i) j) Se dois planos são paralelos a uma reta, então são perpendiculares entre si. Se um plano contém duas retas distintas paralelas a um outro plano, então esses planos são paralelos. Retas perpendiculares DEFINIÇÕES Duas retas são perpendiculares quando são concorrentes e formam um ângulo reto. Retas oblíquas Duas retas são oblíquas quando são concorrentes e não perpendiculares Retas ortogonais Duas retas são ortogonais quando são reversas e formam um ângulo reto.
13 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) Duas retas perpendiculares são sempre concorrentes. Se duas retas formam ângulo reto, então elas são perpendiculares. Se duas retas são perpendiculares, então elas formam um ângulo reto. Se duas retas são ortogonais, então elas formam um ângulo reto. Duas retas que formam um ângulo reto podem ser reversas. Duas retas perpendiculares a uma terceira são perpendiculares entre si. Duas retas perpendiculares a uma terceira são paralelas entre si. Se duas retas formam um ângulo reto, toda paralela a uma delas forma ângulo reto com a outra.
14 DEFINIÇÕES Reta perpendicular ao plano Considere um reta r secante a um plano α em um ponto O. Dizse que r é perpendicular a α quando for perpendicular a todas as retas do plano que passam por O. Reta oblíqua ao plano Considere uma reta r secante a um plano α em um ponto O. Dizse que r é oblíqua a α quando não for perpendicular ao plano α r perpendicular a α r oblíqua a α
15 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) Para que uma reta e um plano sejam perpendiculares é necessários que eles sejam secantes. Uma reta perpendicular a um plano forma ângulo reto com qualquer reta do plano. Se uma reta é perpendicular a duas retas paralelas distintas de um plano, então ela é perpendicular ao plano. Se uma reta é perpendicular a duas retas paralelas e distintas de um plano, então ela está contida no plano. Dadas duas retas distintas de um plano, se uma outra reta é perpendicular à primeira e ortogonal à segunda, então ela é perpendicular ao plano. Se uma reta forma um ângulo reto com duas retas de um plano, distintas e que têm um ponto comum, então ela é perpendicular ao plano. Duas retas reversas são paralelas a uma plano. Toda reta ortogonal a ambas é perpendicular ao plano.
16 Planos perpendiculares DEFINIÇÕES Considere dois planos secantes α e β. Diz-se que α e β são perpendiculares quando um deles possuir uma reta perpendicular ao outro. Planos oblíquos Considere dois planos secantes α e β. Diz-se que α e β são oblíquos quando não forem perpendiculares.
17 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) Se dois planos são secantes, então eles são perpendiculares. Se dois planos são perpendiculares, então eles são secantes. Se dois planos são perpendiculares, então toda reta de um deles é perpendicular ao outro. Se uma reta é perpendicular a um plano, por ela passa um único plano, perpendicular ao plano dado. Dois planos perpendiculares a um terceiro são perpendiculares entre si. Se dois planos são perpendiculares a um terceiro, então eles são paralelos. Se dois planos são perpendiculares, então toda reta perpendicular a um deles é paralela ao outro ou está contida neste outro. Se dois planos são paralelos, todo plano perpendicular a um delels é perpendicular ao outro.
18 DEFINIÇÃO Projeção ortogonal Projeção ortogonal de um ponto sobre um plano é o pé da perpendicular ao plano conduzida pelo ponto.. Obs A projeção ortogonal de uma figura sobre um plano é o conjunto das projeções ortogonais dos pontos da figura sobre esse plano.
19 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) A projeção ortogonal de um ponto sobre um plano e um ponto. A projeção ortogonal de uma reta sobre um plano é uma reta. A projeção ortogonal de um segmento sobre um plano é sempre um segmento. A projeção ortogonal de um segmento oblíquo a um plano, sobre o plano, é menor que o segmento. A projeção ortogonal, sobre um plano, de um segmento contido numa reta, não perpendicular ao plano, é menor que o segmento ou congruente a ele. Se um segmento tem projeção ortogonal congruente a ele, então ele é paralelo ao plano de projeção ou está contido nele. Se dois segmentos são congruentes, então suas projeções ortogonais sobre qualquer plano são congruentes. Se as projeções ortogonais de duas retas, sobre um plano, são paralelas, então as retas são paralelas.
20 DISTÂNCIAS Distância entre dois pontos Se A e B coincidem, a distância entre eles é nula. Se A e B são distintos, a distância entre eles é o segmento AB. Distância entre ponto e reta
21 Distância entre duas retas paralelas Distância entre ponto e plano
22 Distância entre reta e plano paralelos Distância entre dois planos paralelos
23 Distância entre duas retas reversas
24 Ex: Indique se as afirmativas são verdadeiras (V) ou falsas (F): a) b) c) d) e) f) g) h) Se PA é um segmento oblíquo a um plano α, com A em α, então a distância entre P e A é a distância entre P e α. A distância entre um ponto e um plano é a distância entre o ponto e qualquer ponto do plano. A distância entre um ponto e um plano é a reta perpendicular ao plano pelo ponto. A distância de um ponto P a um plano α é a distância de P ao ponto P de interseção de α com a reta r, perpendicular a α, por P. A distância entre uma reta e um plano paralelos é a distância entre um ponto qualquer do plano e a reta. A distância entre uma reta e um plano paralelos é a distância entre um ponto qualquer da reta e um ponto qualquer do plano. A distância entre a reta e plano paralelos é a distância entre um ponto qualquer da reta e o plano. A distância entre dois planos paralelos é a distância entre um ponto qualquer de um e um ponto qualquer de outro.
25 i) j) A distância entre dois planos paralelos distintos é igual à distância entre uma reta de um deles e o outro plano. A distância entre duas retas reversas é a distância entre uma e um ponto qualquer de uma e a outra reta. ** FIM **
Conceitos Primitivos: são conceitos adotados sem definição.
Geometria Plana Geometria Espacial Conceitos Primitivos: são conceitos adotados sem definição. 1. Ponto P Características: Não possui dimensão Sua representação geométrica é indicada por letra maiúscula
MATEMÁTICA MÓDULO 13 FUNDAMENTOS. Professor Matheus Secco
MATEMÁTICA Professor Matheus Secco MÓDULO 13 FUNDAMENTOS 1. FUNDAMENTOS Conceitos primitivos: ponto, reta e plano. Dois pontos distintos determinam uma única reta que pasa por eles.reta. Três pontos não
Geometria Espacial Curso de Licenciatura em Matemática parte II. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte II Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1. Paralelismo de Retas L20 Postulado das Paralelas ( de Euclides )
GEOMETRIA DE POSIÇÃO
GEOMETRIA DE POSIÇÃO 1- Conceitos primitivos 1.1- Ponto Não possui dimensão. Representado por letras maiúsculas. A B C 1.2 - Reta É unidimensional, possuindo comprimento infinito. Não possui largura ou
GGM /11/2010 Dirce Uesu Pesco Geometria Espacial
GGM00161-06/11/2010 Turma M2 Dirce Uesu Pesco Geometria Espacial Postulados : - Por dois pontos distintos passa uma e somente uma reta - Três pontos não colineares determinam um único plano. - Qualquer
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
MATEMÁTICA MÓDULO 13 FUNDAMENTOS 1. INTRODUÇÃO 1.1. POSTULADOS PRINCIPAIS 1.2. DETERMINAÇÃO DO PLANO. Conceitos primitivos: ponto, reta e plano.
FUNDAMENTOS 1. INTRODUÇÃO Conceitos primitivos: ponto, reta e plano. 1.1. POSTULADOS PRINCIPAIS Dois pontos distintos determinam uma única reta que passa por eles. Três pontos não colineares determinam
CAPÍTULO IV APLICAÇÕES
CAPÍTULO IV APLICAÇÕES PROJEÇÃO ORTOGONAL SOBRE UM PLANO PROJEÇÃO DE UM PONTO: Definição: Chama-se projeção ortogonal de um ponto sobre um plano ao pé da perpendicular ao plano conduzida pelo ponto. O
Posição Relativa. 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos.
SEI Ensina MILITAR Matemática Posição Relativa 1. Quatro pontos distintos e não coplanares determinam exatamente: (A) 1 plano (B) 2 planos (C) 3 planos (D) 4 planos (E) 5 planos. 2. Considere as seguintes
Geometria Espacial Curso de Licenciatura em Matemática parte I. Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR
Geometria Espacial Curso de Licenciatura em Matemática parte I Prof.a Tânia Preto Departamento Acadêmico de Matemática UTFPR - 2014 1 1. Conceitos Primitivos e Postulados L1. Noções 1. Conceitos primitivos:
4. Posições relativas entre uma reta e um plano
RESUMO GEOMETRIA DE POSIÇÃO OU EUCLIDIANA 1.Geometria de posição espacial Ponto, reta e plano são considerados noções primitivas na Geometria. Espaço é o conjunto de todos o pontos. Postulados são proposições
a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares.
01 a) Falsa. Dois ou mais pontos podem ser coincidentes, por exemplo. b) Falsa. Os três pontos não podem ser colineares. c) Verdadeira. Três pontos distintos e não colineares sempre determinam um plano.
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira
MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 1 Fundamentos de Geometria Euclidiana Plana e Ângulos SUMÁRIO 1. Fundamentos 1.1. Postulados principais 1.2. Determinação do plano 1.3. Posições
GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA
GEOMETRIA DE POSIÇÃO OU GEOMETRIA EUCLIDIANA PONTO, RETA, PLANO E ESPAÇO; PROPOSIÇÕES GEOMÉTRICAS; POSIÇOES RELATIVAS POSIÇÕES RELATIVAS ENTRE PONTO E RETA POSIÇÕES RELATIVAS DE PONTO E PLANO POSIÇÕES
a) Postulado 1 - Por dois pontos...passa uma e só uma reta
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e
Perpendicularismo no Espaço. Geometria Básica Profa Lhaylla Crissaff
Perpendicularismo no Espaço Geometria Básica Profa Lhaylla Crissaff 2017.2 Perpendicularismo entre retas Definição: Como duas retas concorrentes estão sempre num mesmo plano, definimos o ângulo entre as
1. Quantos são os planos determinados por 4 pontos não coplanares?justifique.
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina: Geometria euclidiana espacial (GMA010) Assunto: Paralelisno e Perpendicularismo; Distância e Ângulos no Espaço. Prof. Sato 1 a Lista
Geometria Descritiva 28/08/2012. Elementos Primitivos da Geometria
Geometria Descritiva Prof. Luiz Antonio do Nascimento [email protected] www.lnascimento.com.br A Geometria, como qualquer outra ciência, fundamenta-se em observações e experiências para estabelecer
Avaliação 1 Solução Geometria Espacial MAT 050
Avaliação 1 Solução Geometria Espacial MAT 050 6 de abril de 2018 As respostas das quatro questões a seguir devem ser entregue até o final da aula de hoje: 1. (3 pontos) Mostre que por dois pontos dados
Mat. Professore: Gabriel Ritter Monitor: Fernanda Aranzate
Professore: PC Gabriel Ritter Monitor: Fernanda Aranzate Introdução à geometria espacial 31 ago RESUMO Na geometria espacial, trabalhamos em três dimensões. 1) Postulados de determinação 1.1) Determinação
U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!
1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL
PRIMEIRA LISTA DE EXERCICIOS DE GEOMETRIA PLANA E ESPACIAL I) Completes a lacunas: a) Postulado 1 - Por dois pontos...passa uma e só uma reta b) Postulado 2 Para todo...ab e todo...cd exist um único...e
Lista 5. Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo (O; i, j, k)
UFPR - Universidade Federal do Paraná Departamento de Matemática CM045 - Geometria Analítica Prof. José Carlos Eidam Lista 5 Em toda a lista, as coordenadas referem-se a um sistema de coordenadas fixo
FAMEBLU Arquitetura e Urbanismo
FAMEBLU Arquitetura e Urbanismo Disciplina GEOMETRIA DESCRITIVA APLICADA A ARQUITETURA 1 Aula 8: Revisão Geral Exercícios Professor: Eng. Daniel Funchal, Esp. Revisão PLANOS Um plano pode ser determinado
AULA Paralelismo e perpendicu- 11 larismo
AULA Paralelismo e perpendicu- 11 larismo 11.1 Introdução Nesta aula estudaremos as noções de paralelismo e perpendicularismo. Vamos assumir que o aluno tenha o conhecimento de todos os resultados concernentes
SISTEMAS DE PROJEÇÃO
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD020 Geometria Descritiva Curso
Bacharelado em Ciência e Tecnologia 2ª Lista de Exercícios - Geometria Analítica
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS Bacharelado em Ciência e Tecnologia ª Lista de Exercícios - Geometria Analítica 008. ) São dados os pontos
SISTEMAS DE PROJEÇÃO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD028 Expressão Gráfica II Curso de Engenharia
EXERCÍCIOS COMPLEMENTARES
Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
PLANO DE AULA. Assunto: Introdução à Geometria Espacial. Tema: Conceitos primitivos de Geometria Espacial
Curso de Formação Continuada para professores de matemática SEEDUC/CECIERJ Tutora: Daiana da Silva Leite Grupo: 2 Cursista: Jozilaine Moreira Franklin dos Santos Série: 2ª série do Ensino Médio PLANO DE
SISTEMAS DE PROJEÇÃO. 1. Conceito de projeção cônica (ou central)
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso
Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva.
1 Em todas as questões, está fixado um sistema ortogonal (O, i, j, k) com base ( i, j, k) positiva a1q1: Sejam r uma reta, A e B dois pontos distintos não pertencentes a r Seja L o lugar geométrico dos
CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS
UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras
Geometria Analítica l - MAT Lista 6 Profa. Lhaylla Crissaff
Geometria Analítica l - MAT 0016 Lista 6 Profa. Lhaylla Crissaff 1. Encontre as equações paramétricas e cartesiana do plano π que passa pelos pontos A = (1, 0, ), B = (1,, 3) e C = (0, 1, ).. Prove que
REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )
NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo
Metas Curriculares do Ensino Básico Matemática 3.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Geometria e Medida 3.º ciclo Grandes temas: 1. Continuação do estudo dos polígonos
ESTUDO DA RETA 26/08/2017 CONCORRENTES COPLANARES
TRI 1 Aula 6 Profª Mariana Gusmão Dept. Expressão Gráfica ESTUDO DA RETA COPLANARES CONCORRENTES Posição relativa entre retas: 1. Não possuem pontos em comum (paralelas, reversas e ortogonais); 2. Possuem
Geometria. Uma breve introdução
Geometria Uma breve introdução Etimologia Geometria, em grego antigo γεωμετρία, geo- "terra", -metria "medida Origem (lazer ou necessidade?) Geometria Euclidiana Euclides de Alexandria, matemático grego
MAT VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva.
MAT 11 - VETORES E GEOMETRIA - IF/IME 1 o SEMESTRE 015 LISTA Suponha fixado um sistema de coordenadas ortogonal cuja base é positiva. 1. Sejam A = (1, 1, 1), B = (0, 0, 1) e r : X = (1, 0, 0) + λ(1, 1,
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
PARTE I - INTRODUÇÃO
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Luzia Vidal de Souza e Paulo Henrique Siqueira Disciplina: Geometria Descritiva
1Q1. Considere o ponto A = (1, 2, 3), a reta r : x+1
Com exceção da Questão 15, em todas as questões da prova considera-se fixado um sistema de coordenadas Σ = (O, E), onde E é uma base ortonormal positiva. 1Q1. Considere o ponto A = (1, 2, 3), a reta r
DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar
DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta
Módulo de Geometria Espacial I - Fundamentos. Pontos, Retas e Planos. 3 ano/e.m.
Módulo de Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 3 ano/e.m. Geometria Espacial I - Fundamentos Pontos, Retas e Planos. 1 Exercícios Introdutórios 2 Exercícios de Fixação Exercício 4.
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso
Ângulos entre retas Retas e Planos Perpendiculares. Walcy Santos
Ângulos entre retas Retas e Planos Perpendiculares Walcy Santos Ângulo entre duas retas A idéia do ângulo entre duas retas será adaptado do conceito que temos na Geometria Plana. Se duas retas são concorrentes
Geometria Euclidiana Espacial e Introdução à Geometria Descritiva
UNIVERSIDDE ESTDUL PULIST DEPRTMENTO DE MTEMÁTIC Geometria Euclidiana Espacial e Introdução à Geometria Descritiva Material em preparação!! Última atualização: 28.04.2008 Luciana F. Martins e Neuza K.
Desenho Técnico e CAD Geometria Plana Desenho Geométrico. Geometria Plana Desenho Geométrico. Geometria Plana Desenho Geométrico
Desenho Técnico e CAD Prof. Luiz Antonio do Nascimento Engenharia Ambiental 3º Semestre Geometria: é a parte da Matemática que estuda o espaço e as figuras que o ocupam. Pode ser dividida em: : as figuras
Noções iniciais de Desenho Geométrico
INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Noções iniciais de Desenho Geométrico Professor: João Carmo INTRODUÇÃO O desenho é a maneira de expressar graficamente a FORMA
Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas
Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana
BC Geometria Analítica. Lista 4
BC0404 - Geometria Analítica Lista 4 Nos exercícios abaixo, deve-se entender que está fixado um sistema de coordenadas cartesianas (O, E) cuja base E = ( i, j, k) é ortonormal (e positiva, caso V esteja
Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
5 de setembro de Gabarito. 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas. r: (2 t, 1 t, 1 + t), t R.
G1 de Álgebra Linear I 20072 5 de setembro de 2007 Gabarito 1) Considere o ponto P = (0, 1, 2) e a reta r de equações paramétricas r: (2 t, 1 t, 1 + t), t R (a) Determine a equação cartesiana do plano
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Disciplina CD027 Expressão Gráfica I Conteúdo II: Projeção Cotada Curso Engenharia Civil
Dupla Projeção Ortogonal. PARTE III REPRESENTAÇÃO DO PLANO 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares
31 PARTE III REPRESENTAÇÃ D PLAN 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares b) um ponto e uma reta que não se pertencem 32 c) duas retas concorrentes d)
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD028 Expressão Gráfica II Curso
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG. Sistemas Projetivos. Representação de Retas no Sistema Mongeano NOTAS DE AULA
Escola Politécnica UFRJ Departamento de Expressão Gráfica DEG Sistemas Projetivos Representação de Retas no Sistema Mongeano NOTAS DE AULA Prof. Julio Cesar B. Torres ([email protected]) REPRESENTAÇÃO
Lista 4 com respostas
Lista 4 com respostas Professora Nataliia Goloshchapova MAT0105-1 semestre de 2018 Exercício 1. Estude a posição relativa das retas r e s. (a) r : X = (1, 1, 1) + λ( 2, 1, 1), s : (b) r : { { x y z = 2
GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.
GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos
AULA Introdução a Geometria Es- 10 pacial: Pontos, Retas e Planos 10.1 Introdução O ensino de Geometria para alunos do segundo ano do segundo grau faz o aluno se deparar com guras geométricas tridimensionais.
Posições de Retas. Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C.
Posições de Retas Introdução: Conceitos Primitivos Algumas definições sobre retas foram sistematizadas por Euclides, por volta de 300a.C. A partir dessas definições estabeleceram-se os termos geométricos
Soluções do Capítulo 8 (Volume 2)
Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme
Geometria Analítica. Estudo da Reta. Prof Marcelo Maraschin de Souza
Geometria Analítica Estudo da Reta Prof Marcelo Maraschin de Souza Reta Considere um ponto A(x 1, y 1, z 1 ) e um vetor não-nulo v = a, b, c. Só existe uma reta r que passa por A e tem a direção de v.
RETA DE MÁXIMA DECLIVIDADE
TRI 1 Aula 7 Profª Mariana Gusmão Dept. Expressão Gráfica RETA DE MÁXIMA DECLIVIDADE A reta de máximo declive é a reta de um plano que forma o maior ângulo possível com π 1. Para isso ela tem que ser perpendicular
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial
178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que
9.º Ano. Planificação Matemática 16/17. Escola Básica Integrada de Fragoso 9.º Ano
9.º Ano Planificação Matemática 1/17 Escola Básica Integrada de Fragoso 9.º Ano Funções, sequências e sucessões Álgebra Organização e tratamento de dados Domínio Subdomínio Conteúdos Objetivos gerais /
Desenho Computacional. Parte I
FACULDADE FUCAPI Desenho Computacional Parte I, M.Sc. Doutorando em Informática (UFAM) Mestre em Engenharia Elétrica (UFAM) Engenheiro de Telecomunicações (FUCAPI) Referências SILVA, Arlindo; RIBEIRO,
DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA:
ANO LETIVO 2016/2017 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (9º Ano) METAS CURRICULARES/CONTEÚDOS... 1º PERÍODO - (15 de setembro a 16 de dezembro) Metas Curriculares Conteúdos Aulas
A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (D) (C)
ESTUDO DA RETA A projeção de uma reta sobre um plano é o lugar das projeções de todos os seus pontos sobre este plano. (A) (C) (D) (B) (a) B (p) A C D Baixando de todos os pontos da reta perpendiculares
Lista 3: Geometria Analítica
Lista 3: Geometria Analítica A. Ramos 25 de abril de 2017 Lista em constante atualização. 1. Equação da reta e do plano; 2. Ângulo entre retas e entre planos. Resumo Equação da reta Equação vetorial. Uma
INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO PEREIRA DE SÁ
INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR 2ª SÉRIE O ENSINO MÉIO PROF. ILYIO PEREIR E SÁ Geometria Espacial: Elementos iniciais de Geometria Espacial Introdução: Geometria espacial (euclidiana) funciona
Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011
Introdução à Geometria Descritiva Aula 01 Prof. Rafael Saraiva Campos CEFET/RJ UnED Nova Iguaçu 2011 Resumo O que é Geometria Descritiva? Projeção Ortogonal de um Ponto Método da Dupla Projeção de Monge
Capítulo I - Introdução
UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: EXPRESSÃO GRÁFICA I CURSO: ENGENHARIA CIVIL AUTORES: Luzia Vidal de Souza Deise Maria Bertholdi Costa Paulo Henrique Siqueira
SIMULADO DE MATEMÁTICA 2 COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ.
SIMULADO DE MATEMÁTICA TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0
Geometria Descritiva Básica (Versão preliminar)
Geometria Descritiva Básica (Versão preliminar) Prof. Carlos Kleber 5 de novembro de 2008 1 Introdução O universo é essencialmente tridimensonal. Mas nossa percepção é bidimensional: vemos o que está à
Tarefa nº_ 2.2. (A) Um ponto (B) Uma reta (C) Um plano (D) Nenhuma das anteriores
Tarefa nº_. MATEMÁTICA Geometria Nome: 11º Ano Data / / 1. Num referencial o.n. Oxyz, qual das seguintes condições define uma recta paralela ao eixo Oz? (A) x = y = 1 (C) z = 1 (B) (x, y, z) = (1,,0) +
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
LISTA DE EXERCÍCIOS MAT GEOMETRIA E DESENHO GEOMÉTRICO I
LISTA DE EXERCÍCIOS MAT 230 - GEOMETRIA E DESENHO GEOMÉTRICO I 1. Numa geometria de incidência, o plano tem 5 pontos. Quantas retas tem este plano? A resposta é única? 2. Exibir um plano de incidência
LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA
MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA
Ensino Fundamental II 8º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO
COLÉGIO SHALOM 65 Ensino Fundamental II 8º ANO Profº: Sâmia M. Corrêa Disciplina: Geometria Aluno (a):. No. TRABALHO DE RECUPERAÇÃO TRABALHO DE RECUPERAÇÃO 1) Use a malha quadriculada a seguir para elaborar
PHA ( ) PHP ( ) Iº DIEDRO: PVI ( ) IIIº DIEDRO:
GEOMETRIA DESCRITIVA UNIDADE 01 GEOMETRIA DESCRITIVA PLANO DE PROJEÇÃO PHA ( ) PHP ( ) Iº DIEDRO: PVS ( ) IIº DIEDRO: PVI ( ) IIIº DIEDRO: LT ( ) IVº DIEDRO: 1 GEOMETRIA DESCRITIVA UNIDADE 01 Linha Terra
Código da Disciplina CCE0985. Aula 3.
Código da Disciplina CCE0985 Aula 3 e-mail:[email protected] http://cleliamonasterio.blogspot.com/ O que é geometria? Palavra de origem grega: GEO (terra) METRIA (medida). Há 5.000 anos, era
9.3 REPRESENTAÇÃO DO PLANO
75 9.3 REPRESENTAÇÃO DO PLANO 9.3.1 REPRESENTAÇÃO DO PLANO Um plano fica determinado por: Três pontos não colineares; Um ponto e uma reta que não se pertencem; Duas retas concorrentes ou paralelas. 9.3.2
DESENHO GEOMÉTRICO ETECVAV
DESENHO GEOMÉTRICO ETECVAV 1. DEFINIÇÕES Desenho Geométrico é a "expressão gráfica da forma, considerando-se as propriedades relativas à sua extensão, ou seja, suas dimensões" (REIS, p.08) Existem três
EXERCÍCOS DE REVISÃO - 1º ANO ENSINO MÉDIO
EXERÍOS DE REVISÃO - 1º NO ENSINO MÉDIO 1.- Para a função definida por f(x) = - 2x 2 + x + 1, determine as coordenadas do vértice e decida se ele representa um ponto de máximo ou de mínimo, explicando
O MÉTODO DAS DUPLAS PROJEÇÕES ORTOGONAIS
MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor 1. Planos fundamentais de referência (PFR) MÉTD DAS DUPLAS PRJEÇÕES
