Previsão de consumos a curto prazo
|
|
|
- João Pedro Barros Miranda
- 7 Há anos
- Visualizações:
Transcrição
1 Previsão de consumos a curo prazo Séries emporais Cláudio Moneiro Disribuição de Energia II 5º ano da LEEC - ramo de Energia (FEUP) Séries emporais Esa é a meodologia clássica mais popular para a previsão a curo prazo de consumos (previsão da pona para o próximo dia, previsão da pona para a próxima semana) Consumos de gás em Lisboa Um modelo de s éries emporais faz a previsão dos fuuros valores da s érie com base nos valores presenes e passados da própria variável e dos seus erros. A meodologia usada para a previsão de séries emporais designa-se por Box-Jenkings ou ambém por modelos ARIMA. ARIMA Auo-regressivos (AR), inegrados (I) e de média móvel (MA) Produção de um parque eólico
2 Séries emporais Esacionaridade Quando a série emporal apresena uma média e variância consanes. MWH A aplicação de modelos auo-regressivos (AR) e de média móvel (AM) requer esacionaridade Se a variância não for consane exrair o logarimos ou uma poencia da série Log(MWH ) Diferenciar a s érie pode levar a uma s érie esacionária. Esa diferencia ção esá relacionada com méodos inegraivos, ARIMA(0,d,0). Se exisir uma endência ( rend ) pode ajusar-se o desvio por uma curva, subraindo o valor da curva à série. (-B )Log(MWH ) Séries emporais Diferenciação de primeira ordem para uma primeira diferença ' = ( B) = Diferenciação de primeira ordem para uma primeira diferença ' = ( B ) = Diferenciação de segunda ordem ' ( ) ( ) = ( B) =
3 Séries emporais Modelos auo-regressivos (AR) ou ARIMA(p,0,0) O valor presene é uma função linear dos valores passados - e de uma função aleaória a que é uma variável aleaória independene descria por uma fdp Normal A ordem da auo-regressão depende do valor mais anigo p φ n são os coeficienes de regressão, consanes e reais. para enconrar eses valores podem ser usadas écnicas de mínimos quadrados. + a = δ + φ + φ + L + φp p p ( φ B φb φpb ) δ + a = L Séries emporais Modelos de média móvel (MA) ou ARIMA(0,0,q) O valor presene é uma função linear dos valores passados erros a - A ordem da auo-regressão depende do valor mais anigo do erro q? m são os coeficienes de regressão, consanes e reais. O sinal negaivo é apenas uma quesão de convenção. = m + a θ a θ a L θ a q q q ( θb θb θqb ) a = m + L 3
4 Séries emporais Modelos misos ARMA ou ARIMA(p,0,q) O valor presene é uma função linear dos valores passados da série - e dos valores passados dos erros a - A ordem da auo-regressão depende do valor mais anigo dos elemenos da série p e do erro q φ n e? m são os coeficienes de regressão, consanes e reais. = δ + φ + φ + L θ L + φ p p + a θa θa q a q p q ( φb φ B L φpb ) = δ + ( θb θ B L θ qb ) a Séries emporais Modelos misos ARIMA ou ARIMA(p,d,q) Quando a série não é esacionária recorre-se à diferenciação de ordem d A ordem da auo-regressão depende do valor mais anigo dos elemenos da série p e do erro q e da ordem de diferenciação d d p 7 q 30 ( B) ( φ B φ B L φ pb )( ΦB ) = δ + ( θb θb L θqb )( ΘB ) a I ( d ) auoregres sivaar(p) Para um exemplo ARIMA(,,) eremos: sasonalar médiamóvel MA(q) ( B)( φ B) = δ + ( θb) a = δ + ( + φ) φ + a θa sasonal MA 4
5 Séries emporais Coeficienes de correlação ρ = Cov(Y, Z) Cov(Y, Z) V(Y)V(Z) N = (Yk Y)( Zk Z) N k= Coeficienes de auo-correlação ρ = 0, , ρ = 0, Cov(, k ) ρ(, k ) = ρk = V( ) 0,8 0,6 0,4 0, 0-0, -0,4 Séries emporais e P para exemplos inegraivos e auoregressivos de ª ordem AR() 5
6 Séries emporais e P para exemplos de média móvel de ª ordem P MA() Séries emporais e P para exemplos auoregressivos de ª ordem P AR() 6
7 Séries emporais e P para exemplos auoregressivos de ª ordem P AR() Séries emporais e P para exemplos de média móvel de ª ordem P MA() 7
8 Séries emporais e P para exemplos de média móvel de ª ordem P MA() Séries emporais e P para exemplos ARMA(,) P ARMA(,) 8
9 Séries emporais e P para exemplos ARMA(,) P ARMA(,) Séries emporais e P para exemplos ARIMA(p,d,q) 4 sazonal ARIMA(,0,0) 4 ARIMA(0,,0) 4 9
10 Séries emporais ARIMA(,0,0) 4 e P para exemplos ARIMA(p,d,q) 4 sazonal P ARIMA(0,0,) 4 Séries emporais Consrução de um modelo ARIMA Observar gráficos (linhas); idenificar esacionaridade; idenificar sazonalidade Aplicar ransformações logarímicas ou poências para garanir a esacionaridade da variância Aplicar diferencia ção para garanir esacionaridade da endência Aplicar diferencia ção para exrair sazonalidade Observar e P para idenificar o ipo de modelo ARMA Usando o méodo dos mínimos quadrados idenificar os parâmeros do modelo ARMA Consruir o modelo compleo; fazer a previsão; validar o modelo; avaliar o erro e inervalo de confiança 0
ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.
ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis
EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)
Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas
Prof. Lorí Viali, Dr. UFRGS Instituto de Matemática - Departamento de Estatística
Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma
Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais
XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) [email protected]
Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.
Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma
Lista de Exercícios #11 Assunto: Séries Temporais
. ANPEC 995 - Quesão 5 Lisa de Exercícios # Assuno: Séries Temporais Sea yi xi i ordinários (MQO) de e, respecivamene. Pode-se afirmar que: uma equação de regressão e seam a e b esimadores de mínimos quadrados
4 O modelo econométrico
4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no
Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial
Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na
Aplicação. Uma famosa consultoria foi contratada por uma empresa. que, entre outras coisas, gostaria de entender o processo
Aplicação Uma famosa consuloria foi conraada por uma empresa que, enre ouras coisas, gosaria de enender o processo gerador relacionado às vendas de deerminado produo, Ainda, o conraane gosaria que a empresa
Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC
MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro [email protected] www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade
Econometria de Séries Temporais Rogério Silva de Mattos, D.Sc.
Economeria de Séries Temporais Rogério Silva de Maos, D.Sc. UNIVERSIDADE FEDERAL DE JUIZ DE FORA (UFJF) FACULDADE DE ECONOMIA (FE) Economeria III O COMEÇO Box e Jenkins (1970) processos esocásicos nãoesacionários/inegrados
3 Metodologia do Estudo 3.1. Tipo de Pesquisa
42 3 Meodologia do Esudo 3.1. Tipo de Pesquisa A pesquisa nese rabalho pode ser classificada de acordo com 3 visões diferenes. Sob o pono de visa de seus objeivos, sob o pono de visa de abordagem do problema
CE017 - ANÁLISE DE SÉRIES TEMPORAIS NOTAS DE AULA
CE07 - ANÁLISE DE SÉRIES TEMPORAIS NOTAS DE AULA Esas Noas de Aula êm apenas o objeivo de faciliar o rabalho do aluno em sala de aula na pare de anoação do coneúdo exposo pelo professor e com iso se ganha
Fernando de Oliveira Durão
(Sucessões Cronológicas) Uma inrodução Fernando de Oliveira Durão (Documeno Provisório) Parcialmene adapado de noas de Alex Trindade Deparmen of Saisics Universiy of Florida www.sa.ufl.edu/~rindade/sa6934
ANÁLISE DE SÉRIES TEMPORAIS
ANÁLISE DE SÉRIES TEMPORAIS Ralph S. Silva http://www.im.ufrj.br/ralph/seriestemporais.html Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Estimação
1 Pesquisador - Embrapa Semiárido. 2 Analista Embrapa Semiárido.
XII Escola de Modelos de Regressão, Foraleza-CE, 13-16 Março 2011 Análise de modelos de previsão de preços de Uva Iália: uma aplicação do modelo SARIMA João Ricardo F. de Lima 1, Luciano Alves de Jesus
Características dos Processos ARMA
Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada
Modulo I. Séries Temporais: ARIMA
UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS EXATAS E NATURAIS FACULDADE DE ESTATÍSTICA Modulo I Séries Temporais: ARIMA Curso: Bacharelado em Estatística Disciplina: Estatística Aplicada Nome: Verena
ANÁLISE COMPARATIVA ENVOLVENDO MODELOS ARIMA E SISTEMAS INTELIGENTES PARA PREVISÃO DE DEMANDA DE ENERGIA ELÉTRICA NO CURTÍSSIMO PRAZO
Anais do IX Congresso Brasileiro de Redes Neurais /Ineligência Compuacional (IX CBRN) Ouro Preo 25-28 de Ouubro de 2009 Sociedade Brasileira de Redes Neurais ANÁLISE COMPARATIVA ENVOLVENDO MODELOS ARIMA
Enunciado genérico. Trabalho: Séries Temporais Disciplina: Estatística Ambiental
Enunciado genérico Trabalho: Séries Temporais Disciplina: Esaísica Ambienal Criérios de escolha da série 1. A série escolhida deverá er uma exensão, N, de pelo menos 150 observações da variável em esudo;.
Econometria Semestre
Economeria Semesre 00.0 6 6 CAPÍTULO ECONOMETRIA DE SÉRIES TEMPORAIS CONCEITOS BÁSICOS.. ALGUMAS SÉRIES TEMPORAIS BRASILEIRAS Nesa seção apresenamos algumas séries econômicas, semelhanes às exibidas por
DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:
DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das
PREVISÃO DA PRECIPITAÇÃO MENSAL DO MUNICÍPIO DE OURO BRANCO MG, POR MEIO DE MODELOS DE SÉRIES TEMPORAIS
UNIVERSIDADE FEDERAL DE SÃO JOÃO DEL-REI TATIANA PEREIRA MIRANDA PREVISÃO DA PRECIPITAÇÃO MENSAL DO MUNICÍPIO DE OURO BRANCO MG, POR MEIO DE MODELOS DE SÉRIES TEMPORAIS OURO BRANCO 2016 TATIANA PEREIRA
Contabilometria. Séries Temporais
Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno
Previsão da inflação do indicador IGP-M através de um modelo ARIMA
Previsão da inflação do indicador IGP-M através de um modelo ARIMA Mauricio Mattos Junho de 2014 Resumo Esse trabalho visa identificar um modelo ARIMA que seja efetivo na descrição e predição dos valores
METODOLOGIA PARA IMPLEMENTAÇÃO DE SISTEMAS DE PREVISÃO DE DEMANDA
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL ESCOLA DE ENGENHARIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO METODOLOGIA PARA IMPLEMENTAÇÃO DE SISTEMAS DE PREVISÃO DE DEMANDA Fernando Rezende Pellegrini
Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH
Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale
Análise de séries de tempo: modelos de decomposição
Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,
Cap. 6 - Análise de Investimentos em Situação de Risco
Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com Dependência
6 Processos Estocásticos
6 Processos Esocásicos Um processo esocásico X { X ( ), T } é uma coleção de variáveis aleaórias. Ou seja, para cada no conjuno de índices T, X() é uma variável aleaória. Geralmene é inerpreado como empo
Circuitos Elétricos I EEL420
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com
3 Retorno, Marcação a Mercado e Estimadores de Volatilidade
eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais
Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague
Econometria IV Modelos Lineares de Séries Temporais Fernando Chague 2016 Estacionariedade Estacionariedade Inferência estatística em séries temporais requer alguma forma de estacionariedade dos dados Intuição:
Fluxos de Caixa Independentes no Tempo Média e Variância do Valor Presente Uso da Distribuição Beta Fluxos de Caixa Dependentes no Tempo Fluxos de
Cap. 6 - Análise de Invesimenos em Siuação de Risco Fluxos de Caixa Independenes no Tempo Média e Variância do Valor Presene Uso da Disribuição Bea Fluxos de Caixa Dependenes no Tempo Fluxos de caixa com
TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS
ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1
Instituto de Física USP. Física Moderna. Aula 23. Professora: Mazé Bechara
Insiuo de Física USP Física Moderna Aula 3 Professora: Mazé Bechara Aula 3 Bases da Mecânica quânica e equações de Schroedinger: para odos os esados e para esados esacionários. Aplicação e inerpreações.
4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.
4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia
Estimação em Processos ARMA com Adição de Termos de Perturbação
UNIVER ERSIDADE DE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA DEP EPARTAMENTO DE ESTATÍSTICA Esimação em Processos ARMA com Adição de Termos de Perurbação Auor: Paricia Vieira de Llano Orienador:
Modelos Lineares Não-Estacionários
Modelos Lineares Não-Esacionários Aula 04 Enders (2010, 3. ed.) Seções 4.5 a 4.7 Bueno (2011, 2. ed.) Capíulo 4 Morein (2011, 2. ed.) Capíulos 2, 3 e 4 MODELO ARIMA Bueno (2011, 2. ed.) Seções 4.1 a 4.4
Modelos Não-Lineares
Modelos ão-lineares O modelo malhusiano prevê que o crescimeno populacional é exponencial. Enreano, essa predição não pode ser válida por um empo muio longo. As funções exponenciais crescem muio rapidamene
3 Modelos de Markov Ocultos
23 3 Modelos de Markov Oculos 3.. Processos Esocásicos Um processo esocásico é definido como uma família de variáveis aleaórias X(), sendo geralmene a variável empo. X() represena uma caracerísica mensurável
Seção 5: Equações Lineares de 1 a Ordem
Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência
INTERVALO BOOTSTRAP PARA PREVISÕES DE SÉRIES TEMPORAIS OBTIDAS PELO MÉTODO THETA
DANIEL STEFFEN INTERVALO BOOTSTRAP PARA PREVISÕES DE SÉRIES TEMPORAIS OBTIDAS PELO MÉTODO THETA Disseração apresenada como requisio parcial à obenção do íulo de Mesre em Ciências pelo Programa de Pós-graduação
Universidade Federal do Rio de Janeiro
Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação
APOSTILA DE MODELOS LINEARES EM SÉRIES TEMPORAIS
UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG INSIUO DE CIÊNCIAS EXAAS ICEx DEPARAMENO DE ESAÍSICA ES APOSILA DE MODELOS LINEARES EM SÉRIES EMPORAIS Glaura da Conceição Franco (ES/UFMG) Belo Horizone, agoso
Notas de Aulas Econometria I- EPGE/FGV Eduardo P. Ribeiro, Do ponto de vista estatístico, quero que a média do y seja dada pelo modelo linear:
Noas de Aulas Economeria I- EPGE/FGV Eduardo P Ribeiro, 008 *Hipóeses do Modelo Clássico de Regressão Linear (0) Modelo é linear => y i = α + β x i + + β k x ki + ε i Do pono de visa esaísico, quero que
2.6 - Conceitos de Correlação para Sinais Periódicos
.6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x
DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lista de exercício de Teoria de Matrizes 28/06/2017
DEPARTAMENTO DE ESTATÍSTICA - UFSCar 6 a Lisa de exercício de Teoria de Marizes 8/06/017 1 Uma pesquisa foi realizada para se avaliar os preços dos imóveis na cidade de Milwaukee, Wisconsin 0 imóveis foram
Teste F na Regressão Linear Múltipla para Dados Temporais com Correlação Serial.
Deparameno de Ciências e ecnologias Mesrado em Esaísica, Maemáica e Compuação ese F na Regressão Linear Múlipla para Dados emporais com Correlação Serial. Bruno Fernando Pinheiro Faria Lisboa, Mesrado
Processos de Markov. Processos de Markov com tempo discreto Processos de Markov com tempo contínuo. com tempo discreto. com tempo contínuo
Processos de Markov Processos sem memória : probabilidade de X assumir um valor fuuro depende apenas do esado aual (desconsidera esados passados). P(X n =x n X =x,x 2 =x 2,...,X n- =x n- ) = P(X n =x n
Lista de exercícios 3. September 15, 2016
ELE-3 Inrodução a Comunicações Lisa de exercícios 3 Sepember 5, 6. Enconre a ransformada de Hilber x() da onda quadrada abaixo. Esboce o especro de x() j x(). [ ] x() = Π ( n). n=. Um sinal em banda passane
Introdução às Medidas em Física
Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura [email protected] Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica
4. SINAL E CONDICIONAMENTO DE SINAL
4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio
