Matemática B Extensivo v. 3

Tamanho: px
Começar a partir da página:

Download "Matemática B Extensivo v. 3"

Transcrição

1 Etensiv v. Eercícis 0) B Períd é dad pr: P π Cm m 8, tems: P π 8 π 8 rad 0) C Dmíni: π 6 kπ kπ + π 6. k. π + π. 6 0) C 0) E I. Incrreta. Dmíni: π + kπ π 6 + k π 6 D (f) { R / π 6 + k π, k z} II. Crreta. O períd de P π π rad III. Crreta. Pis a imagem da funçã tangente é R. Dmíni: π π + kπ π + kπ + π π + kπ π. + + kπ π + k. π D (f) π R + π. k, k Z 0) B Períd: P π Cm m, tems: π π P. π π rad 06) C 07) D. k. π + π 8 D (f) π R + π. k, k Z 8 Im (, ] [, ) g() sec() Im(g) (, a b] [a + b, ) Cm a 0 e b, tems: Im (g) (, ] [, ) h() cssec() Im (h) (, a b] [a + b, ) Cm a 0 e b, tems: Im (h) (, ] [, ) Prtant: Im(f) B Im(g) C Im(h) A π + kπ π 6 + k. π D R π + k. π, k z...,,,,,,. π π π 7 π π Tems que: A π π...,,, π π π,,, π,... B {..., π, π, π,...} C π π...,,,... D..., π, π,, π π,... Lg, D' R E. Assim cnjunt D' está n cjunt E.

2 08) E π kπ kπ + π. kπ +. π. kπ + π 8 k Prtant, D π π R +, k z 8 Imagem: Im (, a b] [a + b, ) 0) B 0) A ) E Cm a e b, tems: Im (, ] [ +, ) (, ] [6, ). Dmíni g() cssec () kπ π. k D( g) π R. kk, z S() ctg () kπ π. k D( S) π R. kk, z Prtant, D (g) D (S) Períd: P π π π m m π π m Imagem: ], a b] [a + b, [ ], [ [7, [ Daí vem: a m i () a+ m 7 () ii Fazend (i) + (ii), tems: a 6 a 6 a ) C Substituind a em (ii), btems: a + m 7 m 7 a m 7 m Períd: f() sec P π m P π. π 8π rad ) B g() ctg P π m P π π rad h() cssec P π m P π 8π rad s() tg P π m P π π rad Prtant: P (f) P (h) D e P(g) P(s) C Dmíni π π + kπ π + π + kπ

3 6π + kπ π π + k k D() f π π R/ +, R Z ) D f() tg. ctg f() sen. cs cs sen Devems ter: sen 0 kπ, k z () i π cs 0 + kπ, k z () ii De (i) e (ii), tems: k π, k z Lg, dmíni é dad pr: D π R ; k, k z ) 0. Crreta. Pis a imagem da funçã f() ctg () é R, entã a funçã f() +. ctg () tem cm imagem Im R. 0. Crreta. Pis para td > f( ) > f( ). 0. Incrreta. P π m P π π π. π rad 7) C Relaçã trignmétrica n triângul retângul: sen α OB OB sen α Lg, AB OB sen α sen α sen α Tems ainda, TB ctg α Agra n ΔTAB A ab. sen α A. ( sen α ). ctg α. sen α sen α A ( sen α) ctg α N ΔOPQ, tems: sen (0 α) PQ OQ sen 0. cs sen α. cs 0 0 PQ OQ 6) D 08. Crreta. Im ], a b] [a + b, [, cm a 0 e b 7, tems: Im ] ; 7] [7; [. 6. Incrreta. Cm sec nã pssui pnt de mínim, lg g(). sec() nã pssui pnt de mínim. N triângul QOB, tems: cs α PQ OQ (i) cs (0 α) OP OQ cs 0 0. cs + sen 0. sen α OQ sen α OQ OQ sen α (ii)

4 Substituind (ii) em (i), terems: cs α PQ OQ PQ cs α. OQ PQ cs α. ctg α. sen α 0) D Prtant, k pde assumir s valres d interval [ 7, ] I. Crreta. 8) E ) E Períd: π π 6π π P rad sec k k + k k k k 0 Reslvend separadamente as desigualdades. k k 0 k (k ) 0 A epressã sen m para a º Q, tems: < m < 0 + < m < + 0 < m < < m < < m < Lg, a sluçã k k 0 é dada pr: k (, 0] [, ). k k k k + 0 Prtant, m (, ) II. Crreta. O valr máim acntece quand cs. Entã: f MAX () +. cs f MAX () +. Lg, a sluçã k k + 0 é dada pr: k (, ] [, ). Prtant, > k k > 0 é: 0 Mínim O valr mínim acntece quand cs. Entã: f MÍN () +. 0 cs f MÍN () A sma ds valres máim e mínim é: III. Incrreta., , cssec sen sen

5 ) 0 Relaçã fundamental: sen + cs + cs cs cs 6 cs cs Cm º Q, tems cs < 0. 7 Lg cs Prtant, ctg cs sen IV. Crreta. Períd: P π m P π π rad 7 7 Dmíni π + Kπ 6 Kπ π 6 K π π D π π R/ K, K Z. 0. Incrreta. sen K A imagem pde assumir valres e, entã: < K < + < π < + < K < < K < Prtant, K R/ K 0. Incrreta. Dmíni da sec é dad pr: D π R/ + kπ, K Z 0. Crreta. O valr mínim da funçã f() é atribuíd quand cs. Daí, vem: f MIN () + ( ) 08. Incrreta. P π m P π π. π rad ) 6. Crreta. Observe gráfic da funçã cssecante na página 6 da apstila. 0. Crreta. Dmíni: π 6 π + kπ π + π 6 + kπ π + kπ 6 π + kπ D π R + kπ, k R. 0. Crreta. Períd P π m P π π rad 0. Incrreta. π π 6 8 Cm períd é dad pr P π, lg a sluçã é dada pr: S π π R/ + K, K Z 8 Cm querems [0, π], entã K 0 S π 8 0 (OK)

6 ) B K S π + π π+π π (OK) K S π + π. π+ π π (OK) K S π + π. 7π 70 (nã 8 8 serve) Prtant, pssui sluções. 08. Incrreta. y f() sen. 6. Crreta. lg lg y lg lg lg y y 8 y y i y () y ii y ( ) Substituind (i) em (ii). y y y Substituind y em (i), terems:. Lg, + y + 6. I. Incrreta. cs (a + b) cs a. cs b sen a. sen b II. Crreta. sen (a b) sen a. cs b sen b. cs a f() sen ) E ) A sen sen 0 sen (60 + ) sen 60. cs + sen. cs 60 sen sen 0. + ( + ) tg 7 tg (0 + ) tg 0 + tg tg 0. tg + tg 7. + tg 7 + tg (racinalizaçã) + tg 7 ( + ) + ( + ) tg ) D 7) D sen sen 0 sen a cs a (psitiv, pis Q.) sen sen 0 cs 0 sen Relaçã fundamental: sen + cs Cm sen, entã: III. Incrreta. tg a+ tgb tg (a + b) + tg a. tgb 6

7 + cs cs cs 6 cs 6 Tems ainda: sen y + cs y sen y + sen y + 6 sen y 6 sen y 6 sen y 6 sen y I. Crreta. sen( + y) sen. cs y + sen y. cs sen( + y). +. sen( + y) 8 +. sen( + y) II. Incrreta. cs( y) III. Crreta. tg y sen y cs y tg sen cs + tg + tgy tg ( + y) tg. tgy ) E ) D 6 tg ( + t) cs π 0 + cs. cs sen. sen 0. cs ( ) sen sen Cm sen Relaçã fundamental: sen + cs + cs cs 6 cs 7 6 cs ± 7 6 0) A cs 7 ( Q.) Tems: sen sen. cs sen. 7. sen sen Resluçã f() tg tg tg tg Lg, π + kπ, k Z 7

8 ) E ) D f() cs² sen² f() (cs² sen² ) Relaçã Fundamental f() ( sen² sen² ) cs a sen b f() ( sen ) f() 8 sen f() 8. cs f() ( cs ) f() + cs f() cs ) C ) C Prtant, Im [ ; ] sen ( y). cs y + cs ( y). sen y sen (( y) + y) sen ( y + y) sen cs (60 + a) cs 60. cs a sen 60. sen a cs (60 + a) cs a sen a sen b cs a Figura A : Área da figura. A senb.cs a sen b. cs a Cm tems dis símbls idêntics tems: A + A sen b. sen a cs b sen a Cm, ) D sen (a 0 ) sen a. cs 0 sen 0. cs a sen (a 0 ) sen a. cs a sen (a 0 ) cs a sen a Lg, cs (60 + a) m (sen + sen y)² + (cs + cs y)² sen + sen. sen y + sen y + cs + cs. cs y + cs y (sen + cs ) + (sen + cs y) + sen. sen y + cs. cs y (sen + cs ) + (sen + cs y) + (cs. cs y + sen sen y) + + cs ( y) + cs (60 ) ) B A sen a. cs b Prtant, sen a cs b A + A + A sen b. cs a + sen a. cs b A + A + A (sen b. cs a + sen a. cs b) A + A + A sen (b + a) A + A + A sen π 6 A + A + A. A + A + A sen + cs + cs + cs 6 8

9 cs + 6 cs 6 cs ± 6 cs ±, π π, ist é, Q., lg cs. tg sen cs. sen. cs sen. cs sen. cs 8 8) E sen cs + cs + cs cs cs 8 (. ) 7) C Daí vem: tg tg tg. tg tg 6 6 tg.. 6. tg 0 sen cs (elevand ambs s lads a quadrad) (sen cs ) sen sen. cs + cs sen + cs sen. cs sen. cs sen. cs cs ± 8 cs ± 8 Cm ]0, π [, tems: cs 8 sen sen. cs sen. sen 8 sen ) B. 8 sen cs (elevand ambs s lads a quadrad) (sen cs ) sen sen. cs + cs sen + cs sen. cs sen. cs sen. cs

10 sen. cs ( ) sen 0) D cs sen 6 (elevand ambs s lads a quadrad) 6 (cs sen ) cs cs. sen + sen 6 sen + cs cs. sen sen. cs sen. cs sen. cs ( ) ) C sen + sen 80 (tg 0 + ctg 0 ) sen sen 80 0 cs 0 + cs 0 sen 0 sen sen cs 0 cs 0. sen 0 sen (. 0 ) cs 0. sen 0 sen 0.cs 0 sen 0.cs 0 cs 0. sen 0 ) D. cs 0. sen 0 cs 7 cs² 6 cs (. 6 ) cs² 6 cs 6 sen 6 cs 6 sen² 6 ) A tg 0 (sec + cssec )(cs sen ) tg 0. + cs sen. (cs + sen ) tg 0. sen + cs. (cs sen ) cs tg 0. cs + sen )(cs + sen cs. sen tg (. ). (cs sen ) cs. sen tg tg sen. cs cs. sen sen. cs. cs sen sen cs. sen cs ) B sen cs cs sen cs sen. cs cs. sen sen.cs sen cs. (cs sen ). cs cs. sen tg sen cs sen cs sen cs cs cs sen + sen + sen.cs cs sen sen + cs + sen.cs cs cs cs + cs +. cs.cs cs cs + cs cs cs 0

11 ) A cs α sen α + cs² α sen² α (cs α + sen α) (cs α sen α) + cs α sen α. (cs α sen α) + cs α sen α cs α sen α + cs α ( cs α) + cs α + cs α. cs α. Lembre-se: cs α + cs α e sen α cs α 08. Incrreta. A sen 0 sen 70 B sen 700 sen 0 A B sen 70 cs 6) 7 0. Crreta. a b V min. a b 0. Incrreta. f() sen. cs f(). sen. cs f() sen a 0 b m P π m P π π π rad Im [a b, a + b] [0, 0 + ] [, ] 0. Incrreta. ctg a. sec a > 0 cs a. sen a cs a > 0 sen a sen a < 0 > 0 Tems ainda, sen a. cs b < 0 (divide-se ambs s lads pr sen a) sen a.cs b > 0 sen a sen a cs b > 0 Lg, a Q. u a Q. e assim a π π,. Lg, A > B. Pdems pensar da seguinte frma: 70 Q., entã sen 70 > 0 0 Q., entã sen 0 < 0 0 Prtant, sen 0 < sen 70 B < A. 6. Crreta. (tg + ). (sen ) sen + cs ) sen + cs cs. ( cs ) cs. ( cs ) cs cs 7) V V V F F sen cs (sen² cs² ). (sen² cs² ). (sen² cs² ) sen² cs² Prtant, verdadeira. sen π + sen π. cs + sen. cs π cs + sen

12 cs π cs π cs + Prtant, verdadeira.. cs + sen π sen tg + ctg sen cs + cs sen sen + cs cs. sen cs. sen sen sen. sen 08. Crreta. 6 H 8 (Terema de Pitágras) H H 00 H H 00 H 0 O ângul α é menr, pis encntra-se em psiçã psta a lad menr. α Prtant, verdadeira. cs² + cs cs² + cs² cs² Prtant, fals. sen( + y) + sen( y) sen. cs y + sen y. cs + sen. cs y sen y. cs sen. cs y cs α Crreta. y z 8) 6 Prtant, fals. 0. Incrreta. P π m P π π 0. Crreta. cs² + (tg² )(cs² ) cs + sen.cs cs cs + sen 0. Incrreta. sen² + cs² 0 sen² cs² Nte que, cs² > 0 cs² < 0 sen² > 0 Entã, sen cs, pis lad esquerd é psitiv, prém lad direit é negativ. ) z 80 y sen z sen (80 y) sen (80 ( + y)) sen 80. cs ( + y) sen ( + y). cs cs ( + y) sen ( + y). ( ) sen ( + y) sen. cs y + sen y. cs 0. Crreta. Vams mstrar cntrapsitiva: Se nã é par, entã nã é par, u seja, se é ímpar, entã é ímpar. Cm é ímpar, entã é da frma: n + cm n Z (Elevand a quadrad ambs s lads) (n + ) n + n + Seja q n n Z q +. Prtant, é ímpar, ist é, se fr par, entã é par.

13 0. Incrreta. Nte que k nunca admite n algarism das unidades. 0. Crreta. 08. Crreta k k k cs + cs cs + + cs cs cs ( ) cs cs (sen² cs² cs² ()). cs²() ( cs ()). cs ().( cs ()). cs. ( cs ()). cs () ( + cs ()). cs () ( cs ). cs ( cs ). ( + cs ) ( cs )( + cs ) cs sen 6. Crreta. N ΔOAB, tems: tg α catet pst catet adjacente (Relaçã trignmétrica) 0) C tg α AB OA tg α AB tg α AB. Crreta. Cm < sen < e < cs <, ambs pssuem valr máim. Lg, valr máim de S é: S +. α α Nte que ΔABD ΔBCD (cas LLL) Cnsidere ΔABD H () + H + H H H Ainda n ΔABD, tems: sen α cs α h.... sen B sen (α) sen α. cs α.....

14 ) Nte que: C α y CM B α, pis CM B é um ângul etern a triângul AMC. CM, pis triângul AMC é isósceles. α α Substituind sen α em sen α + cs α, terems: + cs α A B M ) A 0. Crreta. Cm CM B α, entã cs (CM B) cs α. Daí vem: cs CM B. cs α cs α sen α Crreta. N triângul ABC: CB tg α y AB + tg α Crreta tg α Cm CM B α, entã sen CM B sen α. Daí vem: sen α sen α. cs α sen α.. Lg, sen CM B. cs α cs α 8 8 cs α cs α 8 cs α 0. Crreta. N triângul CMB: cs α cs α (cs α sen α) Crreta. Ainda n triângul CMB: sen α y y. sen α y. sen α. cs α y 8.. y 6 Seja α DB A. N triângul ADB, tems: 0, tg α N triângul ABC, tems:, tg ( α+ β) tg α+ tg β tg α. tg β

15 + tg β 0. tg β tg β 0 + tg β 80. tg β tg β tg β 0 8 tg β 80 0 ) D 8 tg β 80 tg β tg β (racinalizaçã) 8 8. ) y 60 0 OP cs a Analisand círcul trignmétric, btems: PN sen a ( OP+ OQ) + ( PN QM) (terema de Pitágras) ( OP) + ( OP).( OQ) + ( OQ) + ( PN) ( PN).( QM) + ( QM) OQ cs b QM senb cs a + cs a. cs b + cs b + sen a sen a. sen b + sen b (sen a + cs a) + (sen b + cs b) + (cs a. cs b sen a. sen b) + +. cs (a + b) Cm a + b π, entã cs (a + b) cs π EÂB AÊD (alterns interns) N triângul ABF: BF tg α AB N triângul ADE: AB tg α DE. tg α tg α. 6 Prtant, y. ( ) y. y. 6 y. y 60 ) E sen ( + y). sen ( y) (sen. cs y + sen y. cs ). (sen. cs y sen y. cs ) sen. cs y sen.cs ysen. y.cs + + sen y.cs sen. cs. y sen y. cs y sen. cs y sen y. cs ( cs ) csy ( csy ) cs cs y cs. cs y cs + cs y. cs cs y cs

16 6) C ctg () + cssec () cs ( ) + s en ( ) s en( ) cs ( ) + cs cs cs s en ( ) s en.cs s en. cs sen ctg 7) A ( ) O menr valr da sluçã da equaçã acima é a. Lg, sen y. sen (y) k ctg y sen y. cs y k cs y sen y sen y k sen y sen y k (sen y ) 8) D. k k. 6 k 8 sen + sen y (sen + sen y) sen + sen. sen y + sen y Agra, cs + cs y (cs + cs y) cs + cs. cs y + cs y (ii) Smand as igualdades (i) e (ii), tems: sen + sen. sen y + sen y + cs + + cs. cs y + cs y + (i) ) A (sen + cs ) + (sen y + cs y) + + cs (.cs y+ sen.cs y) + cs ( y) + + cs ( y) + cs ( y) cs ( y) 6 cs ( y) cs ( y). cs ( y) sec ( y) cs ( y) A a. b.cs α Área d triângul T Área d triângul T sen AT l. l. sen AT l. l. ( ) Cm AT A T, entã:. l. sen( ) l. sen sen () sen. sen. cs sen 6 cs 6 60) D sen α cs β () i () ii Substituind (i) em sen α + cs α, tems: + cs α + cs α 6

17 + cs α cs α cs α cs α cs α cs α (cs α < 0, pis α Q) Substituind (ii) em sen β + cs β, tems: sen β + sen β + sen β sen β sen β (sen β < 0, pis β Q) Daí vem: sen α tg α cs α sen β tg β β cs tg α+ tg β tg (α + β) + + tg α. tg β (. ) + tg (α + β) ( + ). ( ). + tg (α + β) tg (α + β) 7

Matemática B Semi-Extensivo V. 1. Exercícios

Matemática B Semi-Extensivo V. 1. Exercícios Matemática B Semi-Etensiv V. Eercícis 0) E Cm DBC é isósceles, tems DC 8. Em ADC sen 60º AC DC 0) B sen 60º 6 cs 60º y y y 6 Perímetr + 6 + 6 8 + 6 6( + ) 0) AC 8 AC 6 tg y y y tg 0) D 8. h 8 h 6 d 8 +

Leia mais

cos. sen = ; tg 2x

cos. sen = ; tg 2x Resluções das atividades adicinais Capítul Grup A. alternativa E Sabems que: tg 0 tg 0 sen 0 sen 0 cs 0 cs 0 Dessa frma: + +. alternativa E Tems: sen + cs + cs cs Cm ;, cs < 0. Lg cs. Entã: sen sen cs

Leia mais

Matemática B Extensivo V. 2

Matemática B Extensivo V. 2 Gabarit Matemática B Extensiv V. Reslva Aula Aula 7.0) a) sen 0 sen (60 0 ) 7.0) f(x) sen 0 b) cs 0 cs (80 0 ) c) cs 60 cssec 60 cssec 00 sen 00. d) sec 97 sec cs e) tg tg tg ( 80 ) Períd: p 6 Imagem:

Leia mais

Matemática 1ª série Ensino Médio v. 3

Matemática 1ª série Ensino Médio v. 3 Matemática ª série Ensin Médi v. Eercícis 0) a),76 0 tg 7 tg 0,57 9,7 0 0) 6, cm e 9, cm tg 0 0,89,7670 6 5 cm b) 9,06 8 cm 6 sen 6 8 tg 6 a 5 0,889 8 9,060 cm c) 6,88 5 6,050 a 5 a 0,55 cm tg a 0,69 0,

Leia mais

Matemática B Extensivo V. 1

Matemática B Extensivo V. 1 Matemática Etensiv V. Eercícis 0 5 60 0) m 0) E sen cs tan Seja a medida entre prédi mair e a base da escada que está apiada. Também, seja y a medida da entre a base d prédi menr e a base da escada nele

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 3. alternativa A. alternativa B. alternativa C Questã TIPO DE PROVA: A de dias decrrids para que a temperatura vlte a ser igual àquela d iníci das bservações é: A ser dividid pr 5, númer 4758 + 8a 5847 deixa rest. Um pssível valr d algarism a, das

Leia mais

Matemática Elementar B Lista de Exercícios 2

Matemática Elementar B Lista de Exercícios 2 Ministéri da Educaçã Diretria de Graduaçã e Educaçã Prfissinal Departament Acadêmic de Matemática Matemática Elementar B Lista de Exercícis 0 Transfrme s ânguls a seguir de graus para radians a) 0º b)

Leia mais

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de

1ª Avaliação. 2) Qual dos gráficos seguintes representa uma função de 1ª Avaliaçã 1) Seja f ( ) uma funçã cuj dmíni é cnjunt ds númers naturais e que asscia a td natural par valr zer e a td natural ímpar dbr d valr Determine valr de (a) f ( 3) e (b) + S, send f ( 4 ) * S

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 4. Questão 2. alternativa B. alternativa A. alternativa D. alternativa C Questã TIPO DE PROVA: A Ds n aluns de uma escla, 0% têm 0% de descnt na mensalidade e 0% têm 0% de descnt na mesma mensalidade. Cas equivalente a esses descnts fsse distribuíd igualmente para cada um ds

Leia mais

UFSC. Matemática (Amarela)

UFSC. Matemática (Amarela) Respsta da UFSC: 0 + 0 + 08 = Respsta d Energia: 0 + 08 = 09 Resluçã 0. Crreta. 0. Crreta. C x x + y = 80 y = 80 x y y = x + 3 30 x + 3 30 = 80 x x = 80 3 30 x = 90 6 5 x = 73 45 8 N x z 6 MN // BC segue

Leia mais

matemática 2 Questão 7

matemática 2 Questão 7 Questã TIPO DE PROVA: A Na figura, a diferença entre as áreas ds quadrads ABCD e EFGC é 56. Se BE =,a área d triângul CDE vale: a) 8,5 b) 0,5 c),5 d),5 e) 6,5 pr semana. Eventuais aulas de refrç sã pagas

Leia mais

Matemática D Extensivo V. 1

Matemática D Extensivo V. 1 Matemática Etensiv V. Eercícis 0) 0 0 0 + 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0) h 0 Pnteir pequen (hras) 0 hra 0 minuts? 0 0 min Prtant, hmin 0) 0 h0min 0 0 Lembrand que cada hra é equivalente a 0. 0 + 0

Leia mais

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x.

UFSC. Matemática (Amarela) 21) Resposta: 14. Comentário e resolução. 01. Incorreta. Como 1 rd 57 o, então 10 rd 570 o. f(x) = sen x. UFSC Matemática (Amarela) ) Respsta: 4 Cmentári e resluçã 0. Incrreta. Cm rd 7, entã 0 rd 70. f(x) = sen x f(0) = sen (0) f(0) = sen (70 ) f(0) = sen (0 ) f(0) < 0 0. Crreta. Gráfics de f(x) = x e g(x)

Leia mais

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg.

L = R AULA 8 - TRIGONOMETRIA TRIGONOMETRIA NA CIRCUNFERÊNCIA TRIÂNGULO RETÂNGULO. sen. cos a b. sen. cos a tg b tg. sen cos 90 sen cos 1 tg tg. AULA 8 - TRIGONOMETRIA TRIÂNGULO RETÂNGULO TRIGONOMETRIA NA CIRCUNFERÊNCIA COMO MEDIR UM ARCO CATETO OPOSTO sen HIPOTENUSA. cs tg CATETO ADJACENTE HIPOTENUSA CATETO OPOSTO CATETO ADJACENTE Medir um arc

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 3 (1ª ou 2ª Séries EM) . Cnsidere a PG:, 9, 7, 8, 4,... A partir dela vams cnstruir a seqüência:, 6, 8, 4, 6,..., nde primeir term cincide cm primeir term da PG, e a partir d segund, n-ésim é a diferença entre n-ésim e (n-)-ésim

Leia mais

Álgebra. Trigonometria. 8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo

Álgebra. Trigonometria.  8. Na figura abaixo, calcule x e y. 2. Um dos catetos de um triângulo retângulo Trignmetria. Um ds catets de um triângul retângul mede 0cm, e utr é igual a d primeir. Calcule a medida da hiptenusa.. Um ds catets de um triângul retângul mede m e a sua prjeçã sbre a hiptenusa é igual

Leia mais

34

34 01 PQ é a crda um de duas circunferências secantes de centrs em A e B. A crda PQ, igual a, determina, nas circunferências, arcs de 60 º e 10 º. A área d quadriláter cnve APBQ é : (A) 6 (B) 1 (C) 1 6 0

Leia mais

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I

Universidade de Mogi das Cruzes UMC. Cálculo Diferencial e Integral II Parte I Cálcul Diferencial e Integral II Página 1 Universidade de Mgi das Cruzes UMC Camps Villa Lbs Cálcul Diferencial e Integral II Parte I Engenharia Civil Engenharia Mecânica marilia@umc.br 1º semestre de

Leia mais

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO

XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7 a. e 8 a. Ensino Fundamental) GABARITO GABARITO NÍVEL XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (7 a. e 8 a. Ensin Fundamental) GABARITO ) D 6) A ) D 6) C ) C ) C 7) C ) C 7) B ) E ) C 8) A ) E 8) C ) D 4) A 9) B 4) C 9)

Leia mais

Exercícios de Matemática Fatoração

Exercícios de Matemática Fatoração Eercícis de Matemática Fatraçã ) (Vunesp-00) Pr hipótese, cnsidere a = b Multiplique ambs s membrs pr a a = ab Subtraia de ambs s membrs b a - b = ab - b Fatre s terms de ambs s membrs (a+(a- = b(a- Simplifique

Leia mais

MATEMÁTICA APLICADA RESOLUÇÃO

MATEMÁTICA APLICADA RESOLUÇÃO GRADUAÇÃO EM ADMINISTRAÇÃO, CIÊNCIAS ECONÔMICAS E 3/0/06 As grandezas P, T e V sã tais que P é diretamente prprcinal a T e inversamente prprcinal a V Se T aumentar 0% e V diminuir 0%, determine a variaçã

Leia mais

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIII OLIMPÍD RSILEIR DE MTEMÁTI PRIMEIR FSE NÍVEL (Ensin Médi) GRITO GRITO NÍVEL ) 6) ) D 6) D ) ) 7) D ) 7) D ) D ) 8) ) 8) D ) ) 9) ) 9) ) D ) E 0) D ) D 0) E ) E ada questã da Primeira Fase vale pnt.

Leia mais

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009

Exame: Matemática Nº Questões: 58 Duração: 120 minutos Alternativas por questão: 4 Ano: 2009 Eame: Matemática Nº Questões: 8 Duraçã: 0 minuts Alternativas pr questã: An: 009 INSTRUÇÕES. Preencha as suas respstas na FOLHA DE RESPOSTAS que lhe fi frnecida n iníci desta prva. Nã será aceite qualquer

Leia mais

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100.

a) No total são 10 meninas e cada uma delas tem 10 opções de garotos para formar um par. Logo, o número total de casais possíveis é = 100. Questã 1: Em uma festa de aniversári, deseja-se frmar 10 casais para a valsa. A aniversariante cnvidu 10 garts e 9 gartas. a) Quants casais diferentes pderã ser frmads? b) Sabend-se que 4 das meninas sã

Leia mais

grau) é de nida por:

grau) é de nida por: CÁLCULO I Prf. Edilsn Neri Júnir Prf. André Almeida : Funções Elementares e Transfrmações n Grác de uma Funçã. Objetivs da Aula Denir perações cm funções; Apresentar algumas funções essenciais; Recnhecer,

Leia mais

Lista de Exercícios - Trigonometria I

Lista de Exercícios - Trigonometria I UNEMAT Universiae Esta e Mat Grss Campus Universitári e Sinp Faculae e Ciências Exatas e Tecnlógicas Curs e Engenharia Civil Disciplina: Funaments e Matemática Lista e Exercícis - Trignmetria I ) Cnverter

Leia mais

Matemática E Extensivo V. 2

Matemática E Extensivo V. 2 Matemática E Etensiv V. Eercícis 0) a) d) n 8!! 8...!! 8.. (n )!! n n b) 0 0) A 0! 9! 0. 9! 9! 0 c) 00! 00 d) 9! 9. 8...! 9 8... 9..!!...!.. 0) a) ( + )! ( + )( )! +!! b) n 0 nn ( )( n )! ( n )! ( n )!

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 O gráfic mstra, aprimadamente, a prcentagem de dmicílis n Brasil que pssuem certs bens de cnsum. Sabe-se que Brasil pssui aprimadamente 50 milhões de dmicílis, send 85% na zna urbana e 15% na

Leia mais

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES

QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES QUESTÕES DE ÁREAS DE CÍRCULOS E SUAS PARTES 1. (Unicamp 015) A figura abaix exibe um círcul de rai r que tangencia internamente um setr circular de rai R e ângul central θ. a) Para θ 60, determine a razã

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D

Questão 2. Questão 1. Questão 3. alternativa C. alternativa D NOTAÇÕES C: cnjunt ds númers cmplexs. Q: cnjunt ds númers racinais. R: cnjunt ds númers reais. Z: cnjunt ds númers inteirs. N {0,,,,...}. N {,,,...}. i: unidade imaginária; i. z x + iy, x, y R. z: cnjugad

Leia mais

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6

UDESC 2013/2 MATEMÁTICA. 01) Resposta: A. Comentário. x 2x. Como x 1, dividimos ambos os lados por (x 1) e obtemos: xx 6 2 = 120 6 MATEMÁTICA 0) Respsta: A Cx, Ax, = 0x + 0 x! x! = 0x + 0!( x )! ( x )! xx ( )( x )( x )! xx ( )( x )( x )! =0( x ) ( x )! ( x )! xx ( )( x ) x( x )( x ) =0( x ) Cm x, dividims ambs s lads pr (x ) e btems:

Leia mais

O resultado dessa derivada é então f (2) = lim = lim

O resultado dessa derivada é então f (2) = lim = lim Tets de Cálcul Prf. Adelm R. de Jesus I. A NOÇÃO DE DERIVADA DE UMA FUNÇÃO EM UM PONTO Dada uma funçã yf() e um pnt pdems definir duas variações: a variaçã de, chamada, e a variaçã de y, chamada y. Tems

Leia mais

MATEMÁTICA 1 o Ano Duds

MATEMÁTICA 1 o Ano Duds MATEMÁTICA 1 An Duds 1. (Ufsm 011) A figura a seguir apresenta delta d ri Jacuí, situad na regiã metrplitana de Prt Alegre. Nele se encntra parque estadual Delta d Jacuí, imprtante parque de preservaçã

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) ª FASE 3 DE JUNHO 07. GRUPO I Dado que os algarismos que são usados são os do conjunto {,, 3, 4, 5, 6, 7, 8, 9

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa E. alternativa A. ver comentário. alternativa E Questã TIPO DE PROVA: A N primeir semestre deste an, a prduçã de uma fábrica de aparelhs celulares aumentu, mês a mês, de uma quantidade fixa. Em janeir, fram prduzidas 8 000 unidades e em junh, 78 000.

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 2 (7ª ou 8ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível (7ª u 8ª Séries). A perguntar a idade d prfessr, um alun recebeu d mesm a seguinte charada : Junts tems sete vezes a idade que vcê tinha quand

Leia mais

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão

I, determine a matriz inversa de A. Como A 3 3 A = 2 I; fatorando o membro esquerdo dessa igualdade por A, temos a expressão VTB 008 ª ETAPA Sluçã Cmentada da Prva de Matemática 0 Em uma turma de aluns que estudam Gemetria, há 00 aluns Dentre estes, 0% fram aprvads pr média e s demais ficaram em recuperaçã Dentre s que ficaram

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução à Geometria II. Ângulo III. Paralelismo. Páginas: 145 à 156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã à Gemetria II. Ângul III. Paralelism Páginas: 145 à 156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i

Grupo A. 3. alternativa C. Então: y = alternativa B. = 8 6i. 5. alternativa A = i Grup A. alternatva B ( x ) + ( y 5) ( y + ) + ( x + ) x y + x y 7y y 5 x + x + y 8 y x + y 8 x + 8 x 5 Entã: x y 5 5 9. n ( x; y), m ( x; y), q ( x; y), p(x; y) m + n + p + q ( x; y) + (x; y) + (x; y)

Leia mais

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156

MATEMÁTICA. Capítulo 1 LIVRO 1. I. Introdução àgeometria II. Ângulo III. Paralelismo. Páginas: 145 à156 MATEMÁTICA LIVRO 1 Capítul 1 I. Intrduçã àgemetria II. Ângul III. Paralelism Páginas: 145 à156 I. Intrduçã a Estud da Gemetria Plana Regiã Plignal Cnvexa É uma regiã plignal que nã apresenta reentrâncias

Leia mais

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor

1 a QUESTÃO: (2,0 pontos) Avaliador Revisor ( MATEMÁTICA - Gabarit Grups I e J a QUESTÃO: (,0 pnts) Avaliadr Revisr A figura abaix exibe gráfic de uma funçã y = f (x) definida n interval [-6,+6]. O gráfic de f passa pels pnts seguintes: (-6,-),(-4,0),

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 23 DE JUNHO 2017 GRUPO I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 7-A 500-36 Lisboa Tel.: +35 76 36 90 / 7 03 77 Fax: +35 76 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO DA

Leia mais

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura

1.1. Área do triângulo em função de um lado e da altura. 1.1. Área do triângulo em função de um lado e da altura UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA A área de um triângul é dada

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line MTEMÁTI PRÉ-VESTIBULR LIVRO DO PROFESSOR 6-9 IESDE Brasil S.. É pribida a reprduçã, mesm parcial, pr qualquer prcess, sem autrizaçã pr escrit ds autres e d detentr ds direits autrais. I9 IESDE Brasil S..

Leia mais

Matemática D Extensivo V. 4

Matemática D Extensivo V. 4 Matemática D Extensiv V. Reslva Aula 1 Aula 1 1.01) C 1.01) B 1.0) C 1.0) E Discteca: S 0. 1 0 m Pista de dança: S 8. 1,6 100,8 m 100% 0 x% 100,8 0x 100. 100,8 x S 8 l. 8 l 7 Perímetr: 8 110 é ângul inscrit

Leia mais

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA.

C 01. Introdução. Cada cateto recebe o complemento de oposto ou adjacente dependendo do ângulo de referência da seguinte forma: Apostila ITA. IME ITA Apstila ITA Intrduçã C 0 A trignmetria é um assunt que vei se desenvlvend a lng da história, nã tend uma rigem precisa. A palavra trignmetria fi criada em 595 pel matemátic alemã arthlmaus Pitiscus

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Aula 8. Transformadas de Fourier

Aula 8. Transformadas de Fourier Aula 8 Jean Baptiste Jseph Furier (francês, 768-830) extracts ds riginais de Furier Enquant que as Séries de Furier eram definidas apenas para sinais periódics, as sã definidas para uma classe de sinais

Leia mais

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1

A) O volume de cada bloco é igual à área da base multiplicada pela altura, isto é, 4 1 OBMEP Nível 3 ª Fase Sluções QUESTÃO. Quincas Brba uniu quatr blcs retangulares de madeira, cada um cm 4 cm de cmpriment, cm de largura e cm de altura, frmand bjet mstrad na figura. A) Qual é vlume deste

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Proposta de teste de avaliação 4 Matemática 9

Proposta de teste de avaliação 4 Matemática 9 Prpsta de teste de avaliaçã 4 Matemática 9 Nme da Escla An letiv 0-0 Matemática 9.º an Nme d Alun Turma N.º Data Prfessr - - 0 Na resluçã ds itens da parte A pdes utilizar a calculadra. Na resluçã ds itens

Leia mais

Questão 13. Questão 14. Resposta. Resposta

Questão 13. Questão 14. Resposta. Resposta Questã 1 O velcímetr é um instrument que indica a velcidade de um veícul. A figura abai mstra velcímetr de um carr que pde atingir 40 km/h. Observe que pnteir n centr d velcímetr gira n sentid hrári à

Leia mais

Matemática B Extensivo v.2

Matemática B Extensivo v.2 Etensivo v. Eercícios 0) A Se cos α /, então, a representação em um triângulo retângulo será: Pitágoras Como o arco tem etremidades no segundo quadrante, 0 seno é positivo e tangente é negativa, logo:

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05

01) 2 02) 2,5 03) 3 04) 3,5 05) 4. que se pode considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 5x = 20. RESPOSTA: Alternativa 05 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui,

Leia mais

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20

01) 2 02) 2,5 03) 3 04) 3,5 05) 4 RESOLUÇÃO: Sendo que pode-se considerar AP = 2x e PB = 3x. Assim 2x + 3x = 20 PROVA APLICADA ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM 2009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA 1. O segment AB pssui, n sentid

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questã Se Amélia der R$,00 a Lúcia, entã ambas ficarã cm a mesma quantia. Se Maria der um terç d que tem a Lúcia, entã esta ficará cm R$ 6,00 a mais d que Amélia. Se Amélia perder a metade d que tem, ficará

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB.

CIRCUITO SÉRIE/PARALELO Prof. Antonio Sergio-D.E.E-CEAR-UFPB. CIRCUITO SÉRIE/PARALELO Prf. Antni Sergi-D.E.E-CEAR-UFPB. Os circuit reativs sã classificads, assim cm s resistivs, em a) Circuits série. b) Circuits paralel c) Circuit série-paralel. Em qualquer cas acima,

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questã 1 Numa cidade d interir d estad de Sã Paul, uma prévia eleitral entre.000 filiads revelu as seguintes infrmações a respeit de três candidats A, B, ec, d Partid da Esperança (PE), que cncrrem a 3

Leia mais

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34.

BRDE AOCP 2012. 01. Complete o elemento faltante, considerando a sequência a seguir: 1 2 4 8? 32 64 (A) 26 (B) 12 (C) 20 (D) 16 (E) 34. BRDE AOCP 01 01. Cmplete element faltante, cnsiderand a sequência a seguir: (A) 6 (B) 1 (C) 0 (D) 16 (E) 4 Resluçã: 1 4 8? 64 Observe que, td númer subsequente é dbr d númer anterir: 1 4 8 16 4 8 16 64...

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que

( ) ( ) ( ) 23 ( ) Se A, B, C forem conjuntos tais que Se A, B, C forem conjuntos tais que ( B) =, n( B A) n A =, nc ( A) =, ( C) = 6 e n( A B C) 4 n B =, então n( A ), n( A C), n( A B C) nesta ordem, a) formam uma progressão aritmética de razão 6. b) formam

Leia mais

MAT 11A AULA ,7x + 0,2(0,3x) = ,7x + 0,06x = ,76x = x = R$ 5 000, , = 69,75 30.

MAT 11A AULA ,7x + 0,2(0,3x) = ,7x + 0,06x = ,76x = x = R$ 5 000, , = 69,75 30. MAT 11A AULA 0 0.01 0,7x + 0,(0,x) = 800 0,7x + 0,06x = 800 0,76x = 800 x = 5 000 R$ 5 000,00 0.0 0,5 79 = 69,75 0.0 (V) Nv preç = (1 0,11)x Nv preç = 0,89x (F) Nv preç = (1 + 0,5)x Nv preç = 1,5x (F)

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Matemática. Resoluções. Aula 07. Apostila especial de exercícios. Extensivo Terceirão Matemática 3A

Matemática. Resoluções. Aula 07. Apostila especial de exercícios. Extensivo Terceirão Matemática 3A ula 7 pstila especial de eercícis Resluções Matemática 7.. a Se f ( ), entã: f( ) f( ) f ( ) f() Prtant, s vértices d triângul, que gráfic da funçã f ( ) frma cm s eis crdenads, sã s pnts (, ), (, ) e

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0

A 1. Na figura abaixo, a reta r tem equação y = 2 2 x + 1 no plano cartesiano Oxy. Além disso, os pontos B 0. estão na reta r, sendo B 0 MATEMÁTICA FUVEST Na figura abaixo, a reta r tem equação y = x + no plano cartesiano Oxy. Além disso, os pontos B 0, B, B, B 3 estão na reta r, sendo B 0 = (0,). Os pontos A 0, A, A, A 3 estão no eixo

Leia mais

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS

INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS 1 INTRODUÇÃO E A PRIMEIRA LISTA DE EXERCÍCIOS INTRODUÇÃO Os livrs de cálcul cstumam cnter um capítul u um apêndice dedicad a eplicações de fats básics da matemática e que, em geral, sã abrdads n Ensin

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa B Questã 1 Uma pesquisa de mercad sbre determinad eletrdméstic mstru que 7% ds entrevistads preferem a marca X, 40% preferem a marca Y, 0% preferem a marca Z, 5% preferem X e Y, 8% preferem Y e Z, % preferem

Leia mais

j^qbjžqf`^=^mif`^a^=

j^qbjžqf`^=^mif`^a^= j^qbjžqf`^^mif`^a^ N Walter tinha dinheir na pupança e distribuiu uma parte as três filhs A mais velh deu / d que tinha na pupança D que sbru, deu /4 a filh d mei A mais nv deu / d que restu ^ Que prcentagem

Leia mais

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim

Deseja-se mostrar que, se o Método de Newton-Raphson converge, esta convergência se dá para a raiz (zero da função). lim Estud da Cnvergência d Métd de Newtn-Raphsn Deseja-se mstrar que, se Métd de Newtn-Raphsn cnverge, esta cnvergência se dá para a raiz (zer da unçã. Hipótese: A raiz α é única n interval [a,b]. Deine-se

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial

Prova Escrita de MATEMÁTICA A - 12o Ano Época especial Prova Escrita de MATEMÁTICA A - o Ano 07 - Época especial Proposta de resolução GRUPO I. Como o número a formar deve ser maior que 0 000, então para o algarismo das dezenas de milhar existem apenas 3 escolhas

Leia mais

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda

Trigonometria I. Mais Linhas Trigonométricas. 2 ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas ano E.M. Professores Cleber Assis e Tiago Miranda Trigonometria I Mais Linhas Trigonométricas 1 Exercícios Introdutórios Exercício 1. Quais são os quadrantes

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A. Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)

Leia mais

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade

1.1. Expressão geral de arcos com uma mesma extremidade Expressão geral de arcos com uma mesma extremidade UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1.1. Expressão geral de arcos

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Questão 1 Questão 2. Resposta. Resposta

Questão 1 Questão 2. Resposta. Resposta Questão 1 Questão Um jogo consiste num dispositivo eletrônico na forma de um círculo dividido em 10 setores iguais numerados, como mostra a figura. A figura mostra um sistema rotativo de irrigação sobre

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas

Capítulo 6 - Medidores de Grandezas Elétricas Periódicas Capítul 6 - Medidres de Grandezas Elétricas Periódicas 6. Intrduçã Neste capítul será estudad princípi de funcinament ds instruments utilizads para medir grandezas (tensões e crrentes) periódicas. Em circuits

Leia mais

Aula 03 Sinais singulares

Aula 03 Sinais singulares Ala 03 Sinais singlares Intrdçã as Sinais Singlares Os sinais singlares, também chamads sinais de excitaçã frmam ma família [n], 1 [n], 2 [n],..., n cas discret;, (t), 1 (t), 2 (t),..., n cas cntín; Eles

Leia mais

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0.

MÓDULO 45 TRIGONOMETRIA II. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. 1. Considere a equação. (3 2 cos 2 x) 1 + tg 2. 6 tg = 0. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Considere a equação TRIGONOMETRIA II ( cos ) + tg MÓDULO 5 tg = 0. a) Determine todas as soluções no intervalo [0, [. b) Para as soluções

Leia mais

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries)

III Olimpíada de Matemática do Grande ABC Primeira Fase Nível 1 (5ª ou 6ª Séries) III Olimpíada de Matemática d Grande ABC Primeira Fase Nível 1 (5ª u ª Séries) 1. Jã ganha uma mesada, que crrespnde a dis terçs da mesada d seu irmã. Cm a mesada de seu irmã é pssível cmprar 5 srvetes

Leia mais

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.

CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos. CÁLCULO I Prf. Marcs Diniz Prf. André Almeida Prf. Edilsn Neri Júnir Prf. Emersn Veiga Prf. Tiag Celh Aula n 02: Funções. Objetivs da Aula Denir funçã e cnhecer s seus elements; Recnhecer grác de uma funçã;

Leia mais

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo.

Tema: Estudo do Comportamento de Funções usando Cálculo Diferencial. Seja definida em um intervalo e sejam e pontos deste intervalo. Tema: Estud d Cmprtament de Funções usand Cálcul Diferencial Funções Crescentes, Decrescentes e Cnstantes Seja definida em um interval e sejam e pnts deste interval Entã: é crescente n interval se para

Leia mais

Exame 1/Teste 2. ε 1 ε o

Exame 1/Teste 2. ε 1 ε o Grup I Exame 1/Teste 1 - Um anel circular de rai c m está unifrmemente eletrizad cm uma carga ttal Q 10 n C Qual é trabalh τ que uma frça exterir realiza para transprtar uma carga pntual q n C, d infinit

Leia mais

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M.

Módulo de Círculo Trigonométrico. Relação Fundamental da Trigonometria. 1 a série E.M. Módulo de Círculo Trigonométrico Relação Fundamental da Trigonometria a série EM Círculo Trigonométrico Relação Fundamental da Trigonometria Exercícios Introdutórios Exercício Se sen x /, determine Exercício

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A

EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A EXTENSIVO APOSTILA 04 EXERCÍCIOS DE SALA MATEMÁTICA A AULA 10 f(x) = x 4x f(x) > 0 x < 0 ou x > 4 f(x) < 0 0 < x < 4 0) x + 3x < 0 S: {x IR / x < 1 ou x > } 03) x 10x + 9 0 S: {x IR / x 1 ou x 9} 04) São

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência.

1. Arcos de mais de uma volta. Vamos generalizar o conceito de arco, admitindo que este possa dar mais de uma volta completa na circunferência. UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria II Prof.: Rogério

Leia mais

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes

4 Extensão do modelo de Misme e Fimbel para a determinação da distribuição cumulativa da atenuação diferencial entre dois enlaces convergentes 4 Extensã d mdel de Misme e Fimbel ra a determinaçã da distribuiçã cumulativa da atenuaçã diferencial entre dis enlaces cnvergentes 4.. Distribuiçã cumulativa cnjunta das atenuações ns dis enlaces cnvergentes

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução

MATEMÁTICA A - 12o Ano N o s Complexos - Equações e problemas Propostas de resolução MATEMÁTICA A - 1o Ano N o s Complexos - Equações e problemas Propostas de resolução Exercícios de exames e testes intermédios 1. Simplificando as expressões de z 1 e z, temos que: Como i 19 i + i i, vem

Leia mais

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se

Como Z constitui-se claramente a hipotenusa de um triângulo retângulo, tem-se UNIVERSIDADE FEDERAL DA PARAIBA CENTRO DE TENOLOGIA DEPARTAMENTO DE TECNLOGIA MECÂNICA PROF. ANTONIO SERGIO NUMEROS COMPLEXOS Os númers cmplexs representam uma imprtante ferramenta em matemática. Um númer

Leia mais

PROFMAT AV2 MA

PROFMAT AV2 MA PROFMAT AV MA 11 011 Questão 1. Calcule as seguintes epressões: [ ] (1,0) (a) log n log n (1,0) (b) log a/ log, onde a > 0, > 0 e a base dos logaritmos é fiada arbitrariamente. (a) Como = n 1/n 3, temos

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 11 O ANO DE ESCOLARIDADE Duração: 90 minutos Data: CADERNO I (60 minutos com calculadora) 1 Em R, a equação ( π) cos x = π : (A) admite a solução x = π ; (B)

Leia mais