Análise da Variância (ANOVA)
|
|
|
- Estela Aquino Festas
- 7 Há anos
- Visualizações:
Transcrição
1 Análise da Variância (ANOVA) A Análise da Variância (ANalysis Of VAriance) é procedimento para testar a hipótese de que três ou mais médias populacionais são iguais de modo que: H 0 : µ 1 = µ = µ 3 H 1 : pelo menos uma das médias é diferente das outras. O teste é feito com base na análise das variâncias amostrais. Utiliza-se a distribuição F.
2 ANOVA de um fator Um tratamento (ou fator) é uma propriedade, ou característica, que nos permite distinguir as diferentes populações umas das outras. Estatística teste: F teste = variância entre amostras variância dentro das amostras
3 ANOVA de um fator Cálculos com tamanhos amostrais iguais F = teste n s s p s s p é a variância das médias amostrais é a média das variâncias amostrais Graus de liberdade: Numerador: gl 1 = k -1 Denominador: gl = k (n -1) k = número de amostras n = tamanho amostral
4 F ANOVA de um fator Cálculos com tamanhos amostrais diferentes teste i = k = 1 k n i= 1 k i= 1 i ( ) ( n 1) i i k 1 ( ) n 1 i s i Componentes-chave: é a média de todos os valores amostrais combinados Grau de Liberdade Numerador: gl 1 = k -1 Denominador: gl = N - k N = n i SQ(tratamento) Soma de quadrados SQ(erro) Representa a variação MQ(...) = SQ(...)/número: Média Quadrática
5 ANOVA de um fator Eemplo com tamanhos amostrais diferentes Níveis de álcool no sangue após o consumo de cinco doses da bebida. Grupos de homens A B C 0,11 0,08 0,04 0,10 0,09 0,04 0,09 0,07 0,05 0,09 0,07 0,05 0,10 0,06 0,06 0,04 0,05 Os integrantes do grupo A foram testados uma hora depois; do grupo B, duas horas depois e do grupo C quatro horas depois n i i s i N k
6 ANOVA de dois fatores Cálculos individuais em categorias de acordo com dois fatores. Em outras palavras: os valores amostrais são categorizados de duas maneiras. E. Na corrida de NY: Fatores: idade e seo. Seo Masculino Feminino Tempo (s) para corredores da Maratona NY Idade ou mais
7 ANOVA de dois fatores Cálculos individuais em categorias de acordo com dois fatores. Em outras palavras, os valores amostrais são categorizados de duas maneiras. E. Na corrida de NY: Fatores: idade e seo. Subcategorias (células), neste caso seis células Seo Masculino Feminino Tempo (s) para corredores da Maratona NY Idade ou mais
8 Procedimento para o cálculo: ANOVA de dois fatores Passo 1. Efeito da interação: Teste H 0, de que não há interação entre os dois fatores. Um procedimento é o gráfico de interação de médias de células. Verifique a estatística teste Tempo Médio (s) Milhares Idade Masculino Feminino F =MQ(interação) MQ(Erro) Se rejeitar H 0, para por aqui.
9 ANOVA de dois fatores =. j. L C n i= 1 j= 1 k = 1 = L LCn n i= 1 k = 1 Ln ijk ijk Média global n = número de repetições em uma célula i.. = C n j= 1 k = 1 Cn ijk Média do fator j (fatores em colunas) Média do fator i (fatores em linhas) ij. = n k =1 n ijk Média da célula i,j
10 Variação Total Variação Fator B ANOVA de dois fatores SQ( Total) = L C n ( ) ijk i= 1 j= 1 k = 1 Variação Fator A C SQ( C) = Ln Variação Decorrente da Interação SQ j= 1 ( ). j. L SQ( L) = Cn i= 1 ( ) i L C ( ) ( Interação) = n ij. i... j. + i= 1 j= 1 ( ) Erro SQ( Erro) = ijk ij. L C n i= 1 j= 1 k= 1..
11 Anova: fator duplo com repetição RESUMO ou mais Total Masculino ANOVA de dois fatores Contagem Soma Média 1397,4 1644, 1677, ,1 Variância , , , ,8 Feminino Contagem Soma Média 14678,4 1619,4 0456, Variância 76103, , , ,6 Seo Masculino Feminino Tempo (s) para corredores da Maratona NY Idade ou mais Total Contagem Soma Média 1430,9 1631, Variância 54370, , ,1 MQ(seo) MQ(idade) MQ(interação) MQ(erro) ANOVA Fonte da variação SQ gl MQ F valor-p F crítico Amostra , ,6 1,69 0,1 4,6 Colunas , ,4 5,10 0,01 3,40 Interações , ,4 1,17 0,33 3,40 Dentro , ,3 Total ,4 9 Ecel: Ferramenta > Análise de dados > ANOVA Fator Duplo com repetição
12 ANOVA de dois fatores Procedimento para o cálculo (continuação) Passo. Efeitos de Linha/Coluna Linha: Teste H 0, Não há qualquer efeito do fator linha (As médias das linhas são iguais) F = MQ(seo) / MQ(erro) ANOVA Fonte da variação SQ gl MQ F valor-p F crítico Seo Amostra , ,6 1,69 0,1 4,6 Idade Colunas , ,4 5,10 0,01 3,40 Interação Interações , ,4 1,17 0,33 3,40 Erro Dentro , ,3 Total ,4 9
13 ANOVA de dois fatores Procedimento para o cálculo (continuação) Passo. Efeitos de Linha/Coluna Linha: Teste H 0, Não há qualquer efeito do fator coluna (As médias das colunas são iguais) F = MQ(idade) / MQ(erro) ANOVA Fonte da variação SQ gl MQ F valor-p F crítico Seo Amostra , ,6 1,69 0,1 4,6 Idade Colunas , ,4 5,10 0,01 3,40 Interação Interações , ,4 1,17 0,33 3,40 Erro Dentro , ,3 Total ,4 9
14 Conclusão do eemplo: ANOVA de dois fatores Com base nos dados amostrais, concluímos que os tempos parecem ter médias desiguais para diferentes categorias de idade, mas os tempos parecem ter médias iguais para ambos os seos.
Análise da Variância (ANOVA)
Análise da Variância (ANOVA) ANOVA Análise da Variância (ANOVA) é um método para testar a igualdade de três ou mais médias populacionais, baseado na análise das variâncias amostrais Os dados amostrais
AULA 19 Análise de Variância
1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Modelos explicativos estatísticos Modelos estatísticos visam descrever
ANÁLISE DE VARIÂNCIA - ANOVA. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM
ANÁLISE DE VARIÂNCIA - ANOVA Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM UM EXEMPLO DE APLICAÇÃO Digamos que temos 6 métodos de ensino aplicados a 30 crianças
Delineamento e Análise Experimental Aula 3
Aula 3 Castro Soares de Oliveira Teste de hipótese Teste de hipótese é uma metodologia estatística que permite tomar decisões sobre uma ou mais populações baseando-se no conhecimento de informações da
Capítulo 11 Análise da Variância. Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1
Capítulo 11 Análise da Variância Statistics for Managers Using Microsoft Excel, 5e 2008 Prentice-Hall, Inc. Chap 11-1 Objetivos do Aprendizado Neste capítulo você aprenderá: Os conceitos básicos da modelagem
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente
Cap. 9 Comparação entre tratamentos
Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 9 Comparação entre tratamentos APOIO: Fundação de Apoio
Esquema Fatorial. Lucas Santana da Cunha Universidade Estadual de Londrina
Esquema Fatorial Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de junho de 2016 Muitos experimentos envolvem o estudo dos efeitos
Delineamento e Análise Experimental Aula 7. Anderson Castro Soares de Oliveira
Aula 7 Castro Soares de Oliveira Experimentos Fatoriais Nos experimentos mais simples comparamos tratamentos de apenas um tipo ou fator. Em algumas situações existem vários fatores envolvidos em um experimento,
Probabilidade e Estatística
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Introdução A análise de variância (Anova) é utilizada para comparar médias de três ou mais populações.
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL ESTUDO DE VARIABILIDADE DOS DADOS EXPERIMENTAIS Prof. Miguel Toledo del Pino, Eng. Agrícola (Dr.) INTRODUÇÃO Realizamos experimentos para compararmos os efeitos de tratamentos
Princípios de Bioestatística
Princípios de Bioestatística Análise de Variância Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 25 Introdução Existem muitas
Teste de hipótese de variância e Análise de Variância (ANOVA)
Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente
Análise de variância (ANOVA)
Análise de variância (ANOVA) Universidade Estadual de Santa Cruz Ivan Bezerra Allaman CRONOGRAMA 1. História 2. Concepção da ideia 3. Formalização da ideia e o surgimento da distribuição F 4. Hipóteses
ANÁLISE DE VARIÂNCIA. y j = µ + τ i + e i j = µ i + e i j
SUMÁRIO 1 Análise de Variância 1 1.1 O Teste F...................................... 1.2 Verificando as pressuposições do modelo..................... 5 1.2.1 Verificação de Normalidade.........................
Delineamento e Análise Experimental Aula 5
Aula 5 Castro Soares de Oliveira Delineamentos Experimentais Delineamento experimental ou desenhos experimentais é o plano utilizado para realizar o experimento. Esse plano implica na maneira como os diferentes
Inferência para várias populações normais análise de variância (ANOVA)
Inferência para várias populações normais análise de variância (ANOVA) Capítulo 15, Estatística Básica (Bussab&Morettin, 8a Edição) 9a AULA 11/05/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues
BIOESTATÍSTICA. Parte 5 Testes de Hipóteses
BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC)
ANÁLISE DE VARIÂNCIA DE UM CRITÉRIO (DIC) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 11 de dezembro de 2017 Uma análise de variância expressa uma medida
Delineamento em Quadrado Latino (DQL)
Delineamento em Quadrado Latino () Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Na Seção anterior introduziu-se o delineamento em blocos ao acaso como um delineamento
Roteiro de Aula Delineamentos Fatoriais 05/06/2018
Roteiro de Aula Delineamentos Fatoriais 05/06/2018 Hipóteses: As seguintes hipóteses podem ser testadas nos experimentos fatoriais 2x2: Fator A: { [ ] Fator B: { [ ] Interação A x B: { ( ) [ ] [ ] ( )
BAC011 - ESTATÍSTICA ANÁLISE DE VARIÂNCIA. Análise de Variância ANOVA. Prof. Dr. Emerson José de Paiva
BAC011 - ESTATÍSTICA Análise de Variância ANÁLISE DE VARIÂNCIA 1 A é utilizada para se verificar a influência de certos fatores sobre uma resposta de interesse. Testa-se como os diversos fatores exercem
PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA Parte II
PROBABILIDADE E ESTATÍSTICA INFERÊNCIA ESTATÍSTICA Parte II Prof.ª Sheila Regina Oro Projeto Recursos Educacionais Digitais Autores: Bruno Baierle e Maurício Furigo TESTE PARA UMA PROPORÇÃO H0: p = p 0
Testes de Hipóteses sobre a média: Várias Amostras
Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)
TESTES DE NORMALIDADE E SIGNIFICÂNCIA. Profª. Sheila Regina Oro
TESTES DE NORMALIDADE E SIGNIFICÂNCIA Profª. Sheila Regina Oro A suposição de normalidade dos dados amostrais ou experimentais é uma condição exigida para a realização de muitas inferências válidas a respeito
Planejamento de Experimentos
Planejamento de Experimentos Analise de Variância (ANOVA) com um Fator Planejamento de Experimentos Muitas vezes é necessário obter informações sobre produtos e processos empiricamente. Trabalho assemelha-se
Delineamento e Análise Experimental Aula 4
Aula 4 Castro Soares de Oliveira ANOVA Significativa Quando a aplicação da análise de variância conduz à rejeição da hipótese nula, temos evidência de que existem diferenças entre as médias populacionais.
Bioexperimentação. Prof. Dr. Iron Macêdo Dantas
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
TESTES DE HIPÓTESES ADICIONAIS
TESTES DE HIPÓTESES ADICIONAIS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 30 de outubro de 2017 Foi visto que para a realização do teste t para a diferença
MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS
MINISTE RIO DA EDUCAÇA O UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIE NCIAS EXATAS Programa de Pós-Graduação em Estatística e Experimentação Agropecuária Prova do Processo Seletivo para o Doutorado
Tópicos Extras 1ª parte. Testes Não Paramétricos, Análise Multivariada, Outras Técnicas
Tópicos Extras 1ª parte Testes Não Paramétricos, Análise Multivariada, Outras Técnicas 1 2 Técnicas de dependência 3 4 Situações Comparar 3 tipos de rede de computadores, C1, C2 e C3, em termos do tempo
SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB
DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores
EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Muitas vezes, embora se tenha cuidado no planejamento e Ao planejar um experimento, o pesquisador
DELINEAMENTO EM QUADRADO LATINO (DQL)
DQL DELINEAMENTO EM QUADRADO LATINO (DQL) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 08 de julho de 2017 DQL Na Seção anterior
SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB
Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO
Esquema Fatorial. Esquema Fatorial. Lucas Santana da Cunha 06 de outubro de 2018 Londrina
Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 06 de outubro de 2018 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos mais simples comparamos
Análise Multivariada Aplicada à Contabilidade
Mestrado e Doutorado em Controladoria e Contabilidade Análise Multivariada Aplicada à Contabilidade Prof. Dr. Marcelo Botelho da Costa Moraes www.marcelobotelho.com [email protected] Turma: 2º / 2016 1 Agenda
ESTATÍSTICA EXPERIMENTAL
ESTATÍSTICA EXPERIMENTAL DQL Delineamento em Quadrado Latino Prof. Miguel Toledo del Pino, Dr. INTRODUÇÃO [1] Além dos princípios da casualização e repetição, é utilizado duas vezes o princípio de controle
Experimentos em parcelas subdivididas e procedimentos para a aplicação dos testes de comparação de médias
MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE UNIDADE ACADÊMICA DE CIÊNCIAS AGRÁRIAS DISCIPLINA: ESTATÍSTICA EXPERIMENTAL Experimentos em parcelas subdivididas e procedimentos para a aplicação
ESQUEMA FATORIAL. Lucas Santana da Cunha Universidade Estadual de Londrina Departamento de Estatística
ESQUEMA FATORIAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 22 de julho de 2017 Esquema Fatorial Nos experimentos mais simples
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Regressão Polinomial e Análise da Variância Piracicaba Setembro 2014 Estatística Experimental 18 de Setembro de 2014 1 / 20 Vimos
Experimentos em Parcelas Subdivididas
Experimentos em Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 08 de novembro de 2018 Londrina Tal como no caso de fatorial, o termo parcelas subdivididas não se refere a um tipo de delineamento
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] Introdução o Os ensaios em quadrados latinos levam em conta o controle local, aplicado em dois destinos:
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt
ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt [email protected] Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador
Experimentos Fatoriais
Experimentos Fatoriais Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha 14 de março de 2019 Londrina Nos experimentos mais simples comparamos níveis (tratamentos) de apenas um fator; Nos experimentos
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 22 de outubro de 2018 Londrina 1 / 24 Obtenção de uma amostra Princípios básicos da experimentação Há basicamente duas
(a) Teste e IC para Duas Variâncias. (b) Teste para médias. Duas Amostras de Teste T e IC
Exercício 1 Contexto: amostras independentes de populações normais (a) Teste e IC para Duas Variâncias Método Hipótese nula Variância(Primeiro) / Variância(Segundo) = 1 Hipótese alternativa Variância(Primeiro)
Análise de Variância com mais de duas variáveis independentes (mais de dois fatores) Na aula do dia 17 de outubro (aula #08) introduzimos
Análise de Variância com mais de duas variáveis independentes (mais de dois fatores) Na aula do dia 17 de outubro (aula #08) introduzimos a técnica de Análise de variância (ANOVA) a um fator, que resulta
ANÁLISE DE VARIÂNCIA DE DOIS CRITÉRIOS (DBC)
ANÁLISE DE VARIÂNCIA DE DOIS CRITÉRIOS (DBC) Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 13 de dezembro de 2017 ANAVA dois critérios A análise de variância
DELINEAMENTO FATORIAL. Profª. Sheila Regina Oro
DELINEAMENTO FATORIAL Profª. Sheila Regina Oro Existem casos em que vários fatores devem ser estudados simultaneamente para que possam nos conduzir a resultados de interesse. Experimentos fatoriais: são
Planejamento de Experimentos. 13. Experimentos com fatores aleatórios
Planejamento de Experimentos 13. Experimentos com fatores aleatórios Até aqui assumimos que os fatores nos experimentos eram fixos, isto é, os níveis dos fatores utilizados eram níveis específicos de interesse.
UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS GABARITO
UNIVERSIDADE FEDERAL DE LAVRAS DEPATAMENTO DE CIÊNCIAS EXATAS Programa de Pós-Graduação em Estatística e Experimentação Agropecuária Prova do Processo Seletivo para Mestrado 16- GABARITO N o de inscrição
3- Projetos Fatoriais
3- Projetos Fatoriais Exemplo do que se faz na indústria: Uma empresa estava interessada em aumentar o teor de pureza de uma substância química. Os dois fatores mais importantes que influenciavam o teor
Métodos Estatísticos Avançados em Epidemiologia
1 / 44 Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Referência: Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 2 / 44
5.3 Experimentos fatoriais a dois fatores. Ambos os fatores são supostos fixos e os efeitos de tratamento são definidos como desvios da média tal que
5. Experimentos Fatoriais 5.3 Experimentos fatoriais a dois fatores. Modelo de Efeitos Y ijk = µ+τ i +β j +(τβ) ij +ɛ ijk, i = 1, 2,..., a j = 1, 2,..., b k = 1, 2,..., n Ambos os fatores são supostos
4. PLANEAMENTO EXPERIMENTAL
4. PLANEAMENTO EXPERIMENTAL 4.. Razões para o planeamento de experiências Realizam-se experiências em quase todas as áreas do conhecimento, usualmente para descobrir algo acerca de determinado processo
EXPERIMENTAÇÃO AGRÍCOLA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO AGRÍCOLA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população, com
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] TESTES PARA COMPARAÇÃO DE MÉDIAS O teste F permite tirar conclusões muito gerais relacionadas com os
ANOVA - parte I Conceitos Básicos
ANOVA - parte I Conceitos Básicos Erica Castilho Rodrigues 9 de Agosto de 2011 Referências: Noções de Probabilidade e Estatística - Pedroso e Lima (Capítulo 11). Textos avulsos. Introdução 3 Introdução
Estudo sobre a aplicação da Análise de Variância. Augusto Sousa da Silva Filho 1
Estudo sobre a aplicação da Análise de Variância Augusto Sousa da Silva Filho 1 Resumo: A análise de variância é um teste estatístico amplamente difundido entre os analistas, e visa fundamentalmente verificar
Aula 13 Análise de Variância (ANOVA)
Aula 13 Análise de Variância (ANOVA) 1 Exemplo: Com o objetivo de avaliar o efeito no ganho de peso da utilização do farelo bruto na alimentação de frangos da linhagem Ross com um dia de idade, foi realizado
Lucas Santana da Cunha de outubro de 2018 Londrina
e Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 17 de outubro de 2018 Londrina 1 / 31 Obtenção de uma amostra Há basicamente duas formas de se obter dados para uma pesquisa
DIC com número diferente de repetições por tratamento
DIC com número diferente de repetições por tratamento Introdução Muitas vezes, embora se tenha cuidado no planejamento e Ao planejar um experimento, o pesquisador deve utilizar na execução do experimento,
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel
MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semana Conteúdo 1 Apresentação da disciplina. Princípios de modelos lineares
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
b) 5 6 d) 1 6 e) 7 6
CONHECIMENTOS ESPECÍFICOS 21. Em estatística, duas medidas são de grande importância na análise de dados, medidas de tendência central e de dispersão. Dentre as medidas indicadas abaixo, são, respectivamente,
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS
EXPERIMENTOS EM PARCELAS SUBDIVIDIDAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha Universidade Estadual de Londrina Departamento de Estatística 29 de julho de 2017 Parcelas Subdivididas Tal
Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese
Teste de Hipótese Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral 2 Fundamentos do teste de hipótese z 3 Teste de uma afirmativa sobre uma Proporção z 4 Teste de uma afirmativa
Éder David Borges da Silva Renato Gonçalves de Oliveira
Éder David Borges da Silva Renato Gonçalves de Oliveira Página do curso: http://www.leg.ufpr.br/ragronomia Vamos a um exemplo... Um experimento foi realizado para avaliar de que forma se distribuía uma
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Delineamento Casualizado em Blocos
Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Delineamento Casualizado em Blocos Estatística Experimental 5 de Outubro de 2016 1 / 20 DBC: Introdução Parcelas similares Delineamento
(a) 0,90 (b) 0,67 (c) 1,0 (d) 0,005
359$'((67$7Ë67,&$6(/(d 0(675$'80*,QVWUXo}HVSDUDDSURYD D&DGDTXHVWmRUHVSRQGLGDFRUUHWDPHQWHYDOHSRQWR E4XHVW}HV GHL[DGDV HP EUDQFR YDOHP ]HUR SRQWRV QHVVH FDVR PDUTXH WRGDV DV DOWHUQDWLYDV F &DGDTXHVWmRUHVSRQGLGDLQFRUUHWDPHQWHYDOHSRQWR
Métodos Estatísticos Avançados em Epidemiologia
Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem
DELINEAMENTO EM BLOCOS AO ACASO
DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.
Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II
UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra
DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)
1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância
EXPERIMENTAÇÃO ZOOTÉCNICA. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari
EXPERIMENTAÇÃO ZOOTÉCNICA Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari [email protected] INTRODUÇÃO Um dos principais objetivos da estatística é a tomada de decisões a respeito da população,
EXPERIMENTAÇÃO AGRÍCOLA
EXPERIMENTAÇÃO AGRÍCOLA DELINEAMENTO INTEIRAMENTE CASUALIZADO (DIC) Eng. Agrônomo: Francisco Bruno Ferreira de Sousa [email protected]/ [email protected] Contato: (99) 99199460 Objetivos: Estudar
Última Lista de Exercícios
Última Lista de Exercícios 1. Para comparar o peso de um componente fornecido por 4 diferentes fornecedores, uma amostra de cada fornecedor foi colhida e analisada. Os dados colhidos estão ao lado. Ao
Estatística de Teste: Decisão: p α Rejeita-se H 0. Hipóteses: Ǝ i,j σ 1 σ 2 i,j=1,,k. Estatística de Teste: Decisão: p >α Não se rejeita H 0
Normalidade: H 0: Y i~n(µ i, σ i) H 1: Y i N(µ i, σ i) (i=1,,k) Estatística de Teste: (p=valor p-value) Se n < 50 Teste Shapiro-Wild Se n > 50 Teste Kolmogorov-Smirnov Homogeneidade p α Rejeita-se H 0
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste
Modelos de Regressão Linear Simples - Erro Puro e Falta de Ajuste Erica Castilho Rodrigues 2 de Setembro de 2014 Erro Puro 3 Existem dois motivos pelos quais os pontos observados podem não cair na reta
MAE0229 Introdução à Probabilidade e Estatística II
Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores
Teste Qui-quadrado. Dr. Stenio Fernando Pimentel Duarte
Dr. Stenio Fernando Pimentel Duarte Exemplo Distribuição de 300 pessoas, classificadas segundo o sexo e o tabagismo Tabagismo Fumante (%) Não Fumante (%) Masculino 92 (46,0) 108 (54,0) Sexo Feminino 38
EXPERIMENTOS COM INTERAÇÕES
EXPERIMENTOS COM INTERAÇÕES Na maioria dos experimentos, os tratamentos são de efeitos fixos. Mas também são realizados experimentos em que os efeitos dos tratamentos são aleatórios. 1 Para saber se, em
Prof. Lorí Viali, Dr.
Prof. Lorí Viali, Dr. [email protected] http://www.ufrgs.br/~viali/ Dependentes Teste t para amostras emparelhadas Variâncias Teste z Conhecidas Independentes Variâncias Desconhecidas Supostas iguais
COMPARAÇÕES MÚLTIPLAS
ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ COMPARAÇÕES MÚLTIPLAS Josiane Rodrigues Lilian Emerick Fernandes 2009 INTRODUÇÃO Comparação entre médias de tratamentos ou dos níveis de um fator de tratamentos;
