Plano de Trabalho 2 Estudo de Funções
|
|
|
- Aurora Back Farinha
- 7 Há anos
- Visualizações:
Transcrição
1 Formação Continuada em MATEMÁTICA Fundação CECIERJ/ Consórcio CEDERJ Matemática 1ª série do Ensino Médio 1º Bimestre/2013 Plano de Trabalho 2 Estudo de Funções (Disponível em: Cursista:Emília do Carmo Elias Gomes Sobreira Tutora: Lezieti Cubeiro da Costa 1
2 SUMÁRIO INTRODUÇÃO...03 DESENVOLVIMENTO...04 AVALIAÇÃO...12 REFERÊNCIA BIBLIOGRÁFICA
3 INTRODUÇÃO A introdução ao Estudo de Funções será introduzidas com o auxílio do Roteiro de Ação 1, onde os alunos analisaram seu o IMC (Índice de Massa Corporal) e a partir disso haverá a análise de informações e subseqüente construção gráfica. Espera-se que o aluno adquira a capacidade de resolver problemas significativos e obtenha uma melhor percepção de gráficos para analisar as situações ali expostas. Serão utilizados também recortes de jornais e revistas onde haja gráficos para que possam ser analisados e a utilização do site do IBGE para que possam encontrar informações sobre a região em que vivem. As atividades aplicadas no decorrer das aulas serão as existentes em livros didáticos e no banco de questões do Saerj/Saerjinho. 3
4 DESENVOLVIMENTO Habilidade relacionada: Compreender o conceito de função através de dependência entre variáveis; identificar a expressão algébrica que expressa uma regularidade ou padrão; representar pares ordenados no plano cartesiano; construir gráficos de funções utilizando tabelas de pares ordenados; analisar gráficos de funções. Tempo de duração: Para a aula de Estudo de Funções, serão necessárias 12 h/a (duas semanas), subdivididas da seguinte forma: 1. 3h/a aplicação do Roteiro de Ação 1 e atividades 2. 3h/a análise de gráficos em jornais e atividades 3. 3h/a noção, definição e notação de função e atividades 4. 3h/a domínio, contradomínio e conjunto imagem, além da aplicação de atividades. Recursos educacionais utilizados: Livros didáticos, Roteiros de Ação 1 (Formação Continuada), datashow. Organização da turma: Individual. Objetivos: Que o aluno adquira a capacidade de análise gráfica, compreenda o conceito de função e represente pares ordenados no plano cartesiano. Metodologia: 1ª Parte 3h/a Estudo de Funções: Com o auxílio do Roteiro de Ação 1: Índice de Massa Corporal, do projeto Formação Continuada (Seeduc), será apresentada a seguinte situação introdutória ao tema em questão, com auxílio do data-show: Alexandre, Fernando, Julinho e Márcio são colegas de turma e costumam sair juntos da escola ao final das aulas. Passando pela frente de uma farmácia, onde havia uma balança digital, resolveram verificar quantos quilogramas cada 4
5 um tinha. Deixaram suas mochilas sobre o balcão da farmácia e subiram, um de cada vez, sobre a balança. Para Alexandre, a balança registrou 98,75 kg; Márcio teve a leitura de 74,28 kg, Julinho obteve o registro 72,35 kg e Fernando, 101,37 kg. a) Você diria que algum deles está acima do peso ideal? Qual deles (ou quais)? Por quê? Aqui será observada as impressões dos alunos já que eles ainda não conhecem a imagem de nenhum dos garotos e o que eles dirão da situação em questão. Bem, vamos conhecer melhor os meninos? Julinho, que desenha muito bem, fez uma apresentação estereotipada dos quatro, onde foram destacadas suas características físicas mais marcantes. Você é capaz de dar o nome de cada um dos meninos a partir das informações sobre seus pesos? Neste ponto, os alunos analisaram cada garoto, relacionando massa e altura de modo a tentar identificar cada um deles. Ainda não deu muito certo... Bem, mais alguns dados: Fernando tem 1,98 m de altura; Alexandre, 1,69 m; Julinho tem 1,62 m e Márcio, 1,74 m. E agora, nomeie os meninos na figura acima e reavalie a sua resposta ao item (a). 5
6 Em posse destas informações, os alunos serão capazes de identificar cada garoto com relação a sua altura, obtendo a seguinte relação: Concluída esta etapa, os alunos poderão afirmar quais garotos estão acima do peso ideal. Com isso será apresentada a fórmula de IMC, que relaciona a massa do indivíduo em relação a sua altura, para que se possa determinar com precisão o IMC de cada garoto: IMC = P/A² Fernando Alexandre Julinho Márcio IMC (Kg/m²) 25,8 34,5 27,5 24,5 Classificação Pré-Obeso Obeso I Pré-Obeso Normal A a partir destes dados, os alunos montaram um gráfico, com auxílio de papel quadriculado e em seguida cada um medirá seu próprio IMC, sendo montado posteriormente um gráfico para a turma toda. 2ª Parte 3h/a Após a aplicação do Roteiro de Ação 1, será proposto a análise de informações gráficas contidas em jornais e revistas. 6
7 Será aplicada uma série de atividades contextualizadas para observar o progresso dos alunos. ATIVIDADE PROPOSTA 1 Matriz de referencia Saerjinho Resolução: O aluno observará que o par ordenado (-4, -2) é o ponto P, onde x = -4 e y = -2. 3ª Parte 3h/a Noção, definição e notação de função Por meio da nomenclatura de conjuntos, podemos ter a noção de conjunto, para isso observe a tabela e o diagrama abaixo que relaciona dois conjuntos: 7
8 *Sabe-se que os conjuntos A e B estão relacionados de modo que em A estão alguns números inteiros e em B outros. A deve ser associado a B de modo que B seja o triplo de A A B -2* -1* 0* 1* 2* *-6 *-3 *0 *3 *6 Observação: 1. Todos os elementos de A tem correspondente em B 2. Cada elemento de A corresponde um único elemento em B 3. Logo, temos uma função de A em B, expressa pela fórmula: y = 3x Definição de função: Dados dois conjuntos não-vazios A e B, uma função de A em B é uma regra que diz como associar cada elemento a um único elemento. Notação: f: A B (DANTE; L. R.Matemática. 1ª edição. São Paulo: Ática, Volume único.p. 34) ATIVIDADE PROPOSTA 2 8
9 Considerando o diagrama abaixo, que representa uma função de A em B, podemos afirmar que f(-1) é igual a: a) 2 b) 3 c) 1 d) 4 Resolução: O aluno observará que sendo o elemento de A, x = -1, seu correspondente em B será y = 1. Opção correta (c). 4ª Parte 3h/a Domínio, Contradomínio e Conjunto Imagem A definição aqui introduzida será a que está presente no site: Dada a seguinte função f(x) = x + 1, e os conjuntos A(1, 2, 3, 4, 5) e B(1, 2, 3, 4, 5, 6, 7). Vamos construir o diagrama de flechas: 9
10 A B x f(x) Nessa situação, temos que: Domínio: representado por todos os elementos do conjunto A. (1, 2, 3, 4, 5) Contradomínio: representado por todos os elementos do conjunto B. (1, 2, 3, 4, 5, 6, 7) Imagem: representada pelos elementos do contradomínio (conjunto B) que possuem correspondência com o domínio (conjunto A). (2, 3, 4, 5, 6). Observações: Para que uma relação seja função é preciso obedecer a certos requisitos, são eles: Todo elemento do domínio deve ter uma, e só uma, representação no contradomínio, ou seja, o mesmo elemento não pode ter duas imagens; Não pode restar elementos no domínio sem imagem. EXEMPLO DE ATIVIDADE 3 Dado o esquema abaixo, representando uma função de "A" em "B", determine: 10
11 a) O Domínio b) A imagem c) O contradomínio d) f(5) e) f(12) Resolução: a) O domínio são os elementos de A, (5, 12, 23) b) A imagem são os elementos de B em relação a A, (7, 14, 25) c) O contradomínio são todos os elementos de B, ( 5, 7, 14, 15, 16, 25, 26) d) f(5) = 7 e) f(12) = 14 11
12 AVALIAÇÃO A avaliação do aluno ocorrerá durante o decorrer das aulas, observando se os conceitos foram assimilados de forma correta e se as atividades propostas foram desenvolvidas de forma satisfatória. Os critérios adotados para a verificação da aprendizagem foram baseados nos descritores do currículo mínimo: Compreender o conceito de função através de dependência entre variáveis; Iidentificar a expressão algébrica que expressa uma regularidade ou padrão; Representar pares ordenados no plano cartesiano; Construir gráficos de funções utilizando tabelas de pares ordenados; Analisar gráficos de funções. Estes itens serão abordados durante todo o plano de trabalho de modo a associá-lo com as habilidades constantes na matriz de referência do Saerjinho. Ao fim da aula, será aplicada uma atividade de verificação da aprendizagem, e caso haja alguma dificuldade por parte dos alunos, o tema será retomado a fim de que todas as dúvidas fiquem sanadas. 12
13 REFERÊNCIAS BIBLIOGRÁFICAS DANTE; L. R.Matemática. 1ª edição. São Paulo: Ática, Volume único. Domínio, contradomínio e imagem de uma função. Disponível em: < Acesso em 01/03/2013. Funções. Disponível em: < Acesso em 01/03/2013. Funções. Disponível em: Acesso em 01/03/2013. PAIVA; M. Matemática. 2ª edição. São Paulo: Moderna, Volume único. Roteiro de Ação 1. Formação Continuada. Seeduc
NÚMEROS E ÁLGEBRA FUNÇÕES
Professores: Josiane Caroline Protti Disciplina: Matemática Ano: 1º ano E Período: 1º Bimestre - Atividades com os alunos para - Atividades dos livros didáticos e - Correção das atividades na lousa e individual.
DEFINIÇÃO DE FUNÇÃO y = x²
DEFINIÇÃO DE FUNÇÃO Definimos função como a relação entre dois ou mais conjuntos, estabelecida por uma lei de formação, isto é, uma regra geral. Os elementos de um grupo devem ser relacionados com os elementos
OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é:
ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 04 13/03/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 25/03/2015 (4ª feira) Aluno:
Todos os exercícios sugeridos nesta apostila se referem ao volume 1.
CONCEITO DE FUNÇÃO... 2 IMAGEM DE UMA FUNÇÃO... 8 IMAGEM A PARTIR DE UM GRÁFICO... 12 DOMÍNIO DE UMA FUNÇÃO... 15 DETERMIAÇÃO DO DOMÍNIO... 15 DOMÍNIO A PARTIR DE UM GRÁFICO... 17 GRÁFICO DE UMA FUNÇÃO...
Plano de Trabalho Docente Ensino Médio
Plano de Trabalho Docente 2014 Ensino Médio Etec Etec: PAULINO BOTELHO Código: 091 Município: SÃO CARLOS Área de conhecimento: CIÊNCIAS DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS. Componente Curricular:
PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano
PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS
Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL
ANO DE ESCOLARIDADE: 8º ano (A e B matutino e A vespertino) DISCIPLINA: Matemática PROFESSOR: Francisco Monteiro OBJETIVO GERAL Resolver situações-problema, construindo estratégias e fazendo uso de diversas
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES
PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA
MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA I Nome: MATEMÁTICA I Curso: TÉCNICO EM INFORMÁTICA
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
Explorando a ideia de função
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Explorando
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO
AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo Aula 1 Professor: Carlos Sérgio. Revisão de Funções
Centro de Ciências e Tecnlogia Agroalimentar - Campus Pombal Disciplina: Cálculo - 01. Aula 1 Professor: Carlos Sérgio Revisão de Funções Sistema cartesiano ortogonal O Sistema de Coordenadas Cartesianas,
Aula 2 Função_Uma Ideia Fundamental
1 Tecnólogo em Construção de Edifícios Aula 2 Função_Uma Ideia Fundamental Professor Luciano Nóbrega 2 NOÇÃO FUNDAMENTAL DE FUNÇÃO A função é como uma máquina onde entram elementos que são transformados
O ESTUDO DE FUNÇÕES NA AVALIAÇÃO DE APRENDIZAGEM EM PROCESSO
O ESTUDO DE FUNÇÕES NA AVALIAÇÃO DE APRENDIZAGEM EM PROCESSO RELATO SOBRE UM GRUPO DE ESTUDOS Mestranda : Vera Mônica Ribeiro Orientadora: Nielce Lobo da Costa Copyright RIBEIRO, Vera M.; LOBO da COSTA,
MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.
1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:
Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.
PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro
Plano de Trabalho Docente Ensino Médio. Habilitação Profissional: Técnico em informática para Internet Integrado ao Ensino Médio
Plano de Trabalho Docente - 2015 Ensino Médio Código: 0262 ETEC ANHANQUERA Município: Santana de Parnaíba Área de Conhecimento: Matemática Componente Curricular: Matemática Série: 1ª Eixo Tecnológico:
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira
Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS
UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA DEPARTAMENTO DE ENSINO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA 1ºANO
UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA DEPARTAMENTO DE ENSINO CURSO TÉCNICO INTEGRADO EM ELETROTÉCNICA 1ºANO DISCIPLINA: Matemática SIGLA: MAT Carga Horária anual:
Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:
Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016
ESCOLA E B 2,3/S MIGUEL LEITÃO DE ANDRADA - AGRUPAMENTO DE ESCOLAS DE PEDRÓGÃO GRANDE DEPARTAMENTO DAS CIÊNCIAS EXATAS 2015/2016 PLANIFICAÇÃO DE MATEMÁTICA 7ºANO 1º Período 2º Período 3º Período Apresentação,
Tabelas e Gráficos: o olhar da matemática no dia a dia
Reforço escolar M ate mática Tabelas e Gráficos: o olhar da matemática no dia a dia Dinâmica 1 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Tratamento da Informação.
Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental
Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de Matemática de 4ª Série Fundamental
Comentários e Exemplos sobre os Temas e seus Descritores da Matriz de de 4ª Série Fundamental TEMA I ESPAÇO E FORMA A compreensão do espaço com suas dimensões e formas de constituição são elementos necessários
PLANO DE AULA. Objetivos Específicos: Apresentar atividades que utilizam padrões (figuras) em que os estudantes deverão encontrar a lei para resolver.
PLANO DE AULA PIBID- Subprojeto Matemática Campus: Caçapava do Sul Bolsistas: Valéria Perceval Conceitos/Conteúdos: Funções Objetivos geral: Introduzirr o conceito de funções; Objetivos Específicos: Apresentar
MATEMÁTICA - 8.º Ano. Ana Soares ) Catarina Coimbra
Salesianos de Mogofores - 2016/2017 MATEMÁTICA - 8.º Ano Ana Soares ([email protected] ) Catarina Coimbra ([email protected] ) Rota de aprendizage m por Projetos
Gênesis S. Araújo Pré-Cálculo
Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,
QUESTÕES PARA O 5º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTRE SUGESTÕES DE RESOLUÇÕES
QUESTÕES PARA O 5º ANO ENSINO FUNDAMENTAL MATEMÁTICA 2º BIMESTRE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 27 Ler informações e dados apresentados em tabelas. COMENTÁRIOS Avalia-se, por meio de itens
AXB = {(x, y) x A e y B}
CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não
1ª Ana e Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 1ª Ana e Eduardo 8º Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 1 Foco: Leitura Compreender e utilizar textos, selecionando dados, tirando conclusões, estabelecendo relações,
BIOTECNOLOGIA E AMBIENTE
FORMAÇÃO CONTINUADA PARA PROFESSORES DE CIÊNCIAS BIOLÓGICAS FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROFESSOR/CURSISTA: GLAUCIA MUSSA A. DE SANT ANNA COLÉGIO: TUTOR (A): SÉRIE: 3ª SÉRIE / ENS. MÉDIO 4º BIMESTRE
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO. Matemática
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO o semestre de 4 Data / / Escola Aluno Questão O gráfico a seguir foi
Ensino Técnico Integrado ao Médio
Ensino Técnico Integrado ao Médio FORMAÇÃO GERAL Ensino Médio Etec Plano de Curso nº 213 aprovado pela portaria Cetec nº 134 de 04/10/2012 Etec: Professora Maria Cristina Medeiros Código: 141 Município:
1- Geometria 1.1- Espaço:
2ª Matemática 3º Ano Competência Objeto de aprendizagem Habilidade H1. Identificar posição/localização de objeto/pessoa em uma representação gráfica (desenho, malha quadriculada, croquis, itinerários,
Função Inversa. 1.Função sobrejetora 2.Função injetora 3.Função bijetora 4.Função inversa
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Função Inversa Prof.: Rogério
Escola Adventista Thiago White
Roteiro de Matemática 6º ano A e B - 1º Bimestre Data Início / / Data Término / / Nota: Tema: Números Primos, MMC e MDC Conceituar um número primo e verificar se um número dado é ou não primo. Obter o
Plano de Trabalho Docente Ensino Médio
Plano de Trabalho Docente 2015 Ensino Médio ETEC PAULINO BOTELHO Código: 091 Município: SÃO CARLOS Área de conhecimento: CIENCIAS DA NATUREZA, MATEMATICA E SUAS TECNOLOGIAS. Componente Curricular: MATEMATICA.
SOMENTE COM CANETA AZUL
º SIMULADO - 8º ANO - 016 ENSINO FUNDAMENTAL Matemática 45 Questões 0 de dezembro - sexta-feira Nome: Turma: Unidade: º A DI CENTRO EDUCACIONAL ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI 1 O aluno
ANÁLISE DOS PARÂMETROS DA FUNÇÃO AFIM: UMA VIVÊNCIA COMO BOLSISTA DE INICIAÇÃO À DOCÊNCIA A PARTIR DO USO DO GEOGEBRA
ANÁLISE DOS PARÂMETROS DA FUNÇÃO AFIM: UMA VIVÊNCIA COMO BOLSISTA DE INICIAÇÃO À DOCÊNCIA A PARTIR DO USO DO GEOGEBRA Angélica Bohrer Schmalz Fernando Fabrin Isabel Koltermann Battisti A presente escrita
Unidade 2 Conceito de Funções
Unidade 2 Conceito de Funções Conceito Sistema Cartesiano Ortogonal Estudo do domínio, contradomínio e imagem de função Representações de funções por meio de tabelas, gráficos e fórmulas Conceito de Função
MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos
PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO. Nome: Nº - Série/Ano. Data: / / Professor(a): Marcello, Eloy e Décio.
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 7º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Marcello, Eloy e Décio. Os conteúdos essenciais do semestre. Capítulo 1 Números inteiros Ideia
Competência Objeto de aprendizagem Habilidade
Matemática 3ª Rosemeire Meinicke/Gustavo Lopes 6º Ano E.F. Competência Objeto de aprendizagem Habilidade H47- Resolver problemas que envolvam potenciação de números naturais. 1. Números naturais (N) 1.4-
Uma atividade radical!
Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE QUEBRA CABEÇA
Observe na imagem a seguir, a trajetória realizada por uma bola no momento em que um jogador a chutou em direção ao gol.
FUNÇÃO QUADRÁTICA CONTEÚDOS Função quadrática Raízes da função quadrática Gráfico de função Ponto de máximo e de mínimo de uma função AMPLIANDO SEUS CONHECIMENTOS Observe na imagem a seguir, a trajetória
PLANO DE ENSINO OBJETIVOS
PLANO DE ENSINO DADOS DO COMPONENTE CURRICULAR Nome do Componente Curricular: Matemática III Curso: Técnico de Nível Médio Integrado em Mineração Série/Período: 3º ano Carga Horária: 2 a/s - 80 h/a - 67
Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática Eduardo 3ª 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 2 Foco: Os conjuntos numéricos Construir significados para os números naturais, inteiros, racionais e reais. Competência
PLANO DE TRABALHO TÍTULO:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE CIÊNCIAS BIOLÓGICAS FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROFESSOR/CURSISTA: REJANE FURRIEL DOS SANTOS COLÉGIO: TUTOR (A): SÉRIE: 1ª ENSINO MÉDIO 3º BIMESTRE /ANO:
CONSTRUINDO UMA SEQUÊNCIA DIDÁTICA SOBRE NÚMEROS COMPLEXOS POR MEIO DE PLANILHAS ELETRÔNICAS
CONSTRUINDO UMA SEQUÊNCIA DIDÁTICA SOBRE NÚMEROS COMPLEXOS POR MEIO DE PLANILHAS ELETRÔNICAS Fernando Valério Ferreira de Brito [email protected] Ewerton Roosewelt Bernardo da Silva [email protected]
AS FUNÇÕES DO LIVRO DIDÁTICO
UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE CIÊNCIAS E TECNOLOGIA UNIDADE ACADÊMICA DE MATEMÁTICA E ESTATÍSTICA PROGRAMA DE EDUCAÇÃO TUTORIAL TUTOR: PROF. DR. DANIEL CORDEIRO DE MORAIS FILHO AS FUNÇÕES
Exercícios de Revisão - 1
Exercícios de Revisão - 1 1. Sejam os conjuntos numéricos A = {2, 4, 8,12,14}; B = {5,10,15, 20, 25} e C = {1, 2, 3,18, 20} e o conjunto vazio. É correto afirmar que: a) B C = b) A - C = {-6,1, 2, 4, 5}
Campos dos Goytacazes/RJ Maio 2015
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
Matemática I MAT I Plano de Ensino Revisão de Aritmética. Prof.: Joni Fusinato 1
Matemática I MAT I Plano de Ensino Revisão de Aritmética Prof.: Joni Fusinato [email protected] [email protected] 1 Plano de Ensino Competências: Análise e equacionamento dos fenômenos naturais
Pré-Cálculo. Humberto José Bortolossi. Aula 8 26 de abril de Departamento de Matemática Aplicada Universidade Federal Fluminense
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Aula 8 26 de abril de 200 Aula 8 Pré-Cálculo O que é uma função? Funções reais Uma função real f
3ª Klaudemir Santiago
Matemática I 3ª Klaudemir Santiago 2ª Série E.M. Competência Objeto de aprendizagem Habilidade Competência 3: Construir noções de variação de grandezas para a compreensão da realidade e a solução de problemas
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Grupo 500 Planificação Anual / Critérios de Avaliação Disciplina: Matemática _ 9.º ano 2016 / 2017 Início Fim
Análise dos descritores da APR II 4ª série/5º ano Matemática
Análise dos descritores da APR II 4ª série/5º ano Matemática D10 Num problema, estabelecer trocas entre cédulas e moedas do sistema monetário brasileiro, em função de seus valores. O que é? Por meio deste
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE. DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Grupo 230. Planificação Anual / Critérios de Avaliação
DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS Grupo 230 Planificação Anual / Critérios de Avaliação Disciplina: Matemática 6.º ano 2016 / 2017 Domínio (Unidade/ Tema) Subdomínio/ Conteúdos Meta de
MATEMÁTICA Prof.: Alexsandro de Sousa
E. E. DONA ANTÔNIA VALADARES MATEMÁTICA Prof.: Alexsandro de Sousa Introdução ao conceito de funções FERNANDO FAVORETTO/CID A ideia de função no cotidiano Relação entre duas grandezas Quantidade de pães
ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE
Nome: Número: Turma: 3º Professor (a): Edson Data: 3 / 05 /17 Disciplina MATEMÁTICA Objetivo: Valor: 1,5 Nota: ROTEIRO DE ESTUDO DE MATEMÁTICA - 1º TRIMESTRE Recuperação: dia 3 /05/17 - Será realizada
PLANO DE ENSINO OBJETIVOS
PLANO DE ENSINO DADOS DO COMPONENTE CURRICULAR Nome do Componente Curricular: Matemática I Curso: Técnico de Nível Médio Integrado em Mineração Série/Período: 1º ano Carga Horária: 4 a/s - 160 h/a - 133
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
A PROPORCIONALIDADE E O PENSAMENTO ALGÉBRICO
A PROPORCIONALIDADE E O PENSAMENTO ALGÉBRICO Lucia Arruda de Albuquerque Tinoco Projeto Fundão - UFRJ [email protected] Gilda Maria Quitete Portela Projeto Fundão UFRJ [email protected]
SISTEMA ANGLO DE ENSINO G A B A R I T O
Prova Anglo P-02 Tipo D8-08/200 G A B A R I T O 0. C 07. D 3. C 9. A 02. B 08. A 4. A 20. C 03. D 09. C 5. B 2. B 04. B 0. C 6. C 22. B 05. A. A 7. A 00 06. D 2. B 8. D DESCRITORES, RESOLUÇÕES E COMENTÁRIOS
Cálculo Diferencial e Integral I
Curso de Engenharia Civil Período 2014.1 Prof. da Disciplina Luiz Gonzaga Damasceno, M. Sc E-mails: [email protected] [email protected] [email protected] Site: www.damasceno.info damasceno.info
CÁLCULO I. Aula n o 02: Funções. Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares, ímpares, crescentes e decrescentes;
CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 02: Funções Objetivos da Aula Denir e reconhecer funções; Determinar o domínio, imagem e o gráco de uma função; Reconhecer funções pares,
FUNÇÕES. Prof.ª Adriana Massucci
FUNÇÕES Prof.ª Adriana Massucci Introdução: Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como consequência a variação da outra. Exemplo:
MEDIDAS Aula 4. André Luís Corte Brochi Professor das Faculdades COC
MEDIDAS Aula 4 André Luís Corte Brochi Professor das Faculdades COC Objetivos da aula Apresentar elementos teóricos sobre medidas. Sugerir atividades práticas que relacionem a realidade do aluno com os
Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo)
Departamento de Matemática Ano letivo 2016/17 CRITÉRIOS DE AVALIAÇÃO PARA O ENSINO BÁSICO Grupo 230 Matemática (2ºciclo) Objeto de avaliação Itens/Parâmetros Instrumentos Ponderação Conteúdos da Testes
PLANO DE TRABALHO TÍTULO: EVOLUÇÃO. Duração prevista: 200 minutos. Objetivos:
FORMAÇÃO CONTINUADA PARA PROFESSORES DE CIÊNCIAS BIOLÓGICAS FUNDAÇÃO CECIERJ / CONSÓRCIO CEDERJ PROFESSOR/CURSISTA: LUCIANA MENEZES MENEGATTI COLÉGIO: TUTOR (A): SÉRIE: 1ª ENSINO MÉDIO 3º BIMESTRE /ANO:
Roteiro de estudos 1º trimestre. Matemática-Física-Química. Orientação de estudos
Roteiro de estudos 1º trimestre. Matemática-Física-Química O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar
Plano de Trabalho Docente Ensino Médio
Plano de Trabalho Docente 2014 Ensino Médio Etec Etec: PAULINO BOTELHO Código: 091 Município: SÃO CARLOS Área de conhecimento: CIÊNCIAS DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS. Componente Curricular:
1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos.
Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2012-2013 Matemática METAS CURRICULARES
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE
AGRUPAMENTO DE ESCOLAS ANSELMO DE ANDRADE DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS - Grupo 500 Planificação Anual /Critérios de avaliação Disciplina: Matemática _ 7º ano 2016/2017 Início Fim
DEPARTAMENTO DE CIÊNCIAS EXATAS MATEMÁTICA_6º ANO_A. Ano Letivo: 2014/ Introdução / Finalidades. Metas de aprendizagem
DEPARTAMENTO DE CIÊNCIAS EXATAS MATEMÁTICA_6º ANO_A Ano Letivo: 4/5. Introdução / Finalidades A disciplina de Matemática tem como finalidade desenvolver: A estruturação do pensamento A apreensão e hierarquização
Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;
Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por
UNIDADE 3 Ficha 1: Sequências e regularidades
UNIDADE 3 Ficha 1: Sequências e regularidades Nome: 7º ANO MATEMÁTICA Data: / / 1. Completa as seguintes sequências numéricas e supõe que se mantém a regularidade entre termos consecutivos. Sequência 1:
MATEMÁTICA ROTEIRO DE RECUPERAÇÃO NOTA ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS
MATEMÁTICA ROTEIRO DE RECUPERAÇÃO ENSINO MÉDIO SÉRIE: 1ª TURMAS: ABCDE TIPO: A ETAPA: 2ª PROFESSOR(ES): MAGNA E THAÍS VALOR: 35 PONTOS NOTA ALUNO(A): Nº: DATA: / /2017 I INTRODUÇÃO Este roteiro tem como
MATEMÁTICA APLICADA. Portanto, o preço do produto, nessa situação, varia entre 0 e R$ 5,00. 0 < P < R$ 5,00. Ao admitirmos P > 0, ocorre:
MATEMÁTICA APLICADA Apresentação Caro aluno: A contextualização e a aplicação dos conteúdos matemáticos (já estudados) contemplarão o objetivo geral da disciplina Matemática Aplicada à Administração. Este
2.(2,0pts) Quais das afirmações a seguir são verdadeiras, justificando sua resposta.
Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro Centro de Educação Superior a Distância do Estado do Rio de Janeiro Primeira Avaliação a Distância de Métodos Determinísticos
Capítulo 2 Noções de conjuntos
THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.
Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira Rodrigues Azevedo
Instituto Federal Fluminense Campus Campos Centro Programa Tecnologia Comunicação Educação (PTCE) Apostila organizada por: Vanderlane Andrade Florindo Silvia Cristina Freitas Batista Carmem Lúcia Vieira
3ª Eduardo e Ana. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Eduardo e Ana 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 3 Foco: Espaço e Forma Utilizar o conhecimento geométrico para realizar a leitura e a representação da realidade
CÁLCULO I. Aula n o 02: Funções. Denir função e conhecer os seus elementos; Listar as principais funções e seus grácos.
CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 02: Funções. Objetivos da Aula Denir função e conhecer os seus elementos; Reconhecer o gráco de uma função; Listar as
