Uma atividade radical!
|
|
|
- Teresa Silveira Álvaro
- 9 Há anos
- Visualizações:
Transcrição
1 Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE QUEBRA CABEÇA IRRACIONAL Objetivo Efetuar cálculos simples de radicais e potências. Descrição da atividade A origem do símbolo usado para representar uma raiz é bastante especulativa. Algumas fontes dizem que o símbolo foi usado pela primeira vez pelos árabes, e o primeiro uso foi de Al-Qalasadi ( ), e que o símbolo vem da letra árabe,ج a primeira letra da palavra Jadhir. Muitos, incluindo Leonhard Euler, físico e matemático suíço ( ), acreditam que o símbolo origina-se da letra r, que é a primeira letra da palavra radix que em latim se refere à mesma operação matemática. O símbolo foi visto pela primeira vez impresso sem o vínculo (a linha horizontal que fica sobre os 1
2 números dentro da raiz) em 1525 no Die Coss do matemático alemão Christoff Rudolff. Agora que você conhece um pouco da história, que tal montar um quebra- -cabeça e aprimorar seus conhecimentos? Escolha apenas um quebra-cabeça e boa diversão... Monte aqui seu quebra-cabeça! Monte aqui seu quebra-cabeça! 2
3 Matemática SEGUNDA ETAPA UM NOVO OLHAR... ATIVIDADE O CUIDADO COM A SAÚDE. Objetivo Operar com aproximações de irracionais algébricos. Descrição da atividade Leia com bastante atenção o resumo de uma reportagem, publicada num jornal de grande circulação, e que tem como tema a OBESIDADE INFANTIL E EM ADOLESCENTES 1. De acordo com levantamento feito pela Secretaria de Saúde de Campinas (SP), o sobrepeso ou obesidade atinge 25% das crianças e adolescentes dessa cidade. O que significa dizer que nesse público o índice de Massa Corporal (IMC) está acima do limite de tecido gorduroso. Esse crescimento, segundo a reportagem, está associado aos maus hábitos alimentares e ao sedentarismo. Nesse quadro encontra-se um menino de 10 anos que apresenta 30 quilos a mais do que o seu peso ideal, 57 quilos. O que é o Índice de Massa Corporal (IMC)? Trata-se de uma medida internacionalmente usada para saber se uma pessoa está no peso ideal. Para obter esse índice, é utilizado um cálculo fácil e rápido. Com o resultado desse cálculo, é possível avaliar o nível de gordura de cada pessoa utilizado pela Organização Mundial da Saúde OMS 2 ). O índice de massa corporal (IMC) é uma medida internacional usada para calcular se uma pessoa está no peso ideal. Trata-se de um método fácil e rápido para a avaliação do nível de gordura de cada pessoa, ou seja, é um preditor internacional de 1 Texto adaptado de Acesso em: 20 ago Texto adaptado de 3
4 obesidade adotado pela Organização Mundial da Saúde (OMS). O IMC é determinado pela divisão da massa (m) do indivíduo pelo quadrado de sua altura (h), onde a massa está em quilogramas e a altura está em metro. Assim temos a seguinte equação do IMC: IMC m h 2 1. Qual é o IMC de uma pessoa que tem 100 kg de massa e 2,0 m de altura? 2. Qual é a altura de uma pessoa que possui IMC 23, 4375 kg 2 e 60 kg m de massa? Observe na tabela a seguir as faixas de IMC e suas respectivas classificações. < 18,5 Abaixo do Peso 18,5 até 24,9 Peso normal 25,0 até 29,9 Sobrepeso 30,0 até 34,9 Obesidade grau I 35,0 até 39,9 Obesidade grau II 40,00 Obesidade Grau III 4
5 3. De acordo com a reportagem, o garoto está 30 kg acima do seu peso ideal que é 57 kg. Considerando que o menino tem 1,60 m de altura, qual é a sua classificação atual levando-se em consideração a tabela anterior? Justifique. Matemática 4. João e Pedro têm o mesmo IMC. Sabe-se que João tem 80 kg de massa e 1,60 m de altura e que Pedro tem 90 kg de massa. Qual é a altura real de Pedro? 5. Considerando 2 1,41, qual é a altura aproximada de Pedro? 5
6 TERCEIRA ETAPA FIQUE POR DENTRO! ATIVIDADE ESCORREGANDO NUM TOBOÁGUA. QUE AVENTURA RADICAL! Objetivo Realizar operações com valores aproximados de alguns radicais mediante aplicação do teorema de Pitágoras. Descrição da atividade Pitágoras foi um importante matemático e filósofo grego que viveu no século VI a. C. É atribuído a ele o Teorema que leva seu nome (Teorema de Pitágoras), considerado uma das principais descobertas da Matemática. Fonte: C3%BCnz.JPG Segundo esse teorema, é possível calcular o lado de um triângulo retângulo conhecendo os outros dois. Seu enunciado é: Em todo triângulo retângulo a soma dos quadrados das medidas dos catetos é igual ao quadrado da medida da hipotenusa. 1. Assim, se considerarmos um triangulo retângulo cujas medidas dos catetos são a e b e cuja medida da hipotenusa é c, qual será a expressão matemática que representa o teorema de Pitágoras? 2. Qual é a medida real da diagonal de um quadrado cujos lados medem 5 cm? 6
7 3. Se considerarmos 2 1,41, qual será a medida aproximada dessa diagonal? Um escorrega aquático... Este tobogã com água com a forma tubular, cortado ao meio e utilizado em parques aquáticos é pura diversão! O jato de água que sai do topo do escorrega possibilita que as pessoas deslizem, sentadas ou deitadas, com ou sem boia, movidas para baixo pela força da gravidade. Mas nada de sustos, porque a água reduz o atrito fazendo aumentar a velocidade do deslizamento que termina numa piscina 3. Fonte: o_mundo.jpg Matemática Uma pessoa resolveu descer num tobogã com água cuja rampa de descida é formada por um tubo reto de 30 m de comprimento. A figura a seguir ilustra essa situação. Sabendo que a distância da projeção do ponto mais alto do tobogã com água ao chão até a piscina, indicada na figura por d, é de 25 m, pergunta-se: 4. Para determinar a medida da altura do tobogã com água, é possível usar o teorema de Pitágoras? Justifique. 3 Texto retirado de 7
8 5. Desenhe um triângulo retângulo que representa essa situação identificando as medidas da hipotenusa e dos catetos. 6. Qual é, em metros, a altura real desse tobogã com água? 7. Se considerarmos 11 3,31, qual será a altura aproximada desse tobogã com água? QUARTA ETAPA QUIZ O valor aproximado de 2 10 é: a. 5 b. 6 c. 10 d. 20 8
9 QUINTA ETAPA ANÁLISE DAS RESPOSTAS AO QUIZ Matemática ETAPA FLEX PARA SABER + Você sabia que a potenciação é a operação inversa da radiciação? Para entender melhor sobre esse assunto, acesse o site a seguir e assista ao vídeo do Telecurso ( Outra sugestão que vai lhe ajudar a realizar cálculos simples para achar valores aproximados de radicais encontra-se no vídeo a seguir indicado pelo link: youtube.com/watch?v=isi4aigzbhc Para aprofundar seus conhecimentos de radiciação, veja o vídeo: youtube.com/watch?v=tuz3jhn88wy 9
10 AGORA É COM VOCÊ! 1. (Saerjinho) Resolva a operação abaixo. 5 3 O valor aproximado dessa operação é: a. 0,5 b. 1,0 c. 1,5 d. 2,0 2. (Prova Brasil 9º ano)para ligar a energia elétrica em seu apartamento, Felipe contratou um eletricista para medir a distância do poste da rede elétrica até seu imóvel. Essa distância foi representada, em metros, pela expressão: ( )m. Para fazer a ligação, a quantidade de fio a ser usado é duas vezes a medida fornecida por essa expressão. Nessas condições, Felipe comprará aproximadamente a. 43,6 m de fio b. 58,4 m de fio c. 61,6 m de fio d. 81,6 m de fio 10
Uma atividade radical!
Reforço escolar M ate mática Uma atividade radical! Dinâmica 4 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Algébrico Simbólico Radicais. DINÂMICA Uma atividade
Vamos ao Maracanã? Dinâmica 4. Aluno Apresentação. 1ª Série 4º Bimestre
Reforço escolar M ate mática Vamos ao Maracanã? Dinâmica 4 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Geométrico. Trigonometria na circunferência. Aluno Apresentação
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
O sítio do Seu Epaminondas
Reforço escolar M ate mática O sítio do Seu Epaminondas Dinâmica 1 9º Ano 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º Grau Aluno Primeira
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
Distâncias Inacessíveis de se Medir
Reforço escolar M ate mática Distâncias Inacessíveis de se Medir Dinâmica 7 1ª Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Aluno Matemática Ensino Médio 1ª Geométrico Utilizar as razões trigonométricas
Decifrando enigmas! Dinâmica 4. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 9 Ano 3º Bimestre ATIVIDADE TABULEIRO ALGÉBRICO
Reforço escolar M ate mática Decifrando enigmas! Dinâmica 4 9 Ano 3º Bimestre Matemática 9 Ano do Ensino Fundamental Algébrico-Simbólico Funções Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE TABULEIRO
A realização de um grande sonho
Reforço escolar M ate mática A realização de um grande sonho Dinâmica 7 9º Ano 4º Bimestre Professor DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e
Encontrando o melhor caminho
Reforço escolar M ate mática Encontrando o melhor caminho Dinâmica 8 9º Ano 2º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Fundamental 9º Geométrico Teorema de Pitágoras DINÂMICA
Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ
Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental
Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor
Plano de Recuperação Semestral 1º Semestre 2017
Disciplina: MATEMÁTICA 1 - Álgebra Série/Ano: 9º ANO Professores: Tammy, Figo, Pupo, Laendle Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos
De razão a relação: da sala de TV a sala de aula.
Reforço escolar M ate mática De razão a relação: da sala de TV a sala de aula. Dinâmica 7 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Teorema de Pitágoras
Tô na área! Dinâmica 6. Primeira Etapa Compartilhar ideias. Aluno. 9º Ano 4º Bimestre
Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Aluno
Nem início, nem fim!
Reforço escolar M ate mática Nem início, nem fim! Dinâmica 7 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico. Geometria Analítica. Aluno Primeira Etapa Compartilhar
A Pirâmide e Seus Mistérios
Reforço escolar M ate mática A Pirâmide e Seus Mistérios Dinâmica 6 2º Série 3º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 2a Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones
Teorema de Pitágoras: Encaixando e aprendendo
Reforço escolar M ate mática Teorema de Pitágoras: Encaixando e aprendendo Dinâmica 7 9º ano 2º Bimestre Aluno DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Teorema de Pitágoras
O CASO INVERSO DA QUEDA LIVRE
O CASO INVERSO DA QUEDA LIVRE Vamos analisar o caso em que se lança um corpo para o alto, na vertical. Tomemos o seguinte exemplo: uma pedra é lançada para o alto, na vertical, com uma velocidade inicial
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo
Passeio pelo Rio. Dinâmica 6. 3º Série 3º Bimestre. DISCIPLINA Ano CAMPO CONCEITO. Matemática 3ª do Ensino Médio Geométrico Geometria analítica.
Reforço escolar M ate mática Passeio pelo Rio Dinâmica 6 3º Série 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 3ª do Ensino Médio Geométrico Geometria analítica. Primeira Etapa Compartilhar ideias
Exercícios de Aplicação do Teorema de Pitágoras
Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse
Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:
Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens
Exercícios (Potenciação)
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)
+ Do que xxx e escadas
Reforço escolar M ate mática + Do que xxx e escadas Dinâmica 6 1º Série 2º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Campo Geométrico Razões trigonométricas no triângulo retângulo
Números Irracionais. Dinâmica 7. Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS. 3ª Série 3º Bimestre ATIVIDADE LOCALIZANDO NÚMEROS RACIONAIS
Reforço escolar M ate mática Númer os irracionais Dinâmica 7 3ª Série 3º Bimestre Matemática 3 Série do Ensino Médio Numérico Aritmético Números Irracionais Aluno PRIMEIRA ETAPA COMPARTILHANDO IDEIAS ATIVIDADE
Jogando e sentindo emoções...
Reforço escolar M ate mática Jogando e sentindo emoções... Dinâmica 5 9º Ano 2º Bimestre DISCIPLINA Ano CAMPO CONCEITO Aluno Matemática 9º do Ensino Fundamental Algébrico Simbólico Equação do 2º. Grau
Segmento: ENSINO MÉDIO. 03/2017 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS
Segmento: ENSINO MÉDIO Disciplina: MATEMÁTICA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 03/2017 Turma: 2 A 1) Determine o valor de x, para que a seqüência (x,3x+2,10x+12) seja uma P.G. Determine
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno
01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H2 H22 2 Teorema de Pitágoras H6 Aceleração média H2 Impulso H2 . A produção
Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico
Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações Algébricas. Primeira
Formação continuada em Matemática. Fundação CECIERJ
Formação continuada em Matemática Fundação CECIERJ Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho Teorema de Pitágoras. Tarefa 2 Cursista: Roberta Costa Tutora: Maria Claudia Padilha Tostes. Sumário
Olhando por esse Prisma...
Reforço escolar M ate mática Olhando por esse Prisma... Dinâmica 7 2º Série 2º Bimestre DISCIPLINA série CAMPO CONCEITO Matemática Ensino Médio 2ª Geométrico Geometria Espacial: Prismas e Cilindros Primeira
LISTA DE EXERCÍCIOS 9º ano 4º bim
LISTA DE EXERCÍCIOS 9º ano 4º bim Prof. Marcelo, Sandra, Rafael e Tammy PARTE 1 SISTEMAS DO 2º GRAU Resolva os seguintes sistemas RESPOSTAS: 1) {(,4),(4,)} 2) {(-,-2),(-2,-)} ) {(,1),(-2,-/2)} 4) {(2,-1),(-/2,-4/)}
TEOREMA DE PITÁGORAS AULA ESCRITA
TEOREMA DE PITÁGORAS AULA ESCRITA 1. Introdução O Teorema de Pitágoras é uma ferramenta importante na matemática. Ele permite calcular a medida de alguma coisa que não conseguimos com o uso de trenas ou
Números irracionais. Dinâmica 3. 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO
Reforço escolar M ate mática Números irracionais Dinâmica 3 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 1ª do Ensino Médio Numérico Aritmético Números Irracionais Aluno Primeira Etapa
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à201
MATEMÁTICA LIVRO 1 Capítulo 5 Teorema de Pitágoras Relações Métricas nos Triângulos Páginas: 190 à201 Teorema de Pitágoras: II b² b III IV a c c² II a² I I IV III "A área do quadrado formado com o lado
Programa de Recuperação Paralela PRP - 01
Programa de Recuperação Paralela PRP - 01 Nome: 1ª Etapa 013 Disciplina: Matemática - 8º Ano Página 1 de 11-8/6/013-6:15 PROGRAMA DE RECUPERAÇÃO PARALELA PRP 01 MATEMÁTICA 01- Resolva a expressão: 1 0
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL 018 ITEM 1 DA ADA Observe potência a seguir: ( ) O resultado dessa potenciação é igual a (A) 8 1. (B) 1 8. (C) 1 81 81 (D) 1 Dada uma potência
Vídeos virais e funções exponenciais: algo em comum?
Reforço escolar M ate mática Vídeos virais e funções exponenciais: algo em comum? Dinâmica 3 1ª Série 4º Bimestre Aluno DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico- Simbólico Função
MATEMÁTICA 9.º ANO/EF
MATEMÁTICA 9.º ANO/EF A Recuperação é uma estratégia do processo educativo que visa à superação de dificuldades específicas encontradas pelo aluno durante a Etapa Letiva. Trata-se de uma oportunidade para
1º Trimestre Matemática - 27/03/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof. Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS
1º Trimestre Matemática - /0/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS RACIONALIZAÇÃO DE DENOMINADORES PARTE 1 São três casos: 1 caso:
Matemática. Geometria plana
Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,
PLANTÕES DE JULHO MATEMÁTICA
Página 1 PLANTÕES DE JULHO MATEMÁTICA Nome: Nº: Série: 9º ANO Profª CAROL MARTINS Data: JULHO 2016 Teorema de Pitágoras e Relações Métricas no Triângulo Retângulo 1) Determine o valor x da medida do lado
TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é
TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5
ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para
Uma atividade bem redonda!
Reforço escolar M ate mática Uma atividade bem redonda! Dinâmica 6 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9º Geométrico Circunferência e círculo Primeira Etapa Compartilhar
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO
EXERCÍCOS DE REVISÃO TREINANDO PARA AS PROVAS 2º. BIMESTRE 8o. ANO POTENCIAÇÃO PROPRIEDADES: EXPOENTE NEGATIVO 1. Usando as propriedades da potenciação, calcule: a) x. x. x 5 = b) a 6 : a 4 c) [ ( -2 )
Gráfico de Funções: Seno, Cosseno e Tangente
Reforço escolar M ate mática Gráfico de Funções: Seno, Cosseno e Tangente Dinâmica 6 1ª Série 4º Bimestre Aluno DISCIPLINA Série CAMPO CONCEITO Matemática 1a do Ensino Médio Geométrico Trigonometria na
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
TRIÂNGULO RETÂNGULO ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM
ENSINO MÉDIO 2ª SÉRIE LISTA DE EXERCÍCIOS PP 1º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA TRIÂNGULO RETÂNGULO 1. Em parques infantis, é comum encontrar um brinquedo, chamado escorrego, constituído de
CENTRO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS DE VOTORANTIM. OBJETIVOS ( Módulo 5)
CENTRO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS DE VOTORANTIM OBJETIVOS ( Módulo 5) Nesta U.E. você será capaz de: - Usar a proporcionalidade para resolver problemas; - Aplicar o Teorema de Pitágoras na
EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA
OLÉGIO FRNO-RSILEIRO NOME: N : TURM: PROFESSOR(): NO: 9ª DT: / 07 / 014 EXERÍIOS DE REUPERÇÃO DE MTEMÁTI 1) alcule: a) 7 7 b) 1 + 1 1 ) alcule: 1 1 a). 8. 8 b) ) alcule: a) 1 7 1 ( ) 64 9 1 b) 0 4) Resolva
4. Considerando o triângulo retângulo ABC, determine as medidas a e b indicadas.
LISTAS DE ATIVIDADE A SER REALIZADA ANO 018 LISTA UM 1. No triângulo retângulo determine as medidas x e y indicadas. (Use: sen 65º = 0,91; cos 65º = 0,4 e tg 65º =,14) 4. Considerando o triângulo retângulo
Teorema de tales e semelhança de polígonos
Reforço escolar M ate mática Teorema de tales e semelhança de polígonos Dinâmica 7 9º Ano 1º Bimestre Aluno Matemática Ensino Fundamental 9ª Geométrico Semelhança de polígonos. PRIMEIRA ETAPA COMPARTILHAR
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os
Ampliando os horizontes geométricos
Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de Polígonos.
Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015
Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede
Estudo da Trigonometria (I)
Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Estudo da
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
Equacionando o cotidiano...
Equacionando Reforço escolar M ate mática o cotidiano... Dinâmica 8 9º Ano 3º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática Ensino Fundamental 9ª Algébrico simbólico Equações redutíveis do 2 grau Aluno
R.: R.: c) d) Página 1 de 8-17/07/18-15:06
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Em um triângulo retângulo, a
2) Construir um triângulo ABC dados o lado a=4cm, h a =3cm e b/c=3/5.
77 ) Construir um triângulo ABC dados o lado a=4cm, h a =3cm e b/c=3/5. 3) Obter o ponto do qual possamos ver um segmento dado AB segundo um ângulo α tal que a razão das distâncias do mesmo às extremidades
Na reta numérica da figura abaixo, o ponto E corresponde ao número inteiro -9 e o ponto F, ao inteiro
000 IT_005267 Na reta numérica da figura abaixo, o ponto E corresponde ao número inteiro -9 e o ponto F, ao inteiro -7. A B C D E F G H I J K L M -9-7 Nessa reta, o ponto correspondente ao inteiro zero
2º ANO Reconhecer e utilizar características do sistema de numeração decimal, tais como agrupamentos e trocas na base 10 e princípio do valor posicion
PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO DESCRITORES DE MATEMÁTICA PROVA - 3º BIMESTRE 2011 2º ANO Reconhecer e utilizar
Figuras, Triângulos e Problemas Semelhantes
Reforço escolar M ate mática Figuras, Triângulos e Problemas Semelhantes Dinâmica 8 1ª Série 3º Bimestre Aluno Matemática 1 Série do Ensino Médio Geométrico Razões trigonométricas no triângulo retângulo
AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.
ENSINO FUNDAMENTAL Conteúdos do 9º Ano 1º/2º Bimestre 2014 Trabalho de Dependência Nome: N. o : Turma: Professor(: João/Daniel Data: / /2014 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado
Semelhanças do cotidiano
Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática Ensino Fundamental 9ª Geométrico DINÂMICA Semelhanças do cotidiano.
Tudo em função da Matemática
Reforço escolar M ate mática Tudo em função da Matemática Dinâmica 5 1ª Série 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 1ª do Ensino Médio Campo Algébrico Simbólico Função polinomial
O DNA das equações algébricas
Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações
» Potenciação e Radiciação
-* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito
CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,
DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS:
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO,ADRIANA E MAGNO DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO PARA RECUPERAÇÃO
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 007 - a Chamada Proposta de resolução. Como a planta está desenhada à escala de :0 e o Miguel está sentado a 3 m do televisor, ou seja 300 cm, então a distância, em
UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria
Exercícios online de matemática 8 ano 1 trimestre
Exercícios online de matemática 8 ano 1 trimestre 1) Analise as informações e identifiquei as que são verdadeiras O conjunto dos números naturais está contido no conjunto dos números inteiros Há sempre
COOPERATIVA EDUCACIONAL DE PORTO SEGURO
OOPERTIV EDUIONL DE PORTO SEGURO luno: no: 9ºno Turma: iclo: ÁRE: Prof.: Pablo Santos 1. Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º = 0,75
QUESTÃO 16 Na figura, há três quadrados.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Na figura, há três quadrados. A B A E F
Vamos ao Maracanã? Dinâmica 4. Professor. 1ª Série 4º Bimestre. Professor, nesta dinâmica, você irá desenvolver as seguintes etapas com seus alunos.
Reforço escolar M ate mática Vamos ao Maracanã? Dinâmica 4 1ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática Ensino Médio 1ª Geométrico. DINÂMICA Vamos ao Maracanã? Trigonometria
araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação
Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com
Dinâmica 3. 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO. Ensino Fundamental 9º. Uma dica... Uso Conveniente da calculadora.
Uma dica... Reforço escolar M ate mática Dinâmica 3 9º Ano 2º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico simbólico Equação do 2º Grau DINÂMICA HABILIDADE Básica
Ampliando os horizontes geométricos
Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede
Semelhanças do cotidiano
Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Semelhança de Polígonos. Aluno Primeira Etapa
Calculo de cabeça, não, com a cabeça!
Reforço escolar M ate mática Calculo de cabeça, não, com a cabeça! Dinâmica 2 9º Ano 2º Bimestre Aluno DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9º Algébrico Simbólico Equação do 2º.
Esopo, castanhas... e viva a sopa de letrinhas!
Reforço escolar M ate mática Esopo, castanhas... e viva a sopa de letrinhas! Dinâmica 1 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Sistemas Lineares
3º tri PR2 -MATEMÁTICA Ens. Fundamental 9º ano Prof. Marcelo
3º tri PR2 -MTEMÁTI Ens. Fundamental 9º ano Prof. Marcelo LIS LIST DE ESTUDO REFORÇO 1 Trigonometria no Triângulo Retângulo Parte 1. No triângulo retângulo determine as medidas e indicadas. (Use: sen65º
