Viewing Pipeline 2D. Viewing Pipeline 2D/3D. Viewing Pipeline 2D. Viewing Pipeline 2D. Maria Cristina F. de Oliveira Rosane Minghim 2005

Tamanho: px
Começar a partir da página:

Download "Viewing Pipeline 2D. Viewing Pipeline 2D/3D. Viewing Pipeline 2D. Viewing Pipeline 2D. Maria Cristina F. de Oliveira Rosane Minghim 2005"

Transcrição

1 Viewing Pieline 2D Viewing Pieline 2D/3D Maria Cristina F. de Oliveira Rosane Minghim 2005 Processo de determinar quais objetos da cena serão exibidos na tela, e como Transformação da cena, definida no sistema de coordenadas do mundo (WCS, ou SRU), ara um sistema de coordenadas de observação, normaliado VCS viewing coordinate system, ou SRV sistema de referência de observação (ou de visualiação) E deois ara o sistema de coordenadas do disositivo Visão geral do ieline: v. Hearn & Baker, Fig. 6-2 Viewing Pieline 2D No SRU, define janela ( window ) de interesse Maeia ara janela normaliada no SRV ( viewort ) Transformação window-viewort : alicada a todos os objetos contidos na janela de interesse Tudo o que está fora da window é descartado (cliing, ou recorte) Viewing Pieline 2D Dado: window retangular, alinhada aos eixos rinciais do SRU, coord s w min,w max viewort coord s s min,s max Buscamos a transformação que maeia as coordenadas de um onto (x,y ) SRU no onto (u,v ) SRV. Duas abordagens: Seqüência de transformações que alinha a window com a viewort (translação + escala + translação inversa) Regra de três que mantém as roorções relativas dos objetos em ambas window e viewort 1

2 Observe que: Viewing Pieline 2D Mudando a osição da viewort ode-se exibir a mesma cena em osições diferentes do disositivo Mudando o tamanho da viewort ode-se alterar o tamanho e as roorções dos objetos exibidos Zoom in/out: obtido maeando-se sucessivamente windows de tamanhos distintos (menores/maiores) em viewort de tamanho fixo Pan: obtido movendo uma window de tamanho fixo na cena Viewort normaliada: quadrado de dimensão unitária, com canto inferior esquerdo (cie) na origem do SRV Bibliografia Hearn & Baker, Comuter Grahics C Version, Ca. 6 Aostila CG Transformações 2D Viewing Pieline 3D No caso 3D, o ieline requer: A definição de um volume de interesse na cena 3D (SRU) O maeamento de seu conteúdo ara o SRV (transformação de visualiação) A rojeção do conteúdo do volume de interesse em um lano (transformação de rojeção) Maeamento da janela resultante na viewort normaliada e deois ara coordenadas do disositivo Viewing Pieline 3D: Analogia Câmera Observação: Cena: Projeção: Viewort: osiciona câmera osiciona modelo escolhe lentes escolhe tamanho osiciona volume de observação osiciona modelo escolhe formato vv escolhe orção da foto tela fonte: curso CG Ariona State University, Dianne Hansford 2

3 Viewing Pieline 3D: Analogia Câmera Viewing Pieline 3D: Analogia Câmera Imaginamos um observador que vê a cena através das lentes de uma câmera virtual fotógrafo ode definir a osição da câmera, sua orientação e onto focal, abertura da lente... câmera real obtém uma rojeção de arte da cena em um lano de imagem 2D (o filme) Analogamente, a imagem obtida da cena sintética deende de vários arâmetros que determinam como esta é rojetada ara formar a imagem 2D no monitor osição da câmera, orientação e onto focal, tio de rojeção, osição dos lanos de recorte (cliing lanes),... Três arâmetros definem comletamente a câmera Posição: aonde a câmera está Ponto focal: ara onde ela está aontando Orientação: controlada ela osição, onto focal, e um vetor denominado view u Outros arâmetros Direção de rojeção: vetor que vai da osição da câmera ao onto focal Plano da imagem: lano no qual a cena será rojetada, contém o onto focal e, tiicamente, é erendicular ao vetor direção de rojeção Viewing Pieline 3D: Analogia Câmera Viewing Pieline 3D: Analogia Câmera O método de rojeção controla como os objetos da cena (atores) são maeados no lano de imagem Projeção ortográfica, ou aralela: rocesso de maeamento assume a câmera no infinito, i.e., os raios de lu que atingem a câmera são aralelos ao vetor de rojeção Projeção ersectiva: os raios convergem ara o onto de observação, ou centro da rojeção. Nesse caso, é necessário determinar o ângulo de visão da câmera Os lanos de recorte delimitam a região de interesse na cena Anterior: elimina objetos muito róximos da câmera Posterior: elimina objetos muito distantes Fonte Figura: Schröeder, The Visualiation Toolkit,

4 Maniulação da Câmera Maniulação da Câmera Aimuth: rotaciona a osição da câmera ao redor do seu vetor view u, com centro no onto focal Elevation: rotaciona a osição ao redor do vetor dado elo roduto vetorial entre os vetores view u e direção de rojeção, com centro no onto focal Roll (Twist): rotaciona o vetor view u em torno do vetor normal ao lano de rojeção Fonte Figura: Schröeder, The Visualiation Toolkit, 1998 Maniulação da Câmera Maniulação da Câmera Yaw: rotaciona o onto focal em torno do vetor view u, com centro na osição da câmera Pitch: rotaciona o onto focal ao redor do vetor dado elo roduto vetorial entre o vetor view u e o vetor direção de rojeção, com centro na osição da câmera Dolly (in, out): move a osição ao longo da direção de rojeção (mais róximo ou mais distante do onto focal) Zoom (in, out): altera o ângulo de visão, de modo que uma região maior ou menor da cena fique otencialmente visível Fonte Figura: Schröeder, The Visualiation Toolkit,

5 Outra visão Viewing Pieline 3D Fonte: htt://escience.anu.edu.au/lecture/cg/transformation/other Rotation.en.html V. Figura 12.2, Hearn & Baker Retomando: o ieline requer a transformação da cena esecificada no SRU ara o SRV (ou VCS) O SRV descreve a cena como vista ela câmera... O rimeiro asso nesse rocesso consiste em esecificar o SRV. Como? Necessário esecificar origem e os três eixos de referência... Esecificação do SRV Parâmetros da Câmera Origem do sistema Posição da câmera (VRP: View Reference Point, ou PRO) Associados à câmera: Vetor direção de rojeção (N), que dá a direção do onto focal, e vetor view-u (V), que indica o lado de cima da câmera (ambos devem ser erendiculares entre si!) Plano de imagem, no qual a cena 3D será rojetada, erendicular ao vetor direção de rojeção Eixos: eixo associado ao vetor direção de rojeção, eixo y associado ao vetor view-u, eixo x... Fonte Figura: Schröeder, The Visualiation Toolkit,

6 Conversão SRU->SRV Conversão SRU->SRV Transformação que alinha os dois sistemas de coordenadas Translada o VRP ara a origem do SRU Alica as rotações necessárias ara alinhar os eixos do SRV aos eixos do VCS Uma forma de gerar a matri comosta que descreve as rotações necessárias (R) é calcular os vetores unitários u, v e n do SRV Matri de rotação ode ser formada diretamente a artir desses vetores, já que eles definem uma base ortonormal (e uma matri ortogonal) Dados os vetores N e V, os vetores unitários odem ser calculados como indicado ao lado Lembrando... Matri R é ortogonal: Cada linha descreve um vetor unitário e os vetores são mutuamente ortogonais: definem uma base ortonormal Analogamente, as colunas da matri também definem uma base ortonormal Na verdade, dada qualquer base ortonormal, a matri cujas linhas (ou colunas) são formadas elos seus versores é ortogonal 6

7 Lembrando... Conversão SRU->SRV Conseqüentemente: R é normaliada a soma dos quadrados dos elementos em qqr linha/coluna é 1 R é ortogonal roduto escalar de qqr ar de linhas ou colunas é ero inversa de R é igual à sua transosta Temos 2 esaços vetoriais (sist. coordenadas) em R 3, definidos or duas bases ortonormais SRU, esaço x w,y w,v w (i,j,k) SRV, esaço x v,y v, v (u,v,n) Queremos obter a matri de rotação R que alinha os 2 sistemas, i.e., transforma de um esaço vetorial ara o outro (.ex. de x v,y v, v ara x w,y w,v w ) Conversão SRU->SRV A matri comleta de transformação é Essa matri, alicada ao SRV alinha os eixos x v,y v, v (u,v,n) do SRV aos eixos x w,y w,v w (i,j,k) do SRU A comonente de translação alinha as origens 7

8 Transformação de Projeção Tendo a cena descrita no SRV, o róximo asso no ieline consiste em rojetar o conteúdo do volume de visualiação no lano de imagem Volume de visualiação: viewing frustum : define a região de interesse na cena Antes da rojeção é alicado um rocesso de recorte (cliing), em que as artes dos objetos que estão fora do VF são descartadas Recorte 3D em relação aos lanos de recorte (cliing lanes) Viewing Frustum Volume de visualiação, rojeção ersectiva Taxonomia das rojeções Projeções aralela e ersectiva 8

9 Projeção ersectiva um onto de fuga Projeção ersectiva dois ontos de fuga Projeção ersectiva três ontos de fuga Características da Persectiva Encurtamento ersectivo Objetos ficam menores a medida que se distanciam do centro de rojeção 9

10 Características da Persectiva Transformação de Projeção Pontos de Fuga Retas não aralelas ao lano de rojeção arecem se intercetar em um onto no horionte Confusão Visual Objetos situados atrás do centro de rojeção são rojetados de cima ara baixo e de trás ara a frente Distorção Toológica Pontos contidos no lano que contém o centro de rojeção e é aralelo ao lano de rojeção são rojetados no infinito PRP: Projection Reference Point o centro de rojeção... Alguns sistemas assumem que coincide com a osição da câmera (a origem do SRV) Problema determinar as coordenadas (x,y, ) do onto P = (x, y, ) rojetado no lano de rojeção (Figura) Transformação de Projeção Suonha o centro de rojeção osicionado em, um onto no eixo v, e que o lano de rojeção, normal ao eixo v, está osicionado em v, Transformação de Projeção Coordenadas rojetadas (x, y, ) de um onto (x,y,) ao longo da linha de rojeção x = x x*u y = y y*u = ( )*u, u [0,1] Para u = 0 estamos em P = (x, y, ), ara u = 1 temos o centro de rojeção (0, 0, ). No lano de rojeção: = v. Podemos resolver ara obter o valor de u nessa osição... 10

11 Transformação de Projeção Valor de u no lano de rojeção: u = v Substituir nas eqs. de x e y d : distância do lano de rojeção ao centro de rojeção, i.e., d = v Transformação de Projeção Substituindo nas eqs. de x e y x y w = x( = y( = w( v ) = x( v ) = y( v ) = w( d ) d ) d ) Transformação de Projeção Fator homogêneo: h = d Normaliar em relação a w = 1 (dividir or h) ara obter as coordenadas rojetadas no lano: xh yh x =, y = h h Na forma matricial homogênea 11

12 Transformação de Projeção Observações: Valor original da coordenada (no VCS) deve ser mantido ara uso osterior or algoritmos de remoção de suerfícies ocultas Centro de rojeção não recisa necessariamente estar osicionado ao longo do eixo v. Eqs. acima odem ser generaliadas ara considerar o centro um onto qualquer Alguns acotes gráficos (e nós tb.!) assumem = 0, i.e., centro de rojeção coincide com origem do VCS Casos eseciais: lano de rojeção coincide com ano x v y v, i.e., v = 0 (e d = ) Projeções Paralelas No caso de rojeções ortográficas, matries de transformação são triviais Ex. rojeção em lano aralelo a x v y v (VCS): Paralela vs. Persectiva Projeção ersectiva Tamanho varia inversamente com distância: aarência realística Distâncias e ângulos não são reservados Linhas aralelas não são reservadas Projeção aralela Boa ara medidas exatas Linhas aralelas são reservadas Ângulos não são reservados Aarência menos realística Bibliografia Caítulo 6 da aostila Ca. 12 Hearn & Baker Ca. 2 Conci e Aevedo htt://escience.anu.edu.au/lecture/cg/tran sformation/index.en.html Curso CG da ACM (link na ág. GBDI)... 12

Computação Gráfica Viewing

Computação Gráfica Viewing Computação Gráfica Viewing Aluno:M arcio KassoufC rocom o Prof:R osane M inghim O que é Viewing? Processo responsável por determinar o que será exibido no dispositivo de saída, e como Fonte: Software disponível

Leia mais

USP Universidade de São Paulo

USP Universidade de São Paulo USP Universidade de São Paulo ICMC Instituto de Ciências Matemáticas e de Computação Computação Gráfica Notas Didáticas - Viewing Aluno: Marcio Kassouf Crocomo Professora Doutora Rosane Minghim São Carlos

Leia mais

Os espelhos esféricos são calotas esféricas polidas.

Os espelhos esféricos são calotas esféricas polidas. s eselhos esféricos são calotas esféricas olidas. Côncavo Polido or dentro Convexo Polido or fora C R E.S. V E.P. Centro de Curvatura (C): É o centro da suerfície esférica. Raio de Curvatura (R): É o raio

Leia mais

Espelhos esféricos - Introdução

Espelhos esféricos - Introdução Eselhos Esféricos Eselhos esféricos - ntrodução s eselhos esféricos são calotas esféricas olidas. Côncavo Polido or dentro Convexo Polido or fora Eselhos Esféricos Elementos Centro de Curvatura (C): É

Leia mais

Visualização 3D. Soraia Raupp Musse

Visualização 3D. Soraia Raupp Musse Visualização 3D Soraia Raupp Musse 1 Pipeline de Visualização Em 2D as coisas são mais simples Simplesmente especificar uma janela do mundo 2D e uma viewport na superfície de visualização A complexidade

Leia mais

Pipeline de Visualização 3D

Pipeline de Visualização 3D Pipeline de Visualização 3D André Tavares da Silva andre.silva@udesc.br Capítulo 5 de Foley Capítulo 2 de Azevedo e Conci Processo de Visualização https://www.youtube.com/watch?v=ogqam2mykng Processo de

Leia mais

Câmara Virtual Simples

Câmara Virtual Simples Câmara Virtual Simples Edward Angel, Cap. 5 Instituto Superior Técnico Computação Gráfica 29/2 Na última aula... Pipeline de Visualiação 3D Câmara Virtual 2, CG&M/IST e Figuras Addison Wesley Sumário Câmara

Leia mais

Visualização em 3-D - Projeções Planares

Visualização em 3-D - Projeções Planares Visualização em 3-D - Projeções Planares Projetores PRP - Centro de Projeção A n (u,v,n) - sistema de coordenadas do plano de projeção (x,y,z) - sistema de coordenadas do objeto (regra da mão direita -

Leia mais

ROBÓTICA (ROB74) AULA 2. TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug

ROBÓTICA (ROB74) AULA 2. TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug ROBÓTICA (ROB74) AULA 2 TRANSFORMAÇÕES GEOMÉTRICAS E COORDENADAS HOMOGÊNEAS PROF.: Michael Klug PROGRAMA Transformações Geométricas e Coordenadas Homogêneas Notações Introdutórias Vetores, matrizes, pontos

Leia mais

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2

q 2 r 2 ( 1 1 ( r 2 r 1 r 1 r 2 Determine o otencial elétrico de um diolo a Num onto P qualquer, a uma distância r da carga ositiva e a uma distância r da carga negativa; b Obtenha a eressão ara ontos muito afastados do diolo. c Determine

Leia mais

Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D

Translação. Sistemas de Coordenadas. Translação. Transformações Geométricas 3D Translação Transformações Geométricas 3D Um ponto (objeto) é deslocado de uma posição para outra posição no mesmo espaço 3D Rosane Minghim Maria Cristina F. de Oliveira ICMC Universidade de São Paulo 26

Leia mais

Visualização e Projeções

Visualização e Projeções Visualização e Projeções 35M34 Sala 3E1 Bruno Motta de Carvalho DIMAp Sala 15 Ramal 227 1 Introdução Arestas de mesmo tamanho tem tamanhos aparentes diferentes Linhas paralelas convergindo História Vasos

Leia mais

7. Projeções Geométricas e Visualização 3D

7. Projeções Geométricas e Visualização 3D 7. Projeções Geométricas e Visualização 3D Aprendemos a criar e transformar geometricamente objetos 3D, no entanto, nossa janela de visualização é apenas bi-dimensional. Assim, necessitamos desenvolver

Leia mais

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D

Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática. Transformações 2D Universidade de Aveiro Departamento de Electrónica, Telecomunicações e Informática Transformações 2D Computação Visual Beatriz Sousa Santos, Joaquim Madeira Transformações 2D Posicionar, orientar e escalar

Leia mais

MATEMÁTICA Professores: Adriano, Andrey, Aurélio e Rodrigo Comentário Geral Prova bem abrangente como todos os anos, mas com dois detalhes que

MATEMÁTICA Professores: Adriano, Andrey, Aurélio e Rodrigo Comentário Geral Prova bem abrangente como todos os anos, mas com dois detalhes que MTEMÁTIC rofessores: driano, ndrey, urélio e Rodrigo Comentário Geral rova bem abrangente como todos os anos, mas com dois detalhes que chamaram a atenção. rimeiro a ausência de uma questão de trigonometria

Leia mais

Modelo gráfico do VTK: Fonte de Luz e Câmara

Modelo gráfico do VTK: Fonte de Luz e Câmara Modelo gráfico do VTK: Fonte de Luz e Câmara J. Barbosa J. Tavares Visualização Científica Fonte de Luz e Câmara Para criar uma cena 3D (render) é necessário definir pelo menos uma Fonte de Luz e uma câmara.

Leia mais

Transformações 3D. Soraia Raupp Musse

Transformações 3D. Soraia Raupp Musse Transformações 3D Soraia Raupp Musse 1 Transformações 3D Translação gltranslatef(dx, dy, dz) T(dx, dy, dz): 1 1 1 dz dy dx 2 Escala glscalef(sx, Sy, Sz) S(Sx, Sy, Sz): 1 1 Sz Sy Sx Transformações 3D Rotação

Leia mais

VIGAS. Figura 1. Graus de liberdade de uma viga no plano

VIGAS. Figura 1. Graus de liberdade de uma viga no plano VIGS 1 INTRODUÇÃO viga é um dos elementos estruturais mais utiliados em ontes, assarelas, edifícios rincialmente ela facilidade de construção. Qual a diferença entre a viga e a barra de treliça? Uma viga

Leia mais

- Aula 6 - Visualização 3D: Projeções

- Aula 6 - Visualização 3D: Projeções - Aula 6 - Visualiação 3D: Projeções Visualiação 3D Modelo geométrico Imagem Pipeline de visualiação Modificado de M.M. Oliveira Visualiação 3D câmera Projeção ortográfica projeção perspectiva câmera Projeções

Leia mais

Projeções e Transformações em 3D

Projeções e Transformações em 3D Projeções e Transformações em 3D Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário O que são projeções Conversão 3D-2D Tipos de Projeção Projeções Paralelas Projeções Isométricas

Leia mais

Sistemas de Referência

Sistemas de Referência Sistemas de Referência Um sistema de coordenada é denominado de Sistema de Referência quando servir para alguma finalidade específica; Aspectos a serem observados na definição de um sistema de referência:

Leia mais

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência.

1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. 3.1 A Circunferência EXERCÍCIOS & COMPLEMENTOS 3.1 1. Em cada caso, obtenha a equação e esboce o grá co da circunferência. (a) Centro C ( 2; 1) e raio r = 5: (b) Passa elos ontos A (5; 1) ; B (4; 2) e

Leia mais

Física B Semiextensivo V. 2

Física B Semiextensivo V. 2 Física B Semiextensivo V Exercícios 0) V V V V F 04) E 0) E Verdadeira Verdadeira Verdadeira Verdadeira Falsa Ele refrata, afastando-se da normal Resolução Na rimeira figura o raio de luz que sai do bastão

Leia mais

Transformações Geométricas em C.G.

Transformações Geométricas em C.G. Transformações Geométricas em C.G. Cap 2 (do livro texto) Aula 3, 4 e 5 UFF - 214 Geometria Euclideana : 3D Geometria Axiomas e Teoremas Coordenadas de pontos, equações dos objetos Geometria Euclideana

Leia mais

Projeções. Prof. Márcio Bueno

Projeções. Prof. Márcio Bueno Projeções Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Projeções Visão humana: enxerga em 2D, a sensação de profundidade vem da diferença entre as vistas esquerda e direita do mesmo objeto Projeção:

Leia mais

Computação Gráfica - 09

Computação Gráfica - 09 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - 9 jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav Objetos

Leia mais

Disciplina: Computação Gráfica Prof. Dr. Paulo R. G. Luzzardi. Universidade Católica de Pelotas Centro Politécnico Ciência da Computação

Disciplina: Computação Gráfica Prof. Dr. Paulo R. G. Luzzardi. Universidade Católica de Pelotas Centro Politécnico Ciência da Computação Disciplina: Computação Gráfica Prof. Dr. Paulo R. G. Luzzardi Universidade Católica de Pelotas Centro Politécnico Ciência da Computação Sumário Visualização Tridimensional Projeção Projeção Ortográfica

Leia mais

Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto

Computação Gráfica. Prof. MSc. André Yoshimi Kusumoto Computação Gráfica Prof. MSc. André Yoshimi Kusumoto andrekusumoto.unip@gmail.com Para que objetos tridimensionais possam ser visualizados é necessário que suas imagens sejam geradas na tela. Para isso,

Leia mais

Sistema de coordenadas

Sistema de coordenadas Sistema de coordenadas Sistema de coordenadas Coordenadas cartesianas Coordenadas polares Transformação sistema de coordenadas Coordenadas relativas Sistema de coordenadas cartesianas Sistema de coordenadas

Leia mais

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas

Computação Gráfica. Engenharia de Computação. CEFET/RJ campus Petrópolis. Prof. Luis Retondaro. Aula 3. Transformações Geométricas Computação Gráfica Engenharia de Computação CEFET/RJ campus Petrópolis Prof. Luis Retondaro Aula 3 Transformações Geométricas no plano e no espaço Introdução (Geometria) 2 Pontos, Vetores e Matrizes Dado

Leia mais

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno

Física III. João Francisco Fuzile Rodrigues Garcia Maiara Fernanda Moreno Física III João Francisco Fuzile Rodrigues Garcia 8549323 Maiara Fernanda Moreno 8549344 Eercício 23.85 Ao longo do eio central de um disco carregado uniformemente, em um onto a 0,60m do centro do disco,

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios FÍSICA III Caítulo 13 Sistemas Óticos Reflexivos 01 D Dados: Para odermos determinar a alternativa correta, devemos determinar, e R. Equação de Gauss: 01 A) Imagem real, untiforme

Leia mais

Projecção. Computação Gráfica. CG, JS & 2006 ISEL/DEETC/SP Computação Gráfica

Projecção. Computação Gráfica. CG, JS & 2006 ISEL/DEETC/SP Computação Gráfica rojecção Computação Gráfica CG, JS & ND @ 26 ISEL/DEETC/S Computação Gráfica ietro erugino's usage of perspective in this fresco at the Sistine Chapel (48 82) helped bring the Renaissance to Rome. 2 Sumário

Leia mais

10 Visualização em 3D - Projeções

10 Visualização em 3D - Projeções INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE CIÊNCIAS DE COMPUTAÇÃO E ESTATÍSTICA 10 Visualização em 3D - Projeções Após a criação de cenas e objetos tridimensionais o próximo passo

Leia mais

VISUALIZAÇÃO EM 3D. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR

VISUALIZAÇÃO EM 3D. Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR VISUALIZAÇÃO EM 3D Adair Santa Catarina Curso de Ciência da Computação Unioeste Campus de Cascavel PR Mar/216 Pipeline de Visualiação Corresponde a uma sequência de operações realiadas sobre os objetos

Leia mais

Programa Princípios Gerais Forças, vetores e operações vetoriais

Programa Princípios Gerais Forças, vetores e operações vetoriais Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção

Leia mais

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano.

Apresentaremos as equações do plano: Equação vetorial e Equação geral do. = AB e v. C A u B. ) não-colineares do plano. CAPÍTULO VIII PLANO Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 8.1. EQUAÇÕES DO PLANO plano. Apresentaremos as equações do

Leia mais

Projeções. Cap 2 (do livro texto) Aula 6 UFF

Projeções. Cap 2 (do livro texto) Aula 6 UFF Projeções Cap 2 (do livro texto) Aula 6 UFF - 2014 Projeções PLANAS: Classificação BÁSICA: B Características: Um objeto no espaço o 3D A forma mais simples de representar um objeto 3D em 2D é simplesmente

Leia mais

Computação Gráfica - OpenGl 02

Computação Gráfica - OpenGl 02 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Computação Gráfica - OpenGl 02 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 08 - calibração de câmera Antonio Oliveira Ricardo Marroquim 1 / 40 laboratório de processamento de imagens tópicos homografia 3D 2D distorção propriedades do centro

Leia mais

Computação Gráfica Transformações Projetivas

Computação Gráfica Transformações Projetivas Computação Gráfica Transformações Projetivas Professora: Sheila Cáceres Transformações Projetivas Projetar modelos geométricos 3D numa imagem 2D, exibível em dispositivos de saída 2D Exemplo: 2 Projeção

Leia mais

Transformações 2D. Prof. Márcio Bueno Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof.

Transformações 2D. Prof. Márcio Bueno Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Transformações 2D Prof. Márcio Bueno {cgtarde,cgnoite}@marciobueno.com Fonte: Material do Prof. Robson Pequeno de Sousa e do Prof. Robson Lins Transformações 2D Transformações Geométricas são a base de

Leia mais

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas.

Estudaremos três tipos de equações de retas: vetorial, paramétricas e simétricas. CAPÍTULO VII RETA Consideremos em V 3 o sistema de referência (O, i, j, k ), onde E = ( i, j, k ) é base ortonormal positiva e O(0, 0, 0). 7.1. EQUAÇÕES DA RETA Estudaremos três tipos de equações de retas:

Leia mais

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC

Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Universidade Federal de Alagoas UFAL Centro de Tecnologia - CTEC Programa de Pós-Graduação em Engenharia Civil - PPGEC Introdução à Mecânica do Contínuo Tensores Professor: Márcio André Araújo Cavalcante

Leia mais

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza

Geometria Analítica. Estudo do Plano. Prof Marcelo Maraschin de Souza Geometria Analítica Estudo do Plano Prof Marcelo Maraschin de Souza Plano Equação Geral do Plano Seja A(x 1, y 1, z 1 ) um ponto pertencente a um plano π e n = a, b, c, n 0, um vetor normal (ortogonal)

Leia mais

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos

Estática dos Fluidos. Prof. Dr. Marco Donisete de Campos UFMT- UNIVERSIDADE FEDERAL DE MATO GROSSO CUA - CAMPUS UNIVERSITÁRIO DO ARAGUAIA ICET - INSTITUTO DE CIÊNCIAS EXATAS E DA TERRA BACHARELADO EM ENGENHARIA CIVIL Estática dos Fluidos Prof. Dr. Marco Donisete

Leia mais

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b).

Figura 9.1: Corpo que pode ser simplificado pelo estado plano de tensões (a), estado de tensões no interior do corpo (b). 9 ESTADO PLANO DE TENSÕES E DEFORMAÇÕES As tensões e deformações em um ponto, no interior de um corpo no espaço tridimensional referenciado por um sistema cartesiano de coordenadas, consistem de três componentes

Leia mais

CONSTRUÇÕES GEOMÉTRICAS

CONSTRUÇÕES GEOMÉTRICAS CONSTRUÇÕES GEOMÉTRICAS 2014 ROF. CRISTIANO ARBEX INTRODUÇÃO Este material tem o objetivo de mostrar as principais construções geométricas utilizadas em Desenho Técnico. ara cada definição apresentada

Leia mais

Valores e vectores próprios

Valores e vectores próprios Valores e Vectores Prórios - Matemática II- /5 Valores e vectores rórios De nem-se valores e vectores rórios aenas ara matrizes quadradas, elo que, ao longo deste caítulo e quando mais nada seja eseci

Leia mais

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015

Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 Ga - retas e planos na solução de problemas 1 GA - Retas e planos na solução de problemas Prof. Fernando Carneiro Rio de Janeiro, Outubro de 2015 1 Reta concorrente a duas retas dadas Este tipo de problema

Leia mais

Transformações de Pontos. Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles

Transformações de Pontos. Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles Transformações de Pontos Computação Gráfica Prof. Dr. Paulo Roberto Gomes Luzzardi Aluna: Karina da Silva Salles Sumário Motivação Definição Translação Escala Rotação Reflexão Shearing Referências Motivação

Leia mais

Vetores no plano Cartesiano

Vetores no plano Cartesiano Vetores no plano Cartesiano 1) Definição de vetor Um vetor (geométrico) no plano R² é uma classe de objetos matemáticos (segmentos) com a mesma direção, mesmo sentido e mesmo módulo (intensidade). 1. A

Leia mais

2, que distam de duas unidades da origem. Nesse caso, a soma das abcissas dos dois pontos é : 8 C. 5

2, que distam de duas unidades da origem. Nesse caso, a soma das abcissas dos dois pontos é : 8 C. 5 Instituto Suerior Politécnico de Tete / Exame de Admissão de Matemática /. Sejam A e B dois ontos da recta de equação y = x+, que distam de duas unidades da origem. Nesse caso, a soma das acissas dos dois

Leia mais

Geometria Analítica. Prof. M.Sc. Guilherme Schünemann

Geometria Analítica. Prof. M.Sc. Guilherme Schünemann Geometria Analítica Prof. M.Sc. Guilherme Schünemann Ponto de partida Um ponto é a unidade básica de toda a geometria analítica. A partir dele, definem-se retas, segmentos, vetores, planos, etc. Reta definida

Leia mais

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1

. (1) Se S é o espaço vetorial gerado pelos vetores 1 e,0,1 QUESTÕES ANPEC ÁLGEBRA LINEAR QUESTÃO 0 Assinale V (verdadeiro) ou F (falso): (0) Os vetores (,, ) (,,) e (, 0,) formam uma base de,, o espaço vetorial gerado por,, e,, passa pela origem na direção de,,

Leia mais

Lista de Exercícios de Cálculo 3 Primeira Semana

Lista de Exercícios de Cálculo 3 Primeira Semana Lista de Exercícios de Cálculo 3 Primeira Semana Parte A 1. Se v é um vetor no plano que está no primeiro quadrante, faz um ângulo de π/3 com o eixo x positivo e tem módulo v = 4, determine suas componentes.

Leia mais

Processamento de Imagens CPS755

Processamento de Imagens CPS755 Processamento de Imagens CPS755 aula 07 - modelos de câmera Antonio Oliveira Ricardo Marroquim 1 / 32 laboratório de processamento de imagens tópicos matriz de calibração câmera finita câmera projetiva

Leia mais

PTR 5003 PLANO TOPOGRÁFICO LOCAL

PTR 5003 PLANO TOPOGRÁFICO LOCAL PTR 5003 PLANO TOPOGRÁFICO LOCAL Incluído na NBR 14166/98 1 NBR- 14166: Rede de Referência Cadastral Municial Procedimento (Agosto, 1998) Objetivo Esta norma fixa as condições exigíveis ara a imlantação

Leia mais

4. Curvas Paramétricas e Transformações 2D

4. Curvas Paramétricas e Transformações 2D 4. Curvas Paramétricas e Transformações 2D Curvas Paramétricas (fonte: Wikipédia) Em matemática, uma equação paramétrica é uma forma de representar uma curva (ou, em geral, uma superfície) como a imagem

Leia mais

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco

GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA. 03/01/ GGM - UFF Dirce Uesu Pesco GEOMETRIA ANALÍTICA E CÁLCULO VETORIAL GEOMETRIA ANALÍTICA BÁSICA 03/01/2013 - GGM - UFF Dirce Uesu Pesco CÔNICAS Equação geral do segundo grau a duas variáveis x e y onde A, B e C não são simultaneamente

Leia mais

Transformações de Visualização 2D: Clipping. Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Transformações de Visualização 2D: Clipping. Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Transformações de Visualização 2D: Clipping Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro 1 Clipping (recorte) Qualquer procedimento que identifica porções de uma figura que estão

Leia mais

Função par e função ímpar

Função par e função ímpar Pré-Cálculo Humberto José Bortolossi Deartamento de Matemática Alicada Universidade Federal Fluminense Função ar e função ímar Parte 3 Parte 3 Pré-Cálculo 1 Parte 3 Pré-Cálculo 2 Função ar Definição Função

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1

Solução dos exercícios do capítulo 2, pp (a) Expansão isotérmica de um gás ideal. Trabalho: pdv = NRT 1 Solução dos exercícios do caítulo 2,. 31-32 Equações de um gás ideal = NRT U = NcT U = c R Exercício 1. (a) Exansão isotérmica de um gás ideal. Trabalho: W = 2 1 d = NRT 2 1 1 d = NRT ln 2 1 omo a energia

Leia mais

3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo

3D no OpenGL. Visualização e Transformações Perspectiva. Transformações do Modelview. Processo Visualização e Transformações Perspectiva 3D no OpenGL Para gerar imagens de um objeto 3D, é necessário compreender transformações perspectiva Foley & van Dam - Cap. 6 Notas de aula do Prof. Mount: aulas

Leia mais

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE

Matemática I Cálculo I Unidade B - Cônicas. Profª Msc. Débora Bastos. IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE Unidade B - Cônicas Profª Msc. Débora Bastos IFRS Campus Rio Grande FURG UNIVERSIDADE FEDERAL DO RIO GRANDE 22 12. Cônicas São chamadas cônicas as curvas resultantes do corte de um cone duplo com um plano.

Leia mais

Vetor Tangente, Normal e Binormal. T(t) = r (t)

Vetor Tangente, Normal e Binormal. T(t) = r (t) CVE 0003 - - CÁLCULO VETORIAL - - 2011/2 Vetor Tangente, Normal e Binormal Lembre-se que se C é uma curva suave dada pela função vetorial r(t), então r (t) é contínua e r (t) 0. Além disso, o vetor r (t)

Leia mais

PROAC / COSEAC - Gabarito. Prova de Física. 1 a Questão: (2,0 pontos) Q Q. Figura I Figura II. Figura III

PROAC / COSEAC - Gabarito. Prova de Física. 1 a Questão: (2,0 pontos) Q Q. Figura I Figura II. Figura III Prova de Física a Questão: (,0 ontos) Uma esfera de ferro com massa M = 0,50 Kg, resa a um fio inextensível de comrimento l =,5 m, descreve uma circunferência vertical de raio igual ao comrimento do fio

Leia mais

Notas em Álgebra Linear

Notas em Álgebra Linear Notas em Álgebra Linear 1 Pedro Rafael Lopes Fernandes Definições básicas Uma equação linear, nas variáveis é uma equação que pode ser escrita na forma: onde e os coeficientes são números reais ou complexos,

Leia mais

Pipeline de Visualização Câmara Virtual

Pipeline de Visualização Câmara Virtual Pipeline de Visualização Câmara Virtual Edward Angel, Cap. 5 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Composição de Transformações Deformação

Leia mais

CAPÍTULO 6 MOMENTO TORSOR

CAPÍTULO 6 MOMENTO TORSOR CPÍTULO 6 MOMENTO TORSOR 1) INTRODUÇÃO a) O objetivo é a análise de barras sujeitas à torção ura, isto é, cujas seções estão sujeitas somente a mome0nto torsor (torque) Portanto, se retende analisar somente

Leia mais

Mudança de Coordenadas

Mudança de Coordenadas Mudanças de Coordenadas Mudança de Coordenadas A origem O = (0, 0, 0) e os vetores i, j, k da base canônica de R determinam um sistema de coordenadas: se as coordenadas de um ponto no espaço são (x, y,

Leia mais

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas

Introdução ao Processamento e Síntese de imagens Transformações de Visualização: Matrizes Homogêneas Introução ao rocessamento e íntese e imagens ransformações e Visualiação: Matries Homogêneas Júlio Kioshi Hasegawa Fontes: Esperança e Cavalcanti UFRJ; raina e Oliveira 4 U; e Antonio Maria Garcia ommaselli

Leia mais

3 Propagação em ambientes abertos na faixa GHz

3 Propagação em ambientes abertos na faixa GHz 3 Proagação em ambientes abertos na faixa 10-66 GHz Na faixa de freqüências de oeração entre 10 e 66 GHz, a existência de visada direta é muito imortante ara viabilizar a comunicação de sistemas sem fio

Leia mais

Visualização 2D: - Transformação window to viewport - Clipping

Visualização 2D: - Transformação window to viewport - Clipping Visualização 2D: - Transformação window to viewport - Clipping Sistemas Gráficos/ Computação Gráfica e Interfaces 1 Transformação de Visualização (window to viewport) Objectivo: obter uma matriz de transformação

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Prova Fundamentos Computação Gráfica

Prova Fundamentos Computação Gráfica Pontifícia Universidade Católica do Rio de Janeiro Pós-Graduação em Informática Prova Fundamentos Computação Gráfica Nome: Eduardo Ceretta Dalla Favera Matricula: 1012631 Rio de Janeiro, 7 de julho de

Leia mais

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos

Álgebra Linear e Geometria Anaĺıtica. Vetores, Retas e Planos universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 3 Vetores, Retas e lanos roduto interno em R n [3 01] Dados os vetores X =

Leia mais

Transformações Geométricas

Transformações Geométricas Transformações Geométricas Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário Tópicos da aula de hoje: Por que transformações? Classificação das transformações Transformações

Leia mais

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum. Vetores Uma partícula que se move em linha reta pode se deslocar em apenas uma direção, sendo o deslocamento positivo em uma e negativo na outra direção. Quando uma partícula se move em três dimensões,

Leia mais

Geometria Descritiva Mudança de Planos Introdução

Geometria Descritiva Mudança de Planos Introdução Mudança de Planos Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos projectantes. Caso contrário as projecções

Leia mais

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS

CAPÍTULO 9 CINEMÁTICA DO MOVIMENTO ESPACIAL DE CORPOS RÍGIDOS 82 CPÍTULO 9 CINEMÁTIC DO MOVIMENTO ESPCIL DE CORPOS RÍGIDOS O estudo da dinâmica do corpo rígido requer o conhecimento da aceleração do centro de massa e das características cinemáticas do corpo denominadas

Leia mais

REVISÃO DE ANÁLISE TENSORIAL

REVISÃO DE ANÁLISE TENSORIAL REVISÃO DE ANÁLISE TENSORIAL 1.1- Vetores Espaciais Def.: Para cada par de pontos (a,b) do espaço E, existe um segmento de linha ab, caracterizado por um comprimento e uma direção. -Conjunto de vetores

Leia mais

ESPAÇOS VETORIAIS EUCLIDIANOS

ESPAÇOS VETORIAIS EUCLIDIANOS ESPAÇOS VETORIAIS EUCLIDIANOS Produto interno em espaços vetoriais Estamos interessados em formalizar os conceitos de comprimento de um vetor e ângulos entre dois vetores. Esses conceitos permitirão uma

Leia mais

1 Para expressar um ponto intermediário em função dos pontos extremos, precisamos

1 Para expressar um ponto intermediário em função dos pontos extremos, precisamos Resolução da Primeira Lista de Exercícios de Fundamentos de Computação Gráfica INF01047 Carlos Eduardo Ramisch Cartão 134657 Turma B Prof.ª Luciana Porcher Nedel Porto Alegre, 03 de abril de 2006. 1 Para

Leia mais

Visualização. - Aula 4 -

Visualização. - Aula 4 - Visualização - Aula 4 - Pipeline de visualização 2D window recorte mapeamento viewport descrição geométrica rasterização Visualização de objetos 2D y viewport 1 região (window) 1 região (window) 2 viewport

Leia mais

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco

Modelagem Cinemática de Robôs Industriais. Prof. Assoc. Mário Luiz Tronco Modelagem Cinemática de Robôs Industriais Prof. Assoc. Mário Luiz Tronco Transformação direta de coordenadas 1 2... N Variáveis de junta Variáveis cartesianas Transformação inversa de coordenadas Transformação

Leia mais

Vetores. Prof. Marco Simões

Vetores. Prof. Marco Simões Vetores Prof. Marco Simões Tipos de grandezas Grandezas escalares São definidas por um único valor, ou módulo Exemplos: massa, temperatura, pressão, densidade, carga elétrica, etc Grandezas vetoriais Necessitam,

Leia mais

Transformações Geométricas Grafos de Cena

Transformações Geométricas Grafos de Cena Transformações Geométricas Grafos de Cena Edward Angel, Cap. 4 Instituto Superior Técnico Computação Gráfica 2009/2010 1 Na última aula... Transformações Geométricas Translação Escala Rotação Espaço Homogéneo

Leia mais

Imagem Vetorial x Imagem Matricial. Conversão Matricial de Primitivas Gráficas. Sistema de Coordenadas do Dispositivo. Problema

Imagem Vetorial x Imagem Matricial. Conversão Matricial de Primitivas Gráficas. Sistema de Coordenadas do Dispositivo. Problema Conversão Matricial de Primitivas Gráficas Imagem Vetorial x Imagem Matricial Maria Cristina F. de Oliveira março 2009 2 Problema Traçar primitivas geométricas (segmentos de reta, polígonos, circunferências,

Leia mais

Algoritmos de Recorte em 2D

Algoritmos de Recorte em 2D Algoritmos de Recorte em 2D Computação Gráfica DCC065 Prof. Rodrigo Luis de Souza da Silva, D.Sc. Sumário Conceito de Recorte (Clipping) Introdução Algoritmo simples (Força Bruta) Algoritmo de Cohen-Sutherland

Leia mais

Projeções: conceitos. Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção

Projeções: conceitos. Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção Projeções Projeções: conceitos Projetar pontos no espaço d dimensional no plano d-1 dimensional, usando um ponto especial chamado centro de projeção Pontos no espaço 3D projetados em um plano 2D centro

Leia mais

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor

A primeira coisa a fazer é saber quais são as equações das curvas quando elas já se encontram na melhor Identificação de Cônicas Uma equação do segundo grau ax + bxy + cy + dx + ey + f = 0 define de maneira implícita uma curva no plano xy: o conjunto dos pontos (x, y) que satisfazem a equação. Por exemplo,

Leia mais

Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Modelos e modelagem. Modelos e modelagem. Transformações Geométricas e Visualização 2D

Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Modelos e modelagem. Modelos e modelagem. Transformações Geométricas e Visualização 2D Sumário COMPUTAÇÃO GRÁFICA E INTERFACES Transformações Geométricas e Visualização D Transformações geométricas Pipeline de visualização D Transformação de coordenadas Window-Viewport Recorte (Clipping)

Leia mais

Objetiva se Normal, Grande angular ou Tele-objetiva

Objetiva se Normal, Grande angular ou Tele-objetiva O B J E T I V A S Lentes e objetivas Chamamos de LENTE a um vidro polido com características específicas capazes de, ao transmitir os raios de luz que por ele passam, formar uma imagem qualquer sob determinadas

Leia mais

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1.

10. Determine as equações cartesianas das famílias de retas que fazem um ângulo de π/4 radianos com a reta y = 2x + 1. Geometria Analítica. 1. Determine as posições relativas e as interseções entre os conjuntos em R abaixo. Em cada item também faça um esboço dos dois conjuntos dados no mesmo sistema de eixos. (a) C : (x

Leia mais

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro

Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Transformações Gráficas Tridimensionais (3D) Antonio L. Bajuelos Departamento de Matemática Universidade de Aveiro Introdução A manipulação, visualiação e a construção de imagens gráficas tridimensionais

Leia mais

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP

Curso de Geomática Aula 2. Prof. Dr. Irineu da Silva EESC-USP Curso de Geomática Aula Prof. Dr. Irineu da Silva EESC-USP Sistemas de Coordenadas Determinar a posição de um ponto, em Geomática, significa calcular as suas coordenadas. Calcular as coordenadas de um

Leia mais

! Permite representac~ao invariante da superfcie.! Importante para reconhecimento e manipulac~ao. p x. q x C B. p y. q y

! Permite representac~ao invariante da superfcie.! Importante para reconhecimento e manipulac~ao. p x. q x C B. p y. q y Estimac~ao de urvatura Informac~ao de urvatura! Permite reresentac~ao invariante da suerfcie! Imortante ara reconhecimento e maniulac~ao Maa de Reect^ancia e urvatura I(; ) =R(; ) Diferenciando em relac~ao

Leia mais