Resolução Revisaço 3
|
|
|
- Stella Carvalhal Lagos
- 7 Há anos
- Visualizações:
Transcrição
1 Resolução Revisaço 3
2 01. D Probabilidade!!! Página 7 Para a equipe R Ganhar: 80 % Empatar: 15 % Perder: 5 % Para a equipe S Ganhar: 40 % Empatar: 20 % Perder: 40 % R ganhar e S perder = 80%. 40% = 32% R ganhar e S empatar = 80%. 20% = 16% R Empatar e S perder = 15%. 40 % = 6% Total = 54 %
3 02. C Probabilidade!!! Página 7 I = 0, 0433 II = 0, 075 III - IV = 0, 0818 = 0, 0393 V = 0, 0628
4 03. C Probabilidade!!! Página 7 Sábado Chover: 30 % Não chover: 70% Domingo Chover: 25 % Não chover: 75% O única forma de ter aula no domingo é se chover no sábado e não chover no domingo: 30%. 75% = 22,5%
5 04. A Geometria Plana!!! Página 7 Raio da circunferência = 10 m Área = π.10 2 = 300 m 2 Sabe se que a diagonal do quadrado é igual ao diâmetro da circunferência. Logo, l 2 = 2r l 2 = l = 10 2 m Área = l 2 = 200 m 2 Área Marrom = = 100 m 2 Se ele utiliza 1 saco para cada metro quadrado, será necessários 100 sacos.
6 05. B Geometria Plana!!! Página 7 Área interna = π.r 2 Área externa = π.r 2 π.r 2 = π.r 2 - π.r 2 r 2 = R 2 - r 2 2r 2 = R 2 R = r 2
7 06. B Geometria Plana!!! Página 8 Se o diâmetro da pizza é de 30cm então seu raio possui 15cm. Portanto: A = πr² = π(15)² = 225π cm² (área da pizza tradicional) Agora que sabemos a área total, só precisamos dividir esse valor por 8 para descobrir a área de cada pedaço da pizza comum. 225π/8 = 225/8 π cm² Agora sabemos que a família quer fazer uma pizza de 10 pedaços com a mesma área dos pedaços da pizza comum, portanto basta multiplicarmos a área do pedaço por 10 e teremos a área da pizza que a família quer fazer: /8π = 2250/8πcm²
8 06. B Continuação O que o exercício nos pede é o valor aproximado do raio da circunferência da pizza feita pela família, e para isso basta novamente recorrermos a fórmula da área da circunferência: πr² = 2250/8π R² = 2250/8 R = 7,5 5 R = 7,5*2,2 = 16,5cm
9 07. B Probabilidade!!! Página 8 Temos que o quanto cada criança irá percorrer é 10 vezes o comprimento de cada circunferência em que elas estão. Assim, temos: C1 = π r C1 = C1 = 240 m C1 = π r C2 = C2 = 180 m = 60 m.
10 08. D Probabilidade!!! Página 8 Como são 4 pessoas por metro quadrado, a cada m² temos 4 pessoas, assim, sendo P o número máximo de pessoas: P = = pessoas
11 09. B Geometria Espacial!!! Página 8 H 204 m h 107 cm = h 2 h 2 = h 2 = H = H cm 107 cm H = 136,8 m 214 m
12 10. D Geometria Espacial!!! Página 8 A embalagem adequada é a que mais se ajusta as dimensões do bolo e de acordo com as dimensões disponíveis a embalagem mais econômica é a IV por conseguir cobrir todas as dimensões: Altura, largura e comprimento deixando o menor espaço possível.
13 11. D Geometria Espacial!!! Página 9 A questão nos pede o volume dos dois, ou seja, precisamos somar o volume do cone com o do cilindro. Assim, chegamos em: O caminhão de 20m3 precisa fazer 351 / 20 = 17,55 viagens. Arredondando, o número mínimo de viagens é 18. Veja que a resposta correta não pode ser 17, porque com 17 viagens de 20 m2 cada, ainda faltaria. Logo, precisamos arredondar pra cima.
14 12. C Geometria Espacial!!! Página 9 Volume total = = 2000 cm 3 Como já foi colocado 1000 cm 2, apos o aumento de 25 % ele vai ocupar 1250 cm 3 restando assim 750 cm 3. O volume x deve ser colocado considerando que após um aumento de 25 % ele ocupe tudo isso. Logo, 1,25 x = 750 x = 600 cm 3
15 13. B Estatística!!! Página 9 Para o set da Itália (16, 20, 26, 27, 16), em ordem crescente teremos: {16, 16, 20, 26, 27}. Como esse conjunto de dados possuem uma quantidade ímpar de elementos, a mediana é o valor que divide o conjunto ao meio, neste caso o número 20.
16 14. A Estatística!!! Página 9 Para encontrar a moda, devemos encontrar qual é o termo que aparece mais vezes. Analisando o gráfico, vimos existem mais crianças de 9 anos, logo, 9 é o termo que aparece mais vezes, assim, a moda é 9.
17 15. C Estatística!!! Página 9 O atleta mais regular será aquele com menor desvio padrão. Quanto menor o desvio padrão, mas homogêneos serão os dados. Logo, é menor desvio padrão é do atleta III.
18 16. B Razão e Proporção!!! Página m 3 dividido por 300 dias dará o quanto deveriam recolher diariamente para a meta ser atingida /300 = 2600 m 3 /dia
19 17. E Razão e Proporção!!! Página 10 5 cm 25 km = 5 cm cm = cm
20 18. B Razão e Proporção!!! Página 10 (2007; 27) (2011; 48) (2013; x) x = X = 58,5 %
21 19. D Razão e Proporção!!! Página 10 Cama: C. 0,8 = 450 C = 562,5 Desconto de R$ 112,50 Colchão: C. 0,8 = 350 C = 437,5 Desconto de R$ 87,50 Mesa: M. 0,8 = 300 M = 375 Desconto de R$ 75,00 Pia de Cozinha: P. 0,8 = 400 P = 500 Desconto de R$ 100,00 Desconto total = , , = R$ 900,00
22 20. D Razão e Proporção!!! Página ; 1, ; 1,2. 1, ;... Queremos saber a soma dos 6 primeiros termos de uma PG. Sn = a1.(qn ) q 1 S 6 = 300.(1,26 1 ) 1,2 1 S 6 = R$ 2978,00
23 21. A Razão e Proporção!!! Página 11 De acordo com o gráfico, quando ele não vende nada o valor do seu salario é de 800 reais. Logo, esse valor é fixo. Sabe se também que quando ele vende R$ ,00 o seu salario é de R$ 1200,00 e como ele tem R$ 800 fixo, sua comissão foi de R$ 400,00. Logo a porcentagem de comissão é: = 2 %
24 22. B Razão e Proporção!!! Página 11 2,4 m H V = 1,2 V 1 3. π r2. H = 1,2 π r 2. H 3R Volume: V R Volume: V 1 3. π (3R)2. 2, 4 = 1,2 π R 2. H H = 6 metros
25 23. C Razão e Proporção!!! Página 11 Custo Potência Tempo C T C = 3600 T C T = 3 1
26 24. E Razão e Proporção!!! Página 11 Custo Fi Ff Potência r 4 (1,1r) 4 Fi Ff = r4 (1,1r) 4 Ff = 1, 1 4 Fi Ff = 1,4641 Fi
27 25. D Razão e Proporção!!! Página 11 Como 75% afirma ter esse hábito e 26% é quem faz 3 vezes na semana, queremos 26% dos 75%, logo: 26/ /100 = 0,195 = 19,5%
28 26. B Razão e Proporção!!! Página 12 40% de 5000 mg = 2000 mg
29 27. A Razão e Proporção!!! Página 12 Temos 8 em cada 10 homens, então, representamos pela fração 8/10, que escrito na forma de porcentagem é 80/100 = 80%.
30 28. C Razão e Proporção!!! Página 12 Tempo Funcionário Camisa T = T T = 9 horas
31 29. B Inicio: pinicio = m v pinicio = Fim: m π R 2 h Razão e Proporção!!! Página 12 pinicio = pfim m π = 2m R 2 h π (2R) 2 H 1 = 2 h 4H pfim = 2m v pfim = 2m π (2R) 2 H 4H = 2h H = h/2
32 30. D Razão e Proporção!!! Página 12 3 xícaras de açúcar = 4 xícaras de farinha de trigo 3 xícaras de açúcar = 4 * 120 g = 480 g 1 xícara de açúcar = 480 g/3 = 160 g
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
Resolução da 8ª lista de exercícios
Resolução da 8ª lista de exercícios O raio da circunferência é dado pela distância do seu centro a qualquer ponto da circunferência ssim: r d( P, ) (0) + (+ ) 49+ 57) 5 5 Um ponto sobre o eixo das abscissas
ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE. Professor: LILIAN SAUEIA CACCURI
ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE Nome: º ano Data: / / 2019 Professor: LILIAN SAUEIA CACCURI 1. Qual o volume de um tronco de pirâmide sabendo que suas bases são quadrados de lados 4 cm
Pode-se observar que a escada forma com o solo um triângulo retângulo, conforme a figura: h =7x
I OLIMPÍADA DE MATEMÁTICA DOS INSTITUTOS FEDERAIS RESOLUÇÃO DO SIMULADO QUESTÃO 01 - RESOLUÇÃO ALTERNATIVA: A Sabe-se que o primeiro passa a informação para o segundo com a probabilidade de 2/3, o segundo
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série
Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.
Responder todas as questões em folha A4. Entregar na data da realização da prova.
INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 2015 PROVA MODELO DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de
POTENCIAÇÃO EXERCÍCIOS DO ENEM
POTENCIAÇÃO EXERCÍCIOS DO ENEM E1166 (ENEM 2015 QUESTÃO 155) O fisiologista francês Jean Poiseuille estabeleceu, na primeira metade do século XIX, que o fluxo de sangue por meio de um vaso sanguíneo em
O perímetro da figura é a soma de todos os seus lados: P = P =
PERÍMETRO Prof. Patricia Caldana O cálculo do perímetro de uma região pode vir a ser útil em certas situações do dia a dia; como por exemplo para se determinar a quantidade de arame farpado que é necessário
Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π.
Gabarito: Resposta da questão 1: [B] Calculando as áreas de cada uma das pizzas, tem-se: Pizza broto inteira π15 5π Pizza gigante inteira π0 400π Utilizando a regra de três, pode-se escrever: 5π 7 400π
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:
GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2
REVISÃO DOS CONTEÚDOS
REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.
Unidade 6 Geometria: polígonos e circunferências
Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..
Matéria: Matemática Assunto: Volume Prof. Dudan
Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como
C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.
MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08
LISTA 4 = PIRÂMIDES E CONES
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius
Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos)
MATEMÁTICA FRAÇÕES E NÚMEROS DECIMAIS Fração quer dizer pedaços do mesmo tamanho. Você tem um chocolate dividido em 5 partes iguais. Dessas 5 partes você comeu 2. A fração que representa essa situação
MAIS SOBRE MEDIDAS RESUMO. * é muito influenciada por valor atípico
MAIS SOBRE MEDIDAS RESUMO Medidas de Tendência Central (1) média (aritmética) * só para variáveis quantitativas exceção: variável qualitativa nominal dicotômica, com categorias codificadas em 0 e 1; neste
Mat. Rafael Jesus. Monitor: Fernanda Aranzate
Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância
Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho
Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
RESOLUÇÕES COMENTADAS
SIMULAO AMARELO MATEMÁTICA RESOLUÇÕES COMENTAAS. d As partes a serem divididas são x, y e z. I. x + y + z.000 II. x 0y z s y s x e z y Substituindo II em I, temos: y + y + y.000 s y + 0y + y 0.000 s s
Amostragem Aleatória e Descrição de Dados - parte I
Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:
Sequência divergente: toda sequência que não é convergente.
1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse
COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI
COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI RESOLUÇÃO COMENTADA DA PROVA DE MATEMÁTICA DO ENEC 2014 ITAJAI 2015
Uma certa quantidade de latas de atum vai ser disposta em uma pilha de 30 camadas. Determine a quantidade de latas de pilha.
DISCIPLINA: MATEMÁTICA PROFESSORES: ROGÊRIO E CLÁUDIO DATA DE ENTREGA:19/12/2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 2ª SÉRIE UNIDADE ANCHIETA TURMA: ALUNO (A): Nº: Os conteúdos selecionados
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho
Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
Nível 4.º e 5.º anos do Ensino Fundamental
Nível 4.º e 5.º anos do Ensino Fundamental A QUESTÃO 1 ALTERNATIVA C Basta fazer a conta: 2018 8012 + 10030 QUESTÃO 2 O número de pessoas que chegaram ao ponto final é igual ao resultado da operação 25
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.
Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância
MATEMÁTICA: KELLER LOPES A MOTIVAÇÃO
MATEMÁTICA: KELLER LOPES A MOTIVAÇÃO DICA N 1 MODA, MÉDIA E MEDIANA É preciso colocar os dados em ordem para calcular a mediana 6,8%, 7.5%; 7,6%; 7,6%; 7.7%; 7,9%; 7,9%; 8,1%; 8.%; 8,5%; 8,5%; 8,6%; 8.9%;
TEMA 3 GEOMETRIA E MEDIDA FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA E MEDIDA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess
FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA E MEDIDA Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 3 GEOMETRIA E MEDIDA 2016 2017 Matemática A 9.º Ano Fichas
Valter B. Dantas. Momento de Inércia
Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Apostila De Matemática ESFERA
Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual
SOMENTE COM CANETA AZUL
Nome completo: Turma: Unidade: SIMULADO 8 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/0 - sexta-feira º A DI 07 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI. A prova terá duração de horas e 0 minutos..
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
Gabarito Prova da Primeira Fase - Nível Alfa
. Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida
Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto
Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos
CADERNO DE EXERCÍCIOS 2A
CADERNO DE EXERCÍCIOS A Ensino Fundamental Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Raio e diâmetro da circunferência H4 Ângulos H6 3 Operações com números H9 negativos
REVISÃO DE MATEMÁTICA BÁSICA
REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original
AULA 01 Razão, Proporção e regra de Três
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professoras Elvira e Larissa AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas diretamente proporcionais;
Olimpíada Mineira de Matemática 2008
Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração
Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8ª Série / 9º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 A área do quadrado a seguir é 49 cm 2. O valor de X, em
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015
Teste de Avaliação. Nome N. o Turma Data /maio/2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data /maio/2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno
AULA 01 Razão, Proporção e regra de Três
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina, Luísa e Bruno AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas
MATEMÁTICA Professores: Andrey, Cristiano e Julio
MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5
CPV O cursinho que mais aprova na GV
O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca
Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda
Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.
Mat. Professor: Monitor: Roberta Teixeira
Professor: PC Monitor: Roberta Teixeira Exercícios de circunferência: 10 exercícios 17 ago EXERCÍCIOS DE AULA 1. Um disco de raio 1 gira ao longo de uma reta coordenada na direção positiva, corno representado
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos
Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 205 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita
LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS
LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS Prof. Maria José Ferreira da Silva [email protected] Porque as dificuldades no ensino? Porque as dificuldades na aprendizagem? GRANDEZAS Quantificar significa
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte
CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte 4.3 Medidas de posição 4.4 Medidas de dispersão 4.5 Separatrizes Prof. franke 2 Vimos que a informação contida num conjunto de dados pode ser resumida
Funções Potência. Cubo - Definições
Funções Potência Aula 06 Cubo - Definições 1 Cubo-Arestas Área de Superfície do Cubo Se estivéssemos pintando um cubo, a área da superfície nos diria quanto de área teríamos que cobrir com tinta. Cada
OLIMPÍADA LAVRENSE DE MATEMÁTICA 2016
OLIMPÍADA LAVRENSE DE MATEMÁTICA 2016 Nível II - 1 a fase Nome: Série: Instruções: A duração da prova é de 2h30min. O tempo mínimo de permanência em sala é de 20 minutos. A prova tem 10 questões de múltipla
Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA
ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 21.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3
e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina
Mat. Monitor: Roberta Teixeira
1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos
Matemática Básica 1 = x = 64 agricultores. Gabarito: d
Baiano ACAFE Matemática Básica Infelizmente, durante a ocupação do Brasil, a maior parte de sua vegetação, principalmente na região sudeste, foi sendo derrubada para a extração da madeira e, depois, plantio
Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE
Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.
CPV conquista 93% das vagas do ibmec
conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.
INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II
INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
TESTE DE MATEMÁTICA 9.º ano
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Do plantel de uma determinada equipa de futebol fazem parte quatro defesas centrais: o André, o Bernardo, o Custódio e o Daniel. Num treino, é necessário
Resolução de Questões das Listas de Cálculo de Uma Variável:
Eercícios resolvidos: Cálculo I -A- Cálculo Diferencial e Integral Aplicado I Cálculo Aplicado I Lista Questão Lista Questão 20 20 6 6 40 40 4 4 2 2 4 6 4 6 4 24 4 24 5 8 5 8 8 8 9 9 9 4 9 4 2 0 2 0 7
CADERNO DE EXERCÍCIOS 2B
CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema
a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00
Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.
Olimpíada Paranaense de Matemática Segunda Fase Nível 3 23/09/16 Duração: 4 horas e 30 minutos
1. Números pentagonais, P (n), são números que são dados pelas quantidades de bolinhas na seguinte sequência de pentágonos Os quatro primeiros números pentagonais são P (1) = 1, P (2) = 5, P (3) = 12 e
Dado que há um número ímpar de elementos, a mediana será o elemento que coincide com o seguinte:
Olá pessoal! Vamos às questões! A banca foi a FGV. Exercício 1 A seguinte amostra de idades foi obtida: 19; 25; 39; 20; 16; 27; 40; 38; 28; 32; 30. Assinale a opção que indica a mediana dessas idades.
Revisão de Matemática
UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos
COMENTÁRIO DA PROVA DE MATEMÁTICA Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos Utilizamos a seguir alguns critérios para comentar a prova de Matemática da ª fase
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
