Resolução Revisaço 3

Tamanho: px
Começar a partir da página:

Download "Resolução Revisaço 3"

Transcrição

1 Resolução Revisaço 3

2 01. D Probabilidade!!! Página 7 Para a equipe R Ganhar: 80 % Empatar: 15 % Perder: 5 % Para a equipe S Ganhar: 40 % Empatar: 20 % Perder: 40 % R ganhar e S perder = 80%. 40% = 32% R ganhar e S empatar = 80%. 20% = 16% R Empatar e S perder = 15%. 40 % = 6% Total = 54 %

3 02. C Probabilidade!!! Página 7 I = 0, 0433 II = 0, 075 III - IV = 0, 0818 = 0, 0393 V = 0, 0628

4 03. C Probabilidade!!! Página 7 Sábado Chover: 30 % Não chover: 70% Domingo Chover: 25 % Não chover: 75% O única forma de ter aula no domingo é se chover no sábado e não chover no domingo: 30%. 75% = 22,5%

5 04. A Geometria Plana!!! Página 7 Raio da circunferência = 10 m Área = π.10 2 = 300 m 2 Sabe se que a diagonal do quadrado é igual ao diâmetro da circunferência. Logo, l 2 = 2r l 2 = l = 10 2 m Área = l 2 = 200 m 2 Área Marrom = = 100 m 2 Se ele utiliza 1 saco para cada metro quadrado, será necessários 100 sacos.

6 05. B Geometria Plana!!! Página 7 Área interna = π.r 2 Área externa = π.r 2 π.r 2 = π.r 2 - π.r 2 r 2 = R 2 - r 2 2r 2 = R 2 R = r 2

7 06. B Geometria Plana!!! Página 8 Se o diâmetro da pizza é de 30cm então seu raio possui 15cm. Portanto: A = πr² = π(15)² = 225π cm² (área da pizza tradicional) Agora que sabemos a área total, só precisamos dividir esse valor por 8 para descobrir a área de cada pedaço da pizza comum. 225π/8 = 225/8 π cm² Agora sabemos que a família quer fazer uma pizza de 10 pedaços com a mesma área dos pedaços da pizza comum, portanto basta multiplicarmos a área do pedaço por 10 e teremos a área da pizza que a família quer fazer: /8π = 2250/8πcm²

8 06. B Continuação O que o exercício nos pede é o valor aproximado do raio da circunferência da pizza feita pela família, e para isso basta novamente recorrermos a fórmula da área da circunferência: πr² = 2250/8π R² = 2250/8 R = 7,5 5 R = 7,5*2,2 = 16,5cm

9 07. B Probabilidade!!! Página 8 Temos que o quanto cada criança irá percorrer é 10 vezes o comprimento de cada circunferência em que elas estão. Assim, temos: C1 = π r C1 = C1 = 240 m C1 = π r C2 = C2 = 180 m = 60 m.

10 08. D Probabilidade!!! Página 8 Como são 4 pessoas por metro quadrado, a cada m² temos 4 pessoas, assim, sendo P o número máximo de pessoas: P = = pessoas

11 09. B Geometria Espacial!!! Página 8 H 204 m h 107 cm = h 2 h 2 = h 2 = H = H cm 107 cm H = 136,8 m 214 m

12 10. D Geometria Espacial!!! Página 8 A embalagem adequada é a que mais se ajusta as dimensões do bolo e de acordo com as dimensões disponíveis a embalagem mais econômica é a IV por conseguir cobrir todas as dimensões: Altura, largura e comprimento deixando o menor espaço possível.

13 11. D Geometria Espacial!!! Página 9 A questão nos pede o volume dos dois, ou seja, precisamos somar o volume do cone com o do cilindro. Assim, chegamos em: O caminhão de 20m3 precisa fazer 351 / 20 = 17,55 viagens. Arredondando, o número mínimo de viagens é 18. Veja que a resposta correta não pode ser 17, porque com 17 viagens de 20 m2 cada, ainda faltaria. Logo, precisamos arredondar pra cima.

14 12. C Geometria Espacial!!! Página 9 Volume total = = 2000 cm 3 Como já foi colocado 1000 cm 2, apos o aumento de 25 % ele vai ocupar 1250 cm 3 restando assim 750 cm 3. O volume x deve ser colocado considerando que após um aumento de 25 % ele ocupe tudo isso. Logo, 1,25 x = 750 x = 600 cm 3

15 13. B Estatística!!! Página 9 Para o set da Itália (16, 20, 26, 27, 16), em ordem crescente teremos: {16, 16, 20, 26, 27}. Como esse conjunto de dados possuem uma quantidade ímpar de elementos, a mediana é o valor que divide o conjunto ao meio, neste caso o número 20.

16 14. A Estatística!!! Página 9 Para encontrar a moda, devemos encontrar qual é o termo que aparece mais vezes. Analisando o gráfico, vimos existem mais crianças de 9 anos, logo, 9 é o termo que aparece mais vezes, assim, a moda é 9.

17 15. C Estatística!!! Página 9 O atleta mais regular será aquele com menor desvio padrão. Quanto menor o desvio padrão, mas homogêneos serão os dados. Logo, é menor desvio padrão é do atleta III.

18 16. B Razão e Proporção!!! Página m 3 dividido por 300 dias dará o quanto deveriam recolher diariamente para a meta ser atingida /300 = 2600 m 3 /dia

19 17. E Razão e Proporção!!! Página 10 5 cm 25 km = 5 cm cm = cm

20 18. B Razão e Proporção!!! Página 10 (2007; 27) (2011; 48) (2013; x) x = X = 58,5 %

21 19. D Razão e Proporção!!! Página 10 Cama: C. 0,8 = 450 C = 562,5 Desconto de R$ 112,50 Colchão: C. 0,8 = 350 C = 437,5 Desconto de R$ 87,50 Mesa: M. 0,8 = 300 M = 375 Desconto de R$ 75,00 Pia de Cozinha: P. 0,8 = 400 P = 500 Desconto de R$ 100,00 Desconto total = , , = R$ 900,00

22 20. D Razão e Proporção!!! Página ; 1, ; 1,2. 1, ;... Queremos saber a soma dos 6 primeiros termos de uma PG. Sn = a1.(qn ) q 1 S 6 = 300.(1,26 1 ) 1,2 1 S 6 = R$ 2978,00

23 21. A Razão e Proporção!!! Página 11 De acordo com o gráfico, quando ele não vende nada o valor do seu salario é de 800 reais. Logo, esse valor é fixo. Sabe se também que quando ele vende R$ ,00 o seu salario é de R$ 1200,00 e como ele tem R$ 800 fixo, sua comissão foi de R$ 400,00. Logo a porcentagem de comissão é: = 2 %

24 22. B Razão e Proporção!!! Página 11 2,4 m H V = 1,2 V 1 3. π r2. H = 1,2 π r 2. H 3R Volume: V R Volume: V 1 3. π (3R)2. 2, 4 = 1,2 π R 2. H H = 6 metros

25 23. C Razão e Proporção!!! Página 11 Custo Potência Tempo C T C = 3600 T C T = 3 1

26 24. E Razão e Proporção!!! Página 11 Custo Fi Ff Potência r 4 (1,1r) 4 Fi Ff = r4 (1,1r) 4 Ff = 1, 1 4 Fi Ff = 1,4641 Fi

27 25. D Razão e Proporção!!! Página 11 Como 75% afirma ter esse hábito e 26% é quem faz 3 vezes na semana, queremos 26% dos 75%, logo: 26/ /100 = 0,195 = 19,5%

28 26. B Razão e Proporção!!! Página 12 40% de 5000 mg = 2000 mg

29 27. A Razão e Proporção!!! Página 12 Temos 8 em cada 10 homens, então, representamos pela fração 8/10, que escrito na forma de porcentagem é 80/100 = 80%.

30 28. C Razão e Proporção!!! Página 12 Tempo Funcionário Camisa T = T T = 9 horas

31 29. B Inicio: pinicio = m v pinicio = Fim: m π R 2 h Razão e Proporção!!! Página 12 pinicio = pfim m π = 2m R 2 h π (2R) 2 H 1 = 2 h 4H pfim = 2m v pfim = 2m π (2R) 2 H 4H = 2h H = h/2

32 30. D Razão e Proporção!!! Página 12 3 xícaras de açúcar = 4 xícaras de farinha de trigo 3 xícaras de açúcar = 4 * 120 g = 480 g 1 xícara de açúcar = 480 g/3 = 160 g

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 206 Exame de Matemática Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita

Leia mais

Matemática E Intensivo V. 1

Matemática E Intensivo V. 1 GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +

Leia mais

Resolução da 8ª lista de exercícios

Resolução da 8ª lista de exercícios Resolução da 8ª lista de exercícios O raio da circunferência é dado pela distância do seu centro a qualquer ponto da circunferência ssim: r d( P, ) (0) + (+ ) 49+ 57) 5 5 Um ponto sobre o eixo das abscissas

Leia mais

ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE. Professor: LILIAN SAUEIA CACCURI

ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE. Professor: LILIAN SAUEIA CACCURI ROTEIRO DE RECUPERAÇÃO DE GEOMETRIA 1º TRIMESTRE Nome: º ano Data: / / 2019 Professor: LILIAN SAUEIA CACCURI 1. Qual o volume de um tronco de pirâmide sabendo que suas bases são quadrados de lados 4 cm

Leia mais

Pode-se observar que a escada forma com o solo um triângulo retângulo, conforme a figura: h =7x

Pode-se observar que a escada forma com o solo um triângulo retângulo, conforme a figura: h =7x I OLIMPÍADA DE MATEMÁTICA DOS INSTITUTOS FEDERAIS RESOLUÇÃO DO SIMULADO QUESTÃO 01 - RESOLUÇÃO ALTERNATIVA: A Sabe-se que o primeiro passa a informação para o segundo com a probabilidade de 2/3, o segundo

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Matemática GEOMETRIA ESPACIAL. Professor Dudan

Matemática GEOMETRIA ESPACIAL. Professor Dudan Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica

Leia mais

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série

LISTA P1T2. Cilindros. Professores: Leonardo. Matemática. 2ª Série Matemática Professores: Leonardo 2ª Série LISTA P1T2 Cilindros 1- Um fabricante de caixas - d água pré moldadas deseja produzi-las na forma cilíndrica, com 2 metros de altura e interna e capacidade de

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cone. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera Cone. ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial - olumes e Áreas de Cilindro, Cone e Esfera. Cone. 1 Exercícios

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Cilindro. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera Cilindro. 3 ano/e.m. Professores Cleber Assis e Tiago Miranda Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera.

Leia mais

Responder todas as questões em folha A4. Entregar na data da realização da prova.

Responder todas as questões em folha A4. Entregar na data da realização da prova. INSTRUÇÕES: Responder todas as questões em folha A4. Resolver à lápis todas as questões. Entregar na data da realização da prova. Poliedros e Prismas 1) Determine o número de vértices de um poliedro convexo

Leia mais

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 2015 PROVA MODELO DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de

Leia mais

POTENCIAÇÃO EXERCÍCIOS DO ENEM

POTENCIAÇÃO EXERCÍCIOS DO ENEM POTENCIAÇÃO EXERCÍCIOS DO ENEM E1166 (ENEM 2015 QUESTÃO 155) O fisiologista francês Jean Poiseuille estabeleceu, na primeira metade do século XIX, que o fluxo de sangue por meio de um vaso sanguíneo em

Leia mais

O perímetro da figura é a soma de todos os seus lados: P = P =

O perímetro da figura é a soma de todos os seus lados: P = P = PERÍMETRO Prof. Patricia Caldana O cálculo do perímetro de uma região pode vir a ser útil em certas situações do dia a dia; como por exemplo para se determinar a quantidade de arame farpado que é necessário

Leia mais

Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π.

Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π. Gabarito: Resposta da questão 1: [B] Calculando as áreas de cada uma das pizzas, tem-se: Pizza broto inteira π15 5π Pizza gigante inteira π0 400π Utilizando a regra de três, pode-se escrever: 5π 7 400π

Leia mais

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)

8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira) 8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:

Leia mais

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162

Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162 0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5

Leia mais

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site:

Cilindro. Av. Higienópolis, 769 Sobre Loja Centro Londrina PR. CEP: Fones: / site: GEOMETRIA ESPACIAL: ESTUDO DOS CORPOS REDONDOS Os corpos redondos são os sólidos que tem superfícies curvas, como o cilindro, o cone e a esfera. A sua principal característica é o fato de não apresentarem

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

REVISÃO DOS CONTEÚDOS

REVISÃO DOS CONTEÚDOS REVISÃO DOS CONTEÚDOS Prof. Patricia Caldana Seno, Cosseno e Tangente de um arco Dado um arco trigonométrico AP de medida α, chamam-se cosseno e seno de α a abscissa e a ordenada do ponto P, respetivamente.

Leia mais

Unidade 6 Geometria: polígonos e circunferências

Unidade 6 Geometria: polígonos e circunferências Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

LISTA 4 = PIRÂMIDES E CONES

LISTA 4 = PIRÂMIDES E CONES UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luis Mazzei e Mariana Duro Acadêmicos: Marcos Vinícius

Leia mais

Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos)

Representação: 2 5. Resposta: Cada pessoa receberá R$ 6,25 (seis reais e vinte e cinco centavos) MATEMÁTICA FRAÇÕES E NÚMEROS DECIMAIS Fração quer dizer pedaços do mesmo tamanho. Você tem um chocolate dividido em 5 partes iguais. Dessas 5 partes você comeu 2. A fração que representa essa situação

Leia mais

MAIS SOBRE MEDIDAS RESUMO. * é muito influenciada por valor atípico

MAIS SOBRE MEDIDAS RESUMO. * é muito influenciada por valor atípico MAIS SOBRE MEDIDAS RESUMO Medidas de Tendência Central (1) média (aritmética) * só para variáveis quantitativas exceção: variável qualitativa nominal dicotômica, com categorias codificadas em 0 e 1; neste

Leia mais

Mat. Rafael Jesus. Monitor: Fernanda Aranzate

Mat. Rafael Jesus. Monitor: Fernanda Aranzate Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes

Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0

Leia mais

RESOLUÇÕES COMENTADAS

RESOLUÇÕES COMENTADAS SIMULAO AMARELO MATEMÁTICA RESOLUÇÕES COMENTAAS. d As partes a serem divididas são x, y e z. I. x + y + z.000 II. x 0y z s y s x e z y Substituindo II em I, temos: y + y + y.000 s y + 0y + y 0.000 s s

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

Sequência divergente: toda sequência que não é convergente.

Sequência divergente: toda sequência que não é convergente. 1.27. Sequências convergentes. 1.27.1 Noção de sequência convergente: uma sequência é dita convergente quando os termos dessa sequência, conforme o aumento do n, se aproximam de um número constante. Esse

Leia mais

COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI

COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI COLÉGIO CENECISTA PEDRO ANTÔNIO FAYAL CLUBE DE MATEMÁTICA BRUNA ANDRADE ARTHUR LEÃO PEDRO PAULO DO NASCIMENTO PROFESSOR THIAGO MORETI RESOLUÇÃO COMENTADA DA PROVA DE MATEMÁTICA DO ENEC 2014 ITAJAI 2015

Leia mais

Uma certa quantidade de latas de atum vai ser disposta em uma pilha de 30 camadas. Determine a quantidade de latas de pilha.

Uma certa quantidade de latas de atum vai ser disposta em uma pilha de 30 camadas. Determine a quantidade de latas de pilha. DISCIPLINA: MATEMÁTICA PROFESSORES: ROGÊRIO E CLÁUDIO DATA DE ENTREGA:19/12/2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 2ª SÉRIE UNIDADE ANCHIETA TURMA: ALUNO (A): Nº: Os conteúdos selecionados

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira

Leia mais

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera

Leia mais

Nível 4.º e 5.º anos do Ensino Fundamental

Nível 4.º e 5.º anos do Ensino Fundamental Nível 4.º e 5.º anos do Ensino Fundamental A QUESTÃO 1 ALTERNATIVA C Basta fazer a conta: 2018 8012 + 10030 QUESTÃO 2 O número de pessoas que chegaram ao ponto final é igual ao resultado da operação 25

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B.

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa D. alternativa D. alternativa D. alternativa B. Questão TIPO DE PROVA: A Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância

Leia mais

MATEMÁTICA: KELLER LOPES A MOTIVAÇÃO

MATEMÁTICA: KELLER LOPES A MOTIVAÇÃO MATEMÁTICA: KELLER LOPES A MOTIVAÇÃO DICA N 1 MODA, MÉDIA E MEDIANA É preciso colocar os dados em ordem para calcular a mediana 6,8%, 7.5%; 7,6%; 7,6%; 7.7%; 7,9%; 7,9%; 8,1%; 8.%; 8,5%; 8,5%; 8,6%; 8.9%;

Leia mais

TEMA 3 GEOMETRIA E MEDIDA FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA E MEDIDA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 3 GEOMETRIA E MEDIDA FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA E MEDIDA. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 3 GEOMETRIA E MEDIDA Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 3 GEOMETRIA E MEDIDA 2016 2017 Matemática A 9.º Ano Fichas

Leia mais

Valter B. Dantas. Momento de Inércia

Valter B. Dantas. Momento de Inércia Valter B. Dantas Momento de Inércia Momento de Inércia de um Sistema Contínuo de Partículas Como calcular o momento de inércia de uma barra retilínea de material homogêneo em relação a um eixo perpendicular

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Proposta de Resolução [maio - 018] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

SOMENTE COM CANETA AZUL

SOMENTE COM CANETA AZUL Nome completo: Turma: Unidade: SIMULADO 8 ANO - ENSINO FUNDAMENTAL Matemática Dia: 8/0 - sexta-feira º A DI 07 ORIENTAÇÕES PARA APLICAÇÃO DO SIMULADO - º TRI. A prova terá duração de horas e 0 minutos..

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.

Teste de Avaliação. Nome N. o Turma Data /mar./2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9. Teste de Avaliação Nome N. o Turma Data /mar./2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno

Leia mais

Gabarito Prova da Primeira Fase - Nível Alfa

Gabarito Prova da Primeira Fase - Nível Alfa . Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

CADERNO DE EXERCÍCIOS 2A

CADERNO DE EXERCÍCIOS 2A CADERNO DE EXERCÍCIOS A Ensino Fundamental Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Raio e diâmetro da circunferência H4 Ângulos H6 3 Operações com números H9 negativos

Leia mais

REVISÃO DE MATEMÁTICA BÁSICA

REVISÃO DE MATEMÁTICA BÁSICA REVISÃO DE MATEMÁTICA BÁSICA AULA 2 Frações Profe. Kátia FRAÇÕES Uma fração é a representação de uma ou mais partes de algo que foi dividido em partes iguais. Partes de um inteiro. Todo objeto original

Leia mais

AULA 01 Razão, Proporção e regra de Três

AULA 01 Razão, Proporção e regra de Três Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professoras Elvira e Larissa AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas diretamente proporcionais;

Leia mais

Olimpíada Mineira de Matemática 2008

Olimpíada Mineira de Matemática 2008 Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração

Leia mais

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. Questão 2. x+2. x+2 AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 8ª Série / 9º ano do Ensino Fundamental Turma 2º bimestre de 2015 Data / / Escola Aluno Questão 1 A área do quadrado a seguir é 49 cm 2. O valor de X, em

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

Teste de Avaliação. Nome N. o Turma Data /maio/2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.

Teste de Avaliação. Nome N. o Turma Data /maio/2019. Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9. Teste de Avaliação Nome N. o Turma Data /maio/2019 Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno 2): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno

Leia mais

AULA 01 Razão, Proporção e regra de Três

AULA 01 Razão, Proporção e regra de Três Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina, Luísa e Bruno AULA 01 Razão, Proporção e regra de Três Conceitos envolvidos: Razão; Proporção; Grandezas

Leia mais

MATEMÁTICA Professores: Andrey, Cristiano e Julio

MATEMÁTICA Professores: Andrey, Cristiano e Julio MATEMÁTICA Professores: Andrey, Cristiano e Julio Questões Substituindo os valores dados na fórmula teremos: x 1 = x 0+1 = (x 0 )2 +a 2.x 0 = (2)2 +5 = 9 2.2 4 e x 2 = x 1+1 = (x 1 )2 +a = ( 9 4 )2 +5

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mais aprova na GV FGV Administração Prova Objetiva 07/dezembro/008 MATEMÁTICA 0. Uma pesquisa de mercado sobre determinado eletrodoméstico mostrou que 7% dos entrevistados preferem a marca

Leia mais

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda

Módulo Geometria Espacial 3 - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera. Professores Cleber Assis e Tiago Miranda Módulo Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera Esfera. a série E.M. Professores Cleber Assis e Tiago Miranda Geometria Espacial - Volumes e Áreas de Cilindro, Cone e Esfera. Esfera.

Leia mais

Mat. Professor: Monitor: Roberta Teixeira

Mat. Professor: Monitor: Roberta Teixeira Professor: PC Monitor: Roberta Teixeira Exercícios de circunferência: 10 exercícios 17 ago EXERCÍCIOS DE AULA 1. Um disco de raio 1 gira ao longo de uma reta coordenada na direção positiva, corno representado

Leia mais

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos

Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Provas de Acesso ao Ensino Superior Para Maiores de 23 Anos Candidatura de 205 EXAME DE MATEMÁTICA Tempo para realização da prova: 2 horas Tolerância: 30 minutos Material admitido: material de escrita

Leia mais

LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS

LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS LOS SIGNIFICADOS DE LOS NÚMEROS FRACCIONÁRIOS Prof. Maria José Ferreira da Silva [email protected] Porque as dificuldades no ensino? Porque as dificuldades na aprendizagem? GRANDEZAS Quantificar significa

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte

CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte CAPÍTULO 4 DESCRIÇÃO E EXPLORAÇÃO DOS DADOS 2ª parte 4.3 Medidas de posição 4.4 Medidas de dispersão 4.5 Separatrizes Prof. franke 2 Vimos que a informação contida num conjunto de dados pode ser resumida

Leia mais

Funções Potência. Cubo - Definições

Funções Potência. Cubo - Definições Funções Potência Aula 06 Cubo - Definições 1 Cubo-Arestas Área de Superfície do Cubo Se estivéssemos pintando um cubo, a área da superfície nos diria quanto de área teríamos que cobrir com tinta. Cada

Leia mais

OLIMPÍADA LAVRENSE DE MATEMÁTICA 2016

OLIMPÍADA LAVRENSE DE MATEMÁTICA 2016 OLIMPÍADA LAVRENSE DE MATEMÁTICA 2016 Nível II - 1 a fase Nome: Série: Instruções: A duração da prova é de 2h30min. O tempo mínimo de permanência em sala é de 20 minutos. A prova tem 10 questões de múltipla

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA

MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 21.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos

Leia mais

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno. Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3 e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina

Leia mais

Mat. Monitor: Roberta Teixeira

Mat. Monitor: Roberta Teixeira 1 Professor: Alex Amaral Monitor: Roberta Teixeira 2 Geometria analítica plana: circunferência e elipse 26 out RESUMO 1) Circunferência 1.1) Definição: Circunferência é o nome dado ao conjunto de pontos

Leia mais

Matemática Básica 1 = x = 64 agricultores. Gabarito: d

Matemática Básica 1 = x = 64 agricultores. Gabarito: d Baiano ACAFE Matemática Básica Infelizmente, durante a ocupação do Brasil, a maior parte de sua vegetação, principalmente na região sudeste, foi sendo derrubada para a extração da madeira e, depois, plantio

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

CPV conquista 93% das vagas do ibmec

CPV conquista 93% das vagas do ibmec conquista 9% das vagas do ibmec (junho/008) Prova REsolvida IBMEC 09/Novembro /008 (tarde) ANÁLISE QUANTITATIVA E LÓGICA DISCURSIVA 0. Renato decidiu aplicar R$ 00.000,00 em um fundo de previdência privada.

Leia mais

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

TESTE DE MATEMÁTICA 9.º ano

TESTE DE MATEMÁTICA 9.º ano Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Do plantel de uma determinada equipa de futebol fazem parte quatro defesas centrais: o André, o Bernardo, o Custódio e o Daniel. Num treino, é necessário

Leia mais

Resolução de Questões das Listas de Cálculo de Uma Variável:

Resolução de Questões das Listas de Cálculo de Uma Variável: Eercícios resolvidos: Cálculo I -A- Cálculo Diferencial e Integral Aplicado I Cálculo Aplicado I Lista Questão Lista Questão 20 20 6 6 40 40 4 4 2 2 4 6 4 6 4 24 4 24 5 8 5 8 8 8 9 9 9 4 9 4 2 0 2 0 7

Leia mais

CADERNO DE EXERCÍCIOS 2B

CADERNO DE EXERCÍCIOS 2B CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema

Leia mais

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00 Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.

Leia mais

Olimpíada Paranaense de Matemática Segunda Fase Nível 3 23/09/16 Duração: 4 horas e 30 minutos

Olimpíada Paranaense de Matemática Segunda Fase Nível 3 23/09/16 Duração: 4 horas e 30 minutos 1. Números pentagonais, P (n), são números que são dados pelas quantidades de bolinhas na seguinte sequência de pentágonos Os quatro primeiros números pentagonais são P (1) = 1, P (2) = 5, P (3) = 12 e

Leia mais

Dado que há um número ímpar de elementos, a mediana será o elemento que coincide com o seguinte:

Dado que há um número ímpar de elementos, a mediana será o elemento que coincide com o seguinte: Olá pessoal! Vamos às questões! A banca foi a FGV. Exercício 1 A seguinte amostra de idades foi obtida: 19; 25; 39; 20; 16; 27; 40; 38; 28; 32; 30. Assinale a opção que indica a mediana dessas idades.

Leia mais

Revisão de Matemática

Revisão de Matemática UNIVERSIDADE FEDERAL DO CEARÁ - UFC DEPARTAMENTO DE ENGENHARIA AGRÍCOLA DENA TOPOGRAFIA BÁSICA Revisão de Matemática Facilitador: Fabrício M. Gonçalves Unidades de medidas Unidade de comprimento (METRO)

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos

COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos COMENTÁRIO DA PROVA DE MATEMÁTICA Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos Utilizamos a seguir alguns critérios para comentar a prova de Matemática da ª fase

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais