Funções Potência. Cubo - Definições

Tamanho: px
Começar a partir da página:

Download "Funções Potência. Cubo - Definições"

Transcrição

1 Funções Potência Aula 06 Cubo - Definições 1

2 Cubo-Arestas Área de Superfície do Cubo Se estivéssemos pintando um cubo, a área da superfície nos diria quanto de área teríamos que cobrir com tinta. Cada cubo tem seis faces idênticas, logo: área da superfície = 6 (área de uma das faces) Se o comprimento da aresta de uma face do cubo for igual a x, então a área da superfície dessa face é x 2. Logo, a área da superfície total S(x) do cubo é: S(x) = 6x 2 S(x) é chamada de uma função potência de grau 2 2

3 Área de Superfície do Cubo Dizemos que a área da superfície é diretamente proporcional ao quadrado (ou à segunda potência) do comprimento da sua aresta. Volume do Cubo Se o comprimento da aresta de uma face do cubo for x, então o volume V(x) do cubo é dado por V(x) = x 3 V(x) é um exemplo de uma função potência de grau 3. 3

4 Volume do Cubo dizemos que o volume é diretamente proporcional ao cubo (ou à terceira potência) do comprimento da sua aresta. Razão entre a área da superfície e o volume O quociente (área da superfície)/volume gera uma nova função R(x), em que: R(x) é chamada de função potência de grau 1. Dizemos que R(x) é inversamente proporcional ao comprimento da aresta do cubo. Quando aumentamos o valor de x, o comprimento da aresta do cubo, o valor de R(x) diminui. 4

5 Razão entre a área da superfície e o volume Quando aumentamos o valor de x, o comprimento da aresta do cubo, o valor de R(x) diminui. Tamanho e Forma O que aprendemos sobre o cubo se aplica a qualquer objeto tridimensional, não importando a forma. Em geral, Para qualquer forma, quando um objeto vai se tornando maior enquanto mantém a mesma forma, o quociente entre a sua área da superfície e o seu volume diminui. 5

6 Tamanho e Forma Funções biológicas, como a respiração e a digestão, dependem da área da superfície, mas devem servir a todo volume do corpo. Por isso os órgãos de animais grandes têm anatomia diferente de animais pequenos, são retorcidos para que a superfície seja maior e dê conta de todo o volume corporal. Por exemplo, os pulmões humanos, que precisam ter uma grande superfície para alta troca de gazes. Tamanho e Forma A temperatura do corpo também depende do quociente entre a área superficial e o volume. Animais geram o calor necessário para o seu tamanho por meio de atividade metabólica e perdem calor através da superfície da sua pele. Pequenos animais têm mais área superficial em proporção ao seu volume do que grandes animais. Como a troca de calor se dá através da pele, pequenos animais perdem calor proporcionalmente mais rápido do que grandes animais. 6

7 Proporcionalidade Direta: Funções Potência com Potências Positivas Três funções do comprimento da aresta x de um cubo Todas as três são chamadas de funções potência, pois elas são da forma: variável dependente = constante (variável independente) potência ou saída = constante entrada potência Datas Importantes 23/11 ENGI 30/11 Prova 01 09/12 SEMIC 16/12 Última aula antes do intervalo 7

8 Proporcionalidade Direta: Funções Potência com Potências Positivas Proporcionalidade Direta: Funções Potência com Potências Positivas 8

9 Proporcionalidade Direta: Funções Potência com Potências Positivas Proporcionalidade Direta: Funções Potência com Potências Positivas EXEMPLO: Fórmulas para proporcionalidade direta Escreva fórmulas que representem as seguintes relações: a. A circunferência, C, de um círculo é diretamente proporcional ao seu raio, r. b. A área, A, de um círculo é diretamente proporcional ao seu raio, r, elevado ao quadrado. c. O volume, V, de um líquido escoando no interior de um tubo é diretamente proporcional à quarta potência do raio, r, do tubo. SOLUÇÃO a. C = kr, em que k = 2π. b. A = kr 2, em que k = π. c. V = kr 4, para alguma constante k. 9

10 Propriedades da Proporcionalidade Direta Considere uma função potência geral f(x) = kx p, em que p > 0. Se dobrarmos a entrada de x para 2x, temos: Dobrando a entrada, faz com que a saída seja multiplicada por 2 p Propriedades da Proporcionalidade Direta Dobrando a entrada, faz com que a saída seja multiplicada por 2 p. Se multiplicarmos a entrada por m, modificando a entrada de x para mx, então Logo, ao multiplicarmos a entrada por m a saída é multiplicada por m p. Por exemplo, se triplicarmos a entrada de S(x) = 6x 2, a saída é multiplicada por 3 2 ou 9. Observe que o valor de k (a constante de proporcionalidade) é irrelevante nesses cálculos. 10

11 Propriedades da Proporcionalidade Direta Em geral, Se y é diretamente proporcional a x p (em que p > 0), então y = kx p para alguma constante k diferente de zero. A multiplicação da entrada por m faz com que a saída seja multiplicada por m p. Por exemplo, triplicar a entrada faz com que a saída seja multiplicada por 3 p. Propriedades da Proporcionalidade Direta 11

12 Proporcionalidade Direta com Mais de Uma Variável Quando uma grandeza depende diretamente de mais de uma grandeza, não temos mais uma função potência simples. Por exemplo, o volume, V, de uma lata cilíndrica depende tanto do raio da base, r, quanto da altura, h. A equação que descreve essa relação é: V = área da base altura V = πr 2 h Dizemos que V é diretamente proporcional (ou varia conjuntamente) tanto a r 2 quanto a h. 12

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 25. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Assíntotas, Esboço de Gráfico e Aplicações Aula 25 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 09 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia

Leia mais

Lista de Exercícios Aproximações Lineares e Diferenciais

Lista de Exercícios Aproximações Lineares e Diferenciais Lista de Eercícios Aproimações Lineares e Diferenciais ) Encontre a linearização L( ) da função em a. a) f a ( ) =, = f f f ( ) = () = () = f f f ( ) = () = () () = L( ) = f ( a) + f ( a)( a) L( ) = f

Leia mais

Exercícios complementares

Exercícios complementares Exercícios complementares Conteúdo(s) abordado(s): o olume de figuras geométricas especiais ( cilindro, cubo, pirâmide, prisma e cones) Os conteúdos abordados neste material fazem parte dos blocos de conteúdos

Leia mais

1º ano - Conteúdos de Matemática. 3º período

1º ano - Conteúdos de Matemática. 3º período 1º ano - Conteúdos de Matemática Numerais por extenso até 10 Problemas Adição e subtração com numerais até 10 Sistema monetário Dezenas e unidades Numerais (20 a 100) Numerais por extenso até 20 Medida

Leia mais

s: damasceno.

s:      damasceno. Lista de exercícios 05 Questão 01) A função f(x) = 3x 6, com x real, a) é crescente b) é decrescente c) é crescente para x > 2 d) é decrescente para x < 2 e) não é crescente e nem decrescente Questão 02)

Leia mais

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e

Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Lista Mínima de Exercícios - Esboço de Gráfico/Máximos e Mínimos Exercício 1 Determine os intervalos de crescimento e de decrescimento, calcule todos os limites necessários e esboce o gráfico de f, onde

Leia mais

Números Complexos - Forma Algébrica

Números Complexos - Forma Algébrica Matemática - 3ª série Roteiro 07 Caderno do Aluno Números Complexos - Forma Algébrica I - Introdução ao Estudo dos Números Complexos Desafio: 1) Um cubo tem volume equivalente à soma dos volumes de dois

Leia mais

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera

Leia mais

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo:

1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Exercícios resolvidos e comentados 1) (Unicamp) Três planos de telefonia celular são apresentados na tabela abaixo: Plano Custo fixo mensal Custo adicional por minuto A R$ 35,00 R$ 0,50 B R$ 20,00 R$ 0,80

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes

REGRA DE TRÊS SIMPLES E COMPOSTA. Prof. Flavio Fernandes REGRA DE TRÊS SIMPLES E COMPOSTA Prof. Flavio Fernandes Grandezas proporcionais Observe as situações: O tempo que se gasta em uma viagem depende da velocidade do veículo. A quantidade de tinta que se gasta

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira

Leia mais

FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 2º Bimestre/2014. Plano de Trabalho 2 : Geometria Espacial - Prismas e Cilindros

FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 2º Bimestre/2014. Plano de Trabalho 2 : Geometria Espacial - Prismas e Cilindros FORMAÇÃO CONTINUADA EM MATEMÁTICA Matemática 2º Ano 2º Bimestre/2014 Plano de Trabalho 2 : Geometria Espacial - Prismas e Cilindros Tarefa 2 Cursista:Thereza Christina da Silva Cabral Tutora: Susi Cristine

Leia mais

MAT0146: Cálculo Diferencial e Integral I para Economia -noturno

MAT0146: Cálculo Diferencial e Integral I para Economia -noturno MAT0146: Cálculo Diferencial e Integral I para Economia -noturno P1-6/04/19 - Prova: A prova foi baseada na primeira lista de exercícios. Em particular compare: Questão 1 a) com Problema.6 da Primeira

Leia mais

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.

3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r. EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5

Leia mais

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade

3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.

Leia mais

Física C Extensivo V. 4

Física C Extensivo V. 4 GBITO Física C Extensivo V. Exercícios 0) F. lei de Ohm se refere a um tipo de resistor com resistência constante cuja resistência não depende nem da tensão aplicada nem da corrente elétrica. F. penas

Leia mais

Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π.

Gabarito Razão e Proporção. Intensivão Enem - Matemática. Gabarito: Pizza broto inteira π π Pizza gigante inteira π π. Gabarito: Resposta da questão 1: [B] Calculando as áreas de cada uma das pizzas, tem-se: Pizza broto inteira π15 5π Pizza gigante inteira π0 400π Utilizando a regra de três, pode-se escrever: 5π 7 400π

Leia mais

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1.

Simulado AFA. 2. Sejam x e y números reais tais que: Então, o número complexo z = x + yi. é tal que z 3 e z valem, respectivamente: (D) i e 1. Simulado AFA 1. Uma amostra de estrangeiros, em que 18% são proficientes em inglês, realizou um exame para classificar a sua proficiência nesta língua. Dos estrangeiros que são proficientes em inglês,

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Física C Extensivo V. 4

Física C Extensivo V. 4 GBITO Física C Extensivo V. Exercícios 0) F. lei de Ohm se refere a um tipo de resistor com resistência constante cuja resistência não depende nem da tensão aplicada nem da corrente elétrica. F. penas

Leia mais

DIFERENCIAIS E O CÁLCULO APROXIMADO

DIFERENCIAIS E O CÁLCULO APROXIMADO BÁRBARA DENICOL DO AMARAL RODRIGUEZ CINTHYA MARIA SCHNEIDER MENEGHETTI CRISTIANA ANDRADE POFFAL DIFERENCIAIS E O CÁLCULO APROXIMADO 1 a Edição Rio Grande 2017 Universidade Federal do Rio Grande - FURG

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e

Leia mais

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste

Leia mais

Resolução Revisaço 3

Resolução Revisaço 3 Resolução Revisaço 3 01. D Probabilidade!!! Página 7 Para a equipe R Ganhar: 80 % Empatar: 15 % Perder: 5 % Para a equipe S Ganhar: 40 % Empatar: 20 % Perder: 40 % R ganhar e S perder = 80%. 40% = 32%

Leia mais

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 )

CÁLCULO I. Conhecer a interpretação geométrica da derivada em um ponto. y = f(x 2 ) f(x 1 ). y x = f(x 2) f(x 1 ) CÁLCULO I Prof. Marcos Diniz Prof. André Almeida Prof. Edilson Neri Júnior Aula n o 0: Taxa de Variação. Derivadas. Reta Tangente. Objetivos da Aula Denir taxa de variação média e a derivada como a taxa

Leia mais

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica

Mecânica Quântica. Química Quântica Prof a. Dr a. Carla Dalmolin. A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Quântica Química Quântica Prof a. Dr a. Carla Dalmolin A Equação de Schrödinger Postulados da Mecânica Quântica Mecânica Clássica O movimento de uma partícula é governado pela Segunda Lei de Newton:

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 01-1 a Fase Proposta de resolução Caderno 1 1. Como a função representada graficamente é uma função de proporcionalidade inversa, a sua expressão algébrica é da forma

Leia mais

Lista de Exercícios Revisão de Lógica. 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números.

Lista de Exercícios Revisão de Lógica. 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números. Lista de Exercícios Revisão de Lógica 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números. /*declaração de variáveis*/ int n1, n2, n3, soma; printf("digite

Leia mais

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.

As cotações dos itens de cada caderno encontram-se no final do respetivo caderno. Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 39/0, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Lista 3. Funções de Uma Variável. Derivadas III

Lista 3. Funções de Uma Variável. Derivadas III Lista 3 Funções de Uma Variável Derivadas III Taxas Relacionadas 5 Uma esteira transportadora está descarregando cascalho a uma taxa de 30m 3 /min formando uma pilha na forma de cone com diâmetro da base

Leia mais

Curso: a) 24 b) 12 c) 6,5 d) 26,5 e) 97

Curso: a) 24 b) 12 c) 6,5 d) 26,5 e) 97 IST / DEQ Mestrado Integrado em Engenharia Química Mestrado Integrado em Engenharia Biológica Mestrado em Engenharia e Gestão da Energia Fenómenos de Transferência I 2014-2015 1º Semestre 1º Exame / 15.01.2015

Leia mais

Cap 03: Dilatação térmica de sólidos e líquidos

Cap 03: Dilatação térmica de sólidos e líquidos Cap 03: Dilatação térmica de sólidos e líquidos A mudança nas dimensões dos corpos, quando sofrem variações de temperatura, é um fenômeno que pode ser facilmente observado em situações do cotidiano. Quando

Leia mais

1ª Lista de Exercícios - Problemas de Otimização

1ª Lista de Exercícios - Problemas de Otimização Cálculo Diferencial e Integral II Prof. Robson Rodrigues www.robson.mat.br email: [email protected] 1ª Lista de Exercícios - Problemas de Otimização Problema 1. Utilizando 40 m de tela e um muro como

Leia mais

Matemática GEOMETRIA ESPACIAL. Professor Dudan

Matemática GEOMETRIA ESPACIAL. Professor Dudan Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica

Leia mais

Matemática Básica Relações / Funções

Matemática Básica Relações / Funções Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Proposta de Resolução [dezembro - 017] Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul

Leia mais

Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/!

Para se adicionar (ou subtrair) frações com o mesmo denominador devemos somar (ou subtrair) os numeradores e conservar o denominador comum. = - %/! Pontifícia Universidade Católica de Goiás Professor: Ms. Edson Vaz de Andrade Fundamentos de Matemática No estudo de Física frequentemente nos deparamos com a necessidade de realizar cálculos matemáticos

Leia mais

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo:

H1 - Expressar a proporcionalidade direta ou inversa, como função. Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: H1 - Expressar a proporcionalidade direta ou inversa, como função Q1 - A tabela a seguir informa a vazão de uma torneira aberta em relação ao tempo: A expressão que representa a vazão em função do tempo

Leia mais

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5.

Geometria Analítica. Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) P( 5, 2 ) B( 3, 2 ) Q( 3, 4 ) d = 5. Erivaldo UDESC Geometria Analítica Distância entre dois pontos: (d AB ) 2 = (x B x A ) 2 + (y B y A ) 2 A( 7, 5 ) B( 3, 2 ) d 2 = ( 4 ) 2 + ( 3 ) 2 d = 5 P( 5, 2 ) Q( 3, 4 ) d 2 = ( 8 ) 2 + ( 6 ) 2 d =

Leia mais

Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado.

Matemática 6.º ano. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. 1. Determine o valor das seguintes expressões e apresente o resultado como uma potência. Mostre como chegou ao resultado. a) ( 3 4 )25 : ( 3 4 )15 5 10 b) 15 35 : 5 35 3 45 2. Calcule o valor das seguintes

Leia mais

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02

Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02 Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm

Leia mais

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos

MATEMÁTICA PLANEJAMENTO 4º BIMESTRE º B - 11 Anos PREFEITURA MUNICIPAL DE IPATINGA ESTADO DE MINAS GERAIS SECRETARIA MUNICIPAL DE EDUCAÇÃO DEPARTAMENTO PEDAGÓGICO/ SEÇÃO DE ENSINO FORMAL Centro de Formação Pedagógica CENFOP MATEMÁTICA PLANEJAMENTO 4º

Leia mais

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados.

Cubo Um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c) recebe o nome de cubo. Dessa forma, as seis faces são quadrados. ALUNO(A) AULA 002 MATEMÁTICA DATA 18 / 10 /2013 PROFESSOR: Paulo Roberto Weissheimer AULA 002 - DE MATEMÁTICA Geometria Espacial Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V

Leia mais

ENEM 2013 (Questões 150, 151, 152, 153, 154, 155, 156)

ENEM 2013 (Questões 150, 151, 152, 153, 154, 155, 156) (Questões 150, 151, 152, 153, 154, 155, 156) 1. (Questão 150) Numa escola com 1 200 alunos foi realizada uma pesquisa sobre o conhecimento desses em duas línguas estrangeiras, inglês e espanhol. Nessa

Leia mais

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x),

Lista 2 - Cálculo. 17 de maio de Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), Lista 2 - Cálculo 17 de maio de 2019 1. Se f e g são funções cujos grácos estão representados abaixo, sejam u(x) = f(x)g(x), h(x) = f(g(x)) e k(x) = g(f(x)). Encontre as seguintes derivadas: (a) u (1)

Leia mais

Cap 03: Dilatação térmica de sólidos e líquidos

Cap 03: Dilatação térmica de sólidos e líquidos Cap 03: Dilatação térmica de sólidos e líquidos A mudança nas dimensões dos corpos, quando sofrem variações de temperatura, é um fenômeno que pode ser facilmente observado em situações do cotidiano. Quando

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

Descrição da Escala Matemática - 3 a série EM

Descrição da Escala Matemática - 3 a série EM Os alunos da 3ª série do Ensino Médio 225 Identificam o gráfico setorial associado a dados apresentados em um texto. 250 Identificam a peça faltante em uma sequência de figuras, cuja regra refere-se ao

Leia mais

QUESTÕES OBJETIVAS. a) 1 b) h 1 h 2 c) h 1 + h 2 d) h 1 /h 2 e) h 2 /h 1

QUESTÕES OBJETIVAS. a) 1 b) h 1 h 2 c) h 1 + h 2 d) h 1 /h 2 e) h 2 /h 1 Triênio 007-009 QUESTÕES OBJETIVAS Use se necessário: 1L = 10-3 m 3. sen 45 = cos 45 = ; 1 sen 30 = cos 60 = ; sen 60 = cos 30 = 3 Questão 9: Em uma brincadeira numa piscina, uma pessoa observa o esforço

Leia mais

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que:

TER EXERCICIOS. 5) Uma sala de aula contém 38 alunos e, dentre eles, 18 são meninas. Assim, podemos afirmar que: Nome: nº: 7º ano: do Ensino Fundamental Professores: Edilaine, Luiz Carlos e Matheus TER Razão EXERCICIOS 1) A idade de Pedro é 30 anos e a idade de Josefa é 45 anos. Qual é a razão entre as idades de

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 2016-2 a Fase Proposta de resolução Caderno 1 1. Calculando a diferença entre 3 1 e cada uma das opções apresentadas, arredondada às centésimas, temos que: 3 1 2,2

Leia mais

FRAGMENTOS MATEMÁTICOS PROPORÇÃO GRANDEZAS. André Paegle EXERCICIOS W W W. F R A G M E N T O S M A T E M A T I C O S. C O M. BR

FRAGMENTOS MATEMÁTICOS PROPORÇÃO GRANDEZAS. André Paegle EXERCICIOS W W W. F R A G M E N T O S M A T E M A T I C O S. C O M. BR FRAGMENTOS MATEMÁTICOS PROPORÇÃO GRANDEZAS EXERCICIOS W W W. F R A G M E N T O S M A T E M A T I C O S. C O M. BR Abaixo segue uma lista de exercícios relativos ao conceito de grandezas diretamente proporcionais

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução.

Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. Universidade Federal do ABC Aula 14 Áreas entre duas curvas. Volumes e Áreas de sólidos de revolução. BCN0402-15 FUV Suporte ao aluno Site da disciplina: http://gradmat.ufabc.edu.br/disciplinas/fuv/ Site

Leia mais

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas.

Lista Dentre os conjuntos a seguir, distingua quais são intervalos, representando-os com as notações adotadas. UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática MA - Números e Funções Reais - PROFMAT Prof. Zeca Eidam Lista Equações e inequações. Prove que: a) x 0 b) x = 0

Leia mais

Mat. Rafael Jesus. Monitor: Fernanda Aranzate

Mat. Rafael Jesus. Monitor: Fernanda Aranzate Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância

Leia mais

Atividades de Recuperação Paralela de Matemática

Atividades de Recuperação Paralela de Matemática Atividades de Recuperação Paralela de Matemática º ANO Ensino Médio 1º Trimestre Leia as orientações de estudos antes de responder as questões Conteúdos para estudos: ÁLGEBRA Função do 1ºgrau Função do

Leia mais

Aplicação de Integral Definida: Volumes de Sólidos de Revolução

Aplicação de Integral Definida: Volumes de Sólidos de Revolução Aplicação de Integral Definida: Prof a. Sólidos Exemplos de Sólidos: esfera, cone circular reto, cubo, cilindro. Sólidos de Revolução são sólidos gerados a partir da rotação de uma área plana em torno

Leia mais

Explorando a ideia de função

Explorando a ideia de função Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira [email protected] Explorando

Leia mais

Ficha de Trabalho de Matemática do 9º ano - nº Data / /

Ficha de Trabalho de Matemática do 9º ano - nº Data / / . Resolve as seguintes equações sem aplicar a fórmula resolvente: a. ; 9 b. ; c. ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( )( ) ( )( ) ; d. ( ) { } ; e. ( )( ) 9 f. ; g. { } 9 9. A soma das idades do André

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 9.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES 016 017 Matemática A 9.º Ano Fichas de Trabalho Compilação

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas:

Nome do aluno: N.º: Para responder aos itens de escolha múltipla, não apresente cálculos nem justificações e escreva, na folha de respostas: Teste de Matemática A 018 / 019 Teste N.º 5 Matemática A Duração do Teste (Caderno 1 + Caderno ): 90 minutos 10.º Ano de Escolaridade Nome do aluno: N.º: Turma: Este teste é constituído por dois cadernos:

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programas e Metas Curriculares do Ensino Básico 2º CICLO MATEMÁTICA- 6º ANO TEMAS/DOMÍNIOS

Leia mais

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.

Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado. Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou

Leia mais

RESUMÃO DE MATEMÁTICA PARA EsPCEx

RESUMÃO DE MATEMÁTICA PARA EsPCEx Prof. Arthur Lima, RESUMÃO DE MATEMÁTICA PARA EsPCEx Olá! Veja abaixo um resumo com os principais assuntos para a prova da EsPCEx! Bons estudos! Prof. Arthur Lima Equação de 1º grau b é do tipo ax b 0.

Leia mais

TESTE DE MATEMÁTICA 9.º ano

TESTE DE MATEMÁTICA 9.º ano Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Do plantel de uma determinada equipa de futebol fazem parte quatro defesas centrais: o André, o Bernardo, o Custódio e o Daniel. Num treino, é necessário

Leia mais

PROPORÇÕES DIRETAS SIMPLES

PROPORÇÕES DIRETAS SIMPLES 3. PROPORÇÕES DIRETAS SIMPLES 1). Ideia de proporcionalidade direta Estudaremos aqui situações onde temos duas variáveis numéricas, que denotaremos por x e y, tais que cada possível valor de x determina

Leia mais

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero.

FÍSICA. A resultante das forças que atuam num corpo em equilíbrio é igual a zero. FÍSICA Leis de Newton 1ª Lei de Newton (lei da inércia) A resultante das forças que atuam num corpo em equilíbrio é igual a zero. R=0 2ª Lei de Newton (lei fundamental da dinâmica) A aceleração adquirida

Leia mais

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega

TECNÓLOGO EM CONSTRUÇÃO CIVIL. Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 1 TECNÓLOGO EM CONSTRUÇÃO CIVIL Aula 5 _ Função Polinomial do 1º Grau Professor Luciano Nóbrega 2 FUNÇÃO POLINOMIAL DO 1º GRAU Uma função polinomial do 1º grau (ou simplesmente, função do 1º grau) é uma

Leia mais

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2

Processo Seletivo Estendido 2016 LISTA FUNÇÕES - 2 Processo Seletivo Estendido 06 LISTA FUNÇÕES - Professor: Fernando de Ávila Silva Departamento de Matemática - UFPR Esta lista foi inicialmente elaborada pelo professor Alexandre Trovon UFPR) A presente

Leia mais

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade

ESCOLA BÁSICA INTEGRADA DE ANGRA DO HEROÍSMO. Plano da Unidade Unidade de Ensino: OPERAÇÕES COM NÚMEROS RACIONAIS ABSOLUTOS (adição e subtracção). Tempo Previsto: 3 semanas O reconhecimento do conjunto dos racionais positivos, das diferentes formas de representação

Leia mais

Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas

Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas Lista de Exercícios 2: Magnetismo e Ondas Eletromagnéticas 1. Na Fig.1, em (a) e (b), as porções retilíneas dos fios são supostas muito longas e a porção semicircular tem raio R. A corrente tem intensidade

Leia mais

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA

PROFESSOR: Guilherme Franklin Lauxen Neto LISTA DE ESFERA ALUNO TURMA: 2 Ano DATA / /205 PROFESSOR: Guilherme Franklin Lauxen Neto DEVOLUTIVA: / /205 LISTA DE ESFERA ) (UFJF-MG) Um reservatório de água tem a forma de um hemisfério acoplado a um cilindro circular,

Leia mais

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro.

Conteúdos Ideias-Chave Objectivos específicos. múltiplo de outro número, este é divisor do primeiro. Capítulo 1 Números Naturais Múltiplos e Divisores Se um número natural é múltiplo de outro número, este é divisor do primeiro. Números primos e números compostos Decomposição de um número em factores primos

Leia mais

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições Básicas de Funções Polinomiais Complexas 3 ano E.M. Professores Cleber Assis e Tiago Miranda Funções Polinomiais com Coeficientes Complexos Definições

Leia mais

3 x + y y 17) V cilindro = πr 2 h

3 x + y y 17) V cilindro = πr 2 h MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen sec x =, cos x 0 cos x cos sen x tg x =, cos x 0 cos x tg cos x cotg x =, sen x 0 sen x ) a n = a + (n ). r 0) A = onde b h D = sen x +

Leia mais

Lista 7 Funções de Uma Variável

Lista 7 Funções de Uma Variável Lista 7 Funções de Uma Variável Aplicações de Integração i) y = sec 2 (x) y = cos(x), x = π x = π Áreas 1 Determine a área da região em cinza: Ache a área da região delimitada pela parábola y = x 2 a reta

Leia mais