Funções de Várias Variáveis. Conceitos Básicos
|
|
|
- Estela Canedo Garrau
- 8 Há anos
- Visualizações:
Transcrição
1 Funções de Várias Variáveis Conceitos Básicos Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, outubro de 2017 Direitos reservados. Reprodução autorizada desde que citada a fonte.
2 Funções de Várias Variáveis Função de n variáveis reais com valor real Noções Básicas. Aplicações. Domínio. Imagem. Gráfico. Curvas e Superfícies de Nível JRRZ 2
3 Referências Qualquer bom livro de cálculo, volume 2 Thomas, cap 14. Diomara e Morgado, cap 3. Stewart; Simmons; Swokwovski; etc. JRRZ 3
4 Noções Básicas Função de n variáveis reais com valor real (função escalar) f : R n R (x 1, x 2,, x n ) w = f(x 1, x 2,, x n ) A cada ponto do domínio da função corresponde um único número real o valor da função no ponto. JRRZ 4
5 Noções Básicas Função de 2 variáveis reais com valor real f : R 2 R (x, y) z = f(x, y) Função de 3 variáveis reais com valor real f : R 3 R (x, y, z) w = f(x, y, z) JRRZ 5
6 APLICAÇÕES Altitude em função da posição no plano (mapa do relevo). Temperatura em um disco em função da posição, T(x, y). Pressão em um fluido em função da posição, P(x,y,z). Potencial elétrico em uma placa, em função da posição na placa e do tempo, V(x, y, t). Exemplos da economia - comentários JRRZ 6
7 Densidade de um colchão de espuma em função do peso e da altura da pessoa. Na versão deste arquivo para a homepage, esta imagem foi excluída por ser muito grande (cerca de 1Mb). JRRZ 7
8 Mapa Topográfico Altitude em função da posição no mapa Na versão deste arquivo para a homepage, esta imagem foi excluída por ser muito grande (cerca de 2Mb). JRRZ 8 Fonte:
9 Tipos de Funções Usualmente vistas no primeiro ano, CDI e ALCV f : R R (função de uma variável, já estudamos) f : R n R (função de várias variáveis, estamos começando o estudo) f : R R n (função vetorial de uma variável, exemplos: curvas parametrizadas) JRRZ 9
10 TIPOS DE FUNÇÕES Usualmente vistas no segundo ano, CDI f : R 2 R n (função vetorial de duas variáveis), exemplos: superfícies parametrizadas f : R n R n (função vetorial de várias variáveis), exemplos: campo de forças, gravitacional, elétrico,, gradiente de uma função, transformações de coordenadas, JRRZ 10
11 DOMÍNIO DE UMA FUNÇÃO dom f Função de n variáveis: f(x 1, x 2,, x n ) Definição: o domínio de f é o subconjunto de R n para os quais a função está definida. Notação: dom f. Observações usuais: não existe divisão por zero, argumento da raiz quadrada tem de ser não negativo, argumento do logaritmo tem de ser positivo, etc. JRRZ 11
12 Domínio de uma função - Geometria Função de 2 variáveis: f(x, y), o domínio é um subconjunto do R 2, em geral, uma região do plano. Função de 3 variáveis: f(x, y, z), o domínio é um subconjunto do R 3, em geral, uma região do espaço. JRRZ 12
13 Domínio de uma função - Exemplo Ilustração - Região do plano xy correspondente ao domínio da função do exercício 1b, f(x, y) = (y 1 x 2 ) Dom f = { y 1 + x 2 } Fronteira da região é a parábola y = 1 + x 2 Construído no Geogebra JRRZ 13
14 Domínio de uma função - Exercícios JRRZ 14
15 Domínio de uma função - Geometria Resolução na lousa Região do plano xy correspondente ao domínio da função do exercício 1a, f(x, y) = (x + y - 4) JRRZ 15
16 Imagem de uma Função - Im f Notação Im f JRRZ 16
17 Gráfico de uma Função de Várias Variáveis Função de n variáveis f : R n R (x 1, x 2,, x n ) w = f(x 1, x 2,, x n ) Gráfico de f é o subconjunto de R n+1 formado pelos pontos (x 1, x 2,, x n, x n+1 ) tal que x n+1 = f(x 1, x 2,, x n ). Para funções de 3 ou mais variáveis não há visualização do gráfico (seria uma hipersuperfície em 4 ou mais dimensões). JRRZ 17
18 Gráfico de funções de 2 variáveis Função de 2 variáveis: o valor da função em cada ponto (x, y) é representado pela altura z = f(x, y) em relação ao plano xy. O gráfico de f é uma superfície do R 3 formada pelos pontos (x, y, z = f(x, y)), com (x, y) no dom f. A projeção do gráfico de f no plano xy é o dom f. Diomara Exemplo 4. f(x, y) = 4 x 2 y. (para casa) JRRZ 18
19 Gráfico de funções de 2 variáveis Ilustração gráfico da função do exercício 1b f(x, y) = (y 1 x 2 ) Observação equivalente à y = 1 + x 2 + z 2 e z 0. Parabolóide com eixo em Oy e vértice em (0, 1, 0) JRRZ 19
20 Gráfico de funções de 2 variáveis Resolução na lousa. Exercício, Diomara, cap 3, seção 2. JRRZ 20
21 Gráfico de funções de 2 variáveis Obs: nem toda superfície é o gráfico de uma função. Uma reta vertical (ortogonal ao plano xy) intercepta o gráfico de f em apenas um ponto (ou não intercepta). Exemplo: uma esfera não é o gráfico de uma função de duas variáveis. A esfera pode ser associada a duas funções: uma função que descreve o hemisfério superior e outra função que descreve o hemisfério inferior. Em particular, a esfera descrita pela equação x 2 + y 2 + z 2 = 1 é associada com as funções f s (x, y) = (1 - x 2 - y 2 ) e f i (x, y) = - (1 - x 2 - y 2 ) JRRZ 21
22 Gráfico de funções de 2 variáveis Exercícios. Esboce o domínio e o gráfico da função. 4. f(x, y) = 1/(x 2 + y 2 ) 6. f(x, y) = sqrt(10 x y^2) 10. JRRZ 22
23 Gráficos Congruentes O gráfico de g(x) = f(x) + c é uma translação na vertical do gráfico de f (por c unidades). Exemplo: g(x) = 2 + x ² + y ² O gráfico de g(x) = - f(x) é obtido refletindo o gráfico de f no plano xy (z = 0). Exemplo: g(x) = x ² + y ² JRRZ 23
24 Curvas de Nível - Funções de 2 Variáveis O conjunto solução da equação f(x, y) = k (k é um número real) é dita a curva de nível k da função f, isto é, o valor da função é constante ao longo de uma curva de nível. Observações: 1) as curvas de nível são curvas no domínio da função. 2) k deve pertencer a imagem da função, caso contrário o conjunto solução será o vazio. 3) uma curva de nível se reduzir a um ponto (caso degenerado). 4) uma curva de nível pode ter vários ramos (não conexa). JRRZ 24
25 Curvas de Nível - Exemplo Curvas de nível para a função do exercício 8c: f(x, y) = (2y y 2 x 2 ) equação curva de nível k 0 k 2 = 2y y 2 x 2 x 2 + (y - 1) 2 = 1 k 2 k < 1 => circunferência k = 1 => ponto (0,1) k > 1 => vazio Construído no Geogebra k = 0, 0.2, 0.4, 0.6, 0.8 e 1. JRRZ 25
26 Curvas de Nível - Aplicações Função Temperatura, T(x, y), as curvas de nível são ditas isotermas. Função Potencial, V(x, y), as curvas de nível são ditas equipotenciais. JRRZ 26
27 Curvas de Nível - Função Altitude use o zoom para aumentar Na versão deste arquivo para a homepage, esta imagem foi excluída por ser muito grande (cerca de 13Mb). Fonte: JRRZ 27
28 Curvas de Nível - Exercícios JRRZ 28
29 Curvas de Nível - Exemplos Resolução na lousa. Curvas de nível da função do exercício 1b f(x, y) = (y 1 x 2 ) JRRZ 29
30 Superfícies de Nível - Funções de 3 Variáveis Definição: o conjunto solução da equação f(x, y, z) = k (k é um número real) é dita a superfície de nível k da função f. O valor da função f é constante ao longo da superfície de nível. JRRZ 30
31 SUPERFÍCIES DE NÍVEL Resolução na lousa JRRZ 31
32 SUPERFÍCIES DE NÍVEL Exercícios JRRZ 32
Revisão de Pré-Cálculo PÁRABOLAS. Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior
Revisão de Pré-Cálculo PÁRABOLAS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Março, 2018 Direitos reservados. Reprodução
INTERVALOS, INEQUAÇÕES E MÓDULO
Revisão de Pré-Cálculo INTERVALOS, INEQUAÇÕES E MÓDULO Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, outubro 2016 Direitos
Técnicas de Integração
Técnicas de Integração INTEGRAÇÃO DE FUNÇÕES RACIONAIS Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, agosto de 2017 Direitos reservados. Reprodução autorizada desde
GGM Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 20/12/2012- GGM - UFF Dirce Uesu
GGM0016 Geometria Analítica e Cálculo Vetorial Geometria Analítica Básica 0/1/01- GGM - UFF Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
Técnicas de Integração II. Algumas Integrais Trigonométricas
Técnicas de Integração II Algumas Integrais Trigonométricas Prof. Dr. José Ricardo de Rezende Zeni UNESP, FEG, Depto de Matemática Guaratinguetá, agosto de 2017 Direitos reservados. Reprodução autorizada
Revisão de Pré-Cálculo NÚMEROS REAIS E OPERAÇÕES
Revisão de Pré-Cálculo NÚMEROS REAIS E OPERAÇÕES Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos
Matemática para Biomedicina
Matemática para Biomedicina Funções: lista de exercícios Prof. Luís Rodrigo de O. Gonçalves Copyright c 2019 Luís Rodrigo de O. Gonçalves Licenciado sob a licença Atribuição-NãoComercial 4.0 Internacional.
1 FUNÇÃO - DEFINIÇÃO. Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0.
MATEMÁTICA ENSINO MÉDIO FUNÇÃO - DEFINIÇÃO FUNÇÃO - DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f(x) = ax + b com a, b e a 0. EXEMPLOS: f(x) = 5x 3, onde a = 5 e b = 3 (função afim)
Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial.
Capítulo 5 Integrais Sobre Caminhos e Superfícies. Teoremas de Integração do Cálculo Vectorial. 5.1 Integral de Um Caminho. Integral de Linha. Exercício 5.1.1 Seja f(x, y, z) = y e c(t) = t k, 0 t 1. Mostre
Cálculo II - Superfícies no Espaço
UFJF - DEPARTAMENTO DE MATEMÁTICA Cálculo II - Superfícies no Espaço Prof. Wilhelm Passarella Freire Prof. Grigori Chapiro 1 Conteúdo 1 Introdução 4 2 Plano 6 2.1 Parametrização do plano...................................
Capítulo 4 Funções à Várias Variáveis
1. Conceito Capítulo 4 Funções à Várias Variáveis Em muitas situações práticas, o valor de certa quantidade depende dos valores de duas ou mais variáveis. Então, é usual representar estas relações como
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
Matemática. Exercícios de Revisão II. Eldimar. 1 a. 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x).
Nome: n o : E nsino: Médio S érie: T urma: Data: Prof(a): Eldimar 1 a Matemática Exercícios de Revisão II 1) (CFTMG-2008) Na figura, está representado o gráfico da função f(x). Com relação a f(x) pode-se
ln(x + y) (x + y 1) < 1 (x + y 1)2 3. Determine o polinômio de Taylor de ordem 2 da função dada, em volta do ponto dado:
ā Lista de MAT 454 - Cálculo II - a) POLINÔMIOS DE TAYLOR 1. Seja f(x, y) = ln (x + y). a) Determine o polinômio de Taylor de ordem um de f em torno de ( 1, 1 ). b) Mostre que para todo (x, y) IR com x
Revisão de Pré-Cálculo
Revisão de Pré-Cálculo EQUAÇÕES E POLINÔMIOS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos reservados.
Cálculo diferencial de Funções de mais de uma variável
MATERIAL DIDÁTICO Professora Sílvia Victer CÁLCULO 2 Cálculo diferencial de Funções de mais de uma variável 1. Funções de mais de uma variável 2. Limites de funções de mais de uma variável 3. Continuidade
GGM Geometria Analítica I 19/04/2012- Turma M1 Dirce Uesu
GGM0016 Geometria Analítica I 19/04/01- Turma M1 Dirce Uesu CÔNICAS DEFINIÇÃO GEOMÉTRICA Exercício: Acesse o sitio abaixo e use o programa: http://www.professores.uff.br/hjbortol/disciplinas/005.1/gma04096/applets/conic/co
d{p, s) = R. Mas, d(p, s) = d(p, Q), onde Q(0, 0, z). Logo, P{x, y, z) pertence ao cilindro se, e somente se,
134 Geometria Analítica \ Vamos deduzir uma equação do cilindro, em relação a um sistema de coordenadas que contém s como eixo z. Seja R a distância entre r es. Então, um ponto P(x, y, z) pertence ao cilindro
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemática GAX1 - Geometria Analítica e Álgebra Linear Lista de Exercícios: Estudo Analítico de Cônicas e Quádricas Prof.
Revisão de Pré-Cálculo
Revisão de Pré-Cálculo EQUAÇÕES E POLINÔMIOS Prof. Dr. José Ricardo de Rezende Zeni Departamento de Matemática, FEG, UNESP Lc. Ismael Soares Madureira Júnior Guaratinguetá, SP, Outubro, 2016 Direitos reservados.
Geometria Analítica. Superfícies. Prof Marcelo Maraschin de Souza
Geometria Analítica Superfícies Prof Marcelo Maraschin de Souza Hiperboloide de Revolução Considere no plano yz a hipérbole de equações y 2 b 2 z2 c 2 = 1 x = 0 Os hiperboloides de revolução são obtidos
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de
Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para
Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green
MAT 003 2 ō Sem. 207 Prof. Rodrigo Lista 5: Rotacional, Divergente, Campos Conservativos, Teorema de Green. Considere o campo de forças F (x, y) = f( r ) r, onde f : R R é uma função derivável e r = x
Aula Exemplos diversos. Exemplo 1
Aula 3 1. Exemplos diversos Exemplo 1 Determine a equação da hipérbole equilátera, H, que passa pelo ponto Q = ( 1, ) e tem os eixos coordenados como assíntotas. Como as assíntotas da hipérbole são os
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS No Exemplo 6 da Seção 14.7 maximizamos a função volume V = xyz sujeita à restrição 2xz + 2yz + xy = que expressa a condição de a área da superfície ser
Resposta - Questão 01: Equação genérica do segundo grau: f(x) = ax² + bx + c. a) f(x) = x² 7x + 10 a = 1 b = 7 c = 10 I Cálculo das raízes:
1) Estude as raízes, determine o vértice, interseção com o eixo y, eixo de simetria, esboce o gráfico e estude o sinal das funções a seguir. a. f(x) = x 2 7x + 10 b. g(x) = x 2 + 4x + 4 c. y = -3x 2 +
c) F( 4, 2) r : 2x+y = 3 c) a = 3 F 1 = (0,0) F 2 = (1,1)
Lista de Exercícios Estudo Analítico das Cônicas e Quádricas 1. Determine o foco, o vértice, o parâmetro e a diretriz da parábola P e faça um esboço. a) P : y 2 = 4x b) P : y 2 +8x = 0 c) P : x 2 +6y =
Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece.
Aula 9 Cilindros e Quádricas Cilindros Dizemos que uma superfície é um cilindro se na equação cartesiana da superfície há uma variável que não aparece. Exemplo 1. x 2 + y 2 = 1 No espaço, o conjunto de
14.5 A Regra da Cadeia. Copyright Cengage Learning. Todos os direitos reservados.
14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que a Regra da Cadeia para uma função de uma única variável nos dava uma regra para derivar
Preliminares de Cálculo
Preliminares de Cálculo Profs. Ulysses Sodré e Olivio Augusto Weber Londrina, 21 de Fevereiro de 2008, arquivo: precalc.tex... Conteúdo 1 Números reais 2 1.1 Algumas propriedades do corpo R dos números
Álgebra Linear e Geometria Anaĺıtica. Cónicas e Quádricas
universidade de aveiro departamento de matemática Álgebra Linear e Geometria Anaĺıtica Agrupamento IV (ECT, EET, EI) Capítulo 6 Cónicas e Quádricas Equação geral de uma cónica [6 01] As cónicas são curvas
Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.
14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.6 Derivadas Direcionais e o Vetor Gradiente Copyright Cengage Learning. Todos os direitos reservados. Derivadas Direcionais
CANDIDATO: DATA: 20 / 01 / 2010
UNIVERSIDADE ESTADUAL DO CEARÁ - UECE SECRETARIA DE EDUCAÇÃO A DISTÂNCIA - SEaD Universidade Aberta do Brasil UAB LICENCIATURA PLENA EM MATEMÁTICA SELEÇÃO DE TUTORES PRESENCIAIS CANDIDATO: DATA: 0 / 0
Geometria Analítica. Cônicas. Prof. Vilma Karsburg
Geometria Analítica Cônicas Prof. Vilma Karsburg Cônicas Sejam duas retas e e g concorrentes em O e não perpendiculares. Considere e fixa e g girar 360 em torno de e, mantendo constante o ângulo entre
Função Exponencial, Inversa e Logarítmica
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.2 Função Exponencial, Inversa e Logarítmica Bárbara Simionatto Engenharia Civil Jaime Vinícius - Engenharia de Produção Função Exponencial Dúvida:
CSE-MME Revisão de Métodos Matemáticos para Engenharia
CSE-MME Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia
1. Qual éolugar geométrico dos pontosequidistantes de A = (1,0,0),B = ( 1,1,0),C = (0,2,0) e D = (0,0,0).
Universidade Federal Fluminense PURO Instituto de Ciência e Tecnologia Departamento de Física e Matemática Geometria Analítica e Cálculo Vetorial 7 a Lista de Exercícios 1/2011 Distâncias Observação: Todos
Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)
Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções
Geometria Anaĺıtica. Prof. Dr. Thadeu Alves Senne ICT - UNIFESP
Geometria Anaĺıtica Prof. Dr. Thadeu Alves Senne ICT - UNIFESP [email protected] Superfícies Quádricas Definição: Uma superfície quádrica Ω é um conjunto de pontos (x, y, z) R 3 que satisfazem uma equação
APLICAÇÕES NA GEOMETRIA ANALÍTICA
4 APLICAÇÕES NA GEOMETRIA ANALÍTICA Gil da Costa Marques 4.1 Geometria Analítica e as Coordenadas Cartesianas 4. Superfícies 4..1 Superfícies planas 4.. Superfícies limitadas e não limitadas 4.3 Curvas
TÓPICO. Fundamentos da Matemática II APLICAÇÕES NA GEOMETRIA ANALÍTICA. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques
APLICAÇÕES NA GEOMETRIA ANALÍTICA 4 Gil da Costa Marques TÓPICO Fundamentos da Matemática II 4.1 Geometria Analítica e as Coordenadas Cartesianas 4.2 Superfícies 4.2.1 Superfícies planas 4.2.2 Superfícies
CONTEÚDOS PARA BANCA MATEMÁTICA II. EDITAL Mestres e Doutores
CONTEÚDOS PARA BANCA MATEMÁTICA II EDITAL 07-2010 Mestres e Doutores 1- Trigonometria: identidades trigonométricas e funções circulares; a) Defina função periódica e encontre o período das funções circulares,
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 2º Grau. Alex Oliveira Engenharia Civil
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Função do 2º Grau Alex Oliveira Engenharia Civil Função do Segundo Grau Chama-se função do segundo grau ou função quadrática a função f: R R que
CDI-II. Resumo das Aulas Teóricas (Semana 1) 2 Norma. Distância. Bola. R n = R R R
Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Resumo das Aulas Teóricas (Semana 1) 1 Notação R n = R R R x R n : x = (x 1, x 2,, x n ) ; x
1. Seja θ = ang (r, s). Calcule sen θ nos casos (a) e (b) e cos θ nos casos (c) e (d): = z 3 e s : { 3x + y 5z = 0 x 2y + 3z = 1
14 a lista de exercícios - SMA0300 - Geometria Analítica Estágio PAE - Alex C. Rezende Medida angular, distância, mudança de coordenadas, cônicas e quádricas 1. Seja θ = ang (r, s). Calcule sen θ nos casos
As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante.
Módulo 4 FUNÇÕES QUADRÁTICAS 1. APRESENTAÇÃO As funções quadráticas são usadas em diversas aplicações: - Equacionamento do movimento de um ponto com aceleração constante. - Modelagem de trajetórias na
21 e 22. Superfícies Quádricas. Sumário
21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............
1.1 Domínios & Regiões
1. CAMPOS ESCALARES CÁLCULO 2-2018.2 1.1 Domínios & Regiões 1. Esboce o conjunto R do plano R 2 dada abaixo e determine sua fronteira. Classi que R em: aberto, fechado, itado, compacto, ou conexo. (a)
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 FUNÇÕES DE DUAS VARIÁVEIS A temperatura T em um ponto da superfície da Terra em dado instante de tempo depende da longitude x e da latitude y do ponto. Podemos pensar em
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro. Autoria: Prof. Denise Candal
FUNÇÕES Parte 2 Disciplina: Lógica Aplicada Prof. Rafael Dias Ribeiro Autoria: Prof. Denise Candal Função Quadrática ou do 2 o grau Definição: Toda função do tipo y = ax 2 + bx + c, com {a, b, c} R e a
Escola Naval 2010 ( ) ( ) 8 ( ) 4 ( ) 4 (
Escola Naval 0 1. (EN 0) Os gráficos das funções reais f e g de variável real, definidas por f(x) = x e g(x) = 5 x interceptam-se nos pontos A = (a,f(a)) e B = (b,f(b)), a b. Considere os polígonos CAPBD
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013
Nome: nº Professor(a): UBERLAN / CRISTIANA Série: 3ª EM Turmas: 3301 / 3302 Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1) A área do triângulo, cujos vértices são (1, 2),
Lista 3. Cálculo Vetorial. Integrais de Linha e o Teorema de Green. 3 Calcule. 4 Calcule. a) F(x, y, z) = yzi + xzj + xyk
Lista 3 Cálculo Vetorial Integrais de Linha e o Teorema de Green Parametrizações Encontre uma parametrização apropriada para a curva suave por partes em R 3. a) intersecção do plano z = 3 com o cilindro
1. Encontre as equações simétricas e paramétricas da reta que:
Universidade Federal de Uberlândia Faculdade de Matemática Disciplina : Geometria Analítica (GMA00) Assunto: retas; planos; interseções de retas e planos; posições relativas entre retas e planos; distância
Cálculo II. Resumo Teórico Completo
Cálculo II Resumo Teórico Completo Cálculo 2 A disciplina visa estudar funções e gráficos, de forma semelhante a Cálculo 1, mas expande o estudo para funções de mais de uma variável, bem como gráficos
Cálculo 2. Guia de Estudos P1
Cálculo 2 Guia de Estudos P1 Resuminho Teórico e Fórmulas Parte 1 Cônicas Conceito: Cônicas são formas desenhadas em duas dimensões, considerando apenas os eixos x (horizontal) e y (vertical). Tipos de
DISCIPLINA/ATIVIDADE
FORMULÁRIO Nº 19 PROGRAMA DE DISCIPLINA/ATIVIDADE CONTEÚDO DE ESTUDOS MATEMÁTICA CÓDIGO NOME DA DISCIPLINA/ATIVIDADE CÓDIGO CHT: 68H TEÓRICA: 68H E CÁLCULO VETORIAL I GGM00160 PRÁTICA : ----- ESTÁGIO:
MAT Lista de exercícios
1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))
Funções de duas (ou mais)
Lista 5 - CDI II Funções de duas (ou mais) variáveis. Seja f(x, y) = x+y x y, calcular: f( 3, 4) f( 2, 3 ) f(x +, y ) f( x, y) f(x, y) 2. Seja g(x, y) = x 2 y, obter: g(3, 5) g( 4, 9) g(x + 2, 4x + 4)
MATEMÁTICA. Conceito de Funções. Professor : Dêner Rocha
MATEMÁTICA Conceito de Funções Professor : Dêner Rocha Monster Concursos 1 Noção de Função 1º) Dados A = {-, -1, 0, 1, } e B = {-8, -6, -4, -3, 0, 3, 6, 7} e a correspondência entre A e B dada pela fórmula
PROFESSOR: RICARDO SÁ EARP
LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO
Função de 1º Grau. Como construir um Gráfico. Função constante. Matemática Básica I. RANILDO LOPES Slides disponíveis no nosso SITE:
Matemática Básica Como construir um Gráfico Unidade 5. Gráficos de Funções Reais RANILDO LOPES Slides disponíveis no nosso SITE: https://ueedgartito.wordpress.com x y = f(x) x y x x 3 y x 4 y 3 y 4 x 5
Aula Transformações
Aula 6 6. Transformações O gráfico de uma função f permite obter os gráficos de outras funções, via transformações elementares. Para simplificar, nesta seção consideraremos somente funções cujo domínio
Lista 6: Área e Integral de Superfície, Fluxo de Campos Vetoriais, Teoremas de Gauss e Stokes
MAT 00 2 ō em. 2017 Prof. Rodrigo Lista 6: Área e Integral de uperfície, Fluo de Campos Vetoriais, Teoremas de Gauss e tokes 1. Forneça uma parametrização para: a a porção do cilindro 2 + y 2 = a 2 compreendida
(b) O centro é O, os focos estão em Oy, o eixo maior mede 10, e a distância focal é 6.
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Campo Mourão Wellington José Corrêa Nome: 4 ā Lista de Geometria Analítica e Álgebra Linear No que segue, todas as bases utilizadas
Ricardo Bianconi. Fevereiro de 2015
Seções Cônicas Ricardo Bianconi Fevereiro de 2015 Uma parte importante da Geometria Analítica é o estudo das curvas planas e, em particular, das cônicas. Neste texto estudamos algumas propriedades das
MA23 - Unidade 7-2. Equação de Segundo Grau
MA23 - Unidade 7-2 Equação de Segundo Grau Resumo elaborado por Ralph Costa Teixeira: Livro Texto J. Delgado, K. Frensel e L. Crissaff. Geometria Anaĺıtica. Col PROFMAT Resumo elaborado por Ralph Costa
18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1
18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais
Derivadas Parciais Capítulo 14
Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS Como vimos no Capítulo 4, no Volume I, um dos principais usos da derivada ordinária é na determinação dos valores máximo e mínimo. DERIVADAS PARCIAIS 14.7
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por
7. f(x,y,z) = y + 25 x 2 y 2 z f(x,y,z) = f : D R 2 R (x,y) z = f(x,y) = x 2 + y 2
Lista Cálculo II -B- 007- Universidade Federal Fluminense EGM - Instituto de Matemática GMA - Departamento de Matemática Aplicada LISTA - 007- Domínio, curva de nível e gráfico de função real de duas variáveis
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de x+y
MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) R (y 3xy 3 )dxdy, onde R = {(x, y) : x, y 3}. Resp. (a) 585
1o sem profa. daniela m. vieira. (a) f(x, y) = 3x y no conjunto A de todos (x, y) tais que x 0, y 0, y x 3, x + y 4 e
mat51 - cálculo várias variáveis i - licenciatura 1o sem 011 - profa daniela m vieira SÉTIMA LISTA DE EXERCÍCIOS (1) Estude a função dada com relação a máximo e mínimo no conjunto dado (a) f(x, y) = x
Análise Matemática 2 - Semana 2: 8 de Março, 2010
Análise Matemática 2 - Semana 2: 8 de Março, 200 Superfícies Identifique os seguintes conjuntos: (a) V = {(x,y,z) R 3 : x 2 + 2x + + (y ) 2 + z 2 = } Res: (x + ) 2 + (y ) 2 + z 2 = é a equação de uma esfera
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula 1 02/09 Sequências Numéricas, definição, exemplos, representação geométrica, convergência e divergência, propriedades,
MAT Cálculo Diferencial e Integral para Engenharia III 1a. Lista de Exercícios - 1o. semestre de 2013
MAT55 - Cálculo iferencial e Integral para Engenharia III a. Lista de Exercícios - o. semestre de. Calcule as seguintes integrais duplas: (a) (y xy )dxdy, onde = {(x, y) : x, y }. esp. (a) 585 8. (b) x
3º ANO DO ENSINO MÉDIO. 1.- Quais são os coeficientes angulares das retas r e s? 60º 105º. 0 x x. a) Escreva uma equação geral da reta r.
EXERCÍCIOS DE REVISÃO 3º BIMESTRE GEOMETRIA ANALÍTICA 3º ANO DO ENSINO MÉDIO 1.- Quais são os coeficientes angulares das retas r e s? s 60º 105º r 2.- Considere a figura a seguir: 0 x r 2 A C -2 0 2 5
SUMÁRIO CAPÍTULO 1 CAPÍTULO 2
SUMÁRIO CAPÍTULO 1 NÚMEROS COMPLEXOS 1 Somas e produtos 1 Propriedades algébricas básicas 3 Mais propriedades algébricas 5 Vetores e módulo 8 Desigualdade triangular 11 Complexos conjugados 14 Forma exponencial
n = S(n) + P(n) 10.a + b = (a+b) + (a.b) 10.a + b a b = a.b n = 10.a + b
Erivaldo ACAFE Matemática Básica Chamaremos de S(n) a soma dos algarismos do número inteiro positivo n, e de P(n) o produto dos algarismos de n. Por exemplo, se n = 47 então S(n) = 11 e P(n) 28. Se n é
Capítulo 2- Funções. Dado dois conjuntos não vazios e e uma lei que associa a cada elemento de um único elemento de, dizemos que é uma função de em.
Conceitos Capítulo 2- Funções O termo função foi primeiramente usado para denotar a dependência entre uma quantidade e outra. A função é usualmente denotada por uma única letra,,,... Definição: Dado dois
Primeiro Teste de CVGA
Primeiro Teste de CVGA 31 de Março de 2005 Questão 1 [1 ponto] O triângulo com vértices em P 1 ( 2, 4, 0), P 2 (1, 2, 1) e P 3 ( 1, 1, 2) é equilátero? Questão 2 [1 ponto] O triângulo com vértices em P
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA
Matéria das Aulas e Exercícios Recomendados Cálculo II- MAA Número da Aula Data da Aula Matéria Dada Exercícios Recomendados Obs 1 06/08 Sequências, definição, exemplos, convergência e divergência, propriedades,
MAT Cálculo Diferencial e Integral para Engenharia II 3 a lista de exercícios
MAT 454 - Cálculo Diferencial e Integral para Engenharia II a lista de exercícios - 7. Ache os pontos do hiperbolóide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6)..
UNIVERSIDADE ESTADUAL DE SANTA CRUZ UESC. 1 a Avaliação escrita de Cálculo IV Professor: Afonso Henriques Data: 10/04/2008
1 a Avaliação escrita de Professor: Afonso Henriques Data: 10/04/008 1. Seja R a região do plano delimitada pelos gráficos de y = x, y = 3x 18 e y = 0. Se f é continua em R, exprima f ( x, y) da em termos
Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica
1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e
Sumário. VII Geometria Analítica Jorge Delgado Katia Frensel Lhaylla Crissaff
1 Coordenadas no plano 1 1.1 Introdução........................................ 2 1.2 Coordenada e distância na reta............................ 3 1.3 Coordenadas no plano.................................
CÁLCULO IV - MAT Calcule a integral de linha do campo vetorial f ao longo da curva que indica-se em cada um dos seguintes itens.
UNIVERSIDADE FEDERAL DA INTEGRAÇÃO LATINO-AMERIANA Instituto Latino-Americano de iências da Vida e da Natureza entro Interdisciplinar de iências da Natureza ÁLULO IV - MAT0041 1 a Lista de exercícios 1.
Teste de Matemática A 2015 / 2016
Teste de Matemática A 2015 / 2016 Teste N.º 4 Matemática A Duração do Teste: 90 minutos 10.º Ano de Escolaridade Nome do aluno: Turma: Grupo I Os cinco itens deste grupo são de escolha múltipla. Em cada
(a) Determine a velocidade do barco em qualquer instante.
NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química - 10/10/2013. 1 a QUESTÃO : Um barco a vela de massa m = 1 parte
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N
Notas de Aula Disciplina Matemática Tópico 03 Licenciatura em Matemática Osasco -2010
1. Funções : Definição Considere dois sub-conjuntos A e B do conjunto dos números reais. Uma função f: A B é uma regra que define uma relação entre os elementos de A e B, de tal forma que a cada elemento
Matemática Básica Relações / Funções
Matemática Básica Relações / Funções 04 1. Relações (a) Produto cartesiano Dados dois conjuntos A e B, não vazios, denomina-se produto cartesiano de A por B ao conjunto A B cujos elementos são todos os
Operadores Diferenciais Aplicações Rebello 2014
Operadores Diferenciais Aplicações Rebello 2014 Os operadores diferenciais representam um conjunto de ferramentas indispensáveis na engenharia não só na parte de avaliar e classificar um campo vetorial
