Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens

Tamanho: px
Começar a partir da página:

Download "Fundamentos da Eletrostática Aula 13 Descontinuidades no Campo Elétrico & Método das Imagens"

Transcrição

1 Fundamentos da Eletrostática Aula 3 Descontinuidades no Campo Elétrico & Método das Imagens Prof. Alex G. Dias Prof. Alysson F. Ferrari Descontinuidades no campo elétrico Uma observação a ser feita uando lidamos com distribuições superciais de carga é ue o campo elétrico apresenta descontinuidades ao se atravessar superfícies carregadas. Considere a lei de Gauss aplicada a um peueno cilindro atravessando uma superfície S ue tem densidade supercial de carga σ, como na gura. Seja A a parte de S contida no cilindro. Da lei de Gauss, segue ue, cilindro E da = ε 0 σda = σ ε 0 A. Por outro lado, cilindro E da = E n ds + E 2 n 2 ds 2 + S S 2 No limite em ue a altura do cilindro vai a zero, temos lateral E l ds l 0, lateral E l ds l. e, como as tampas do cilindro podem ser tomadas muito peuenas, E pode ser tomado aproximadamente constante em em S e em S 2, NH280 - Fundamentos da Eletrostática t NH280 - Fundamentos da Eletrostática t

2 de forma ue S E n ds E n A S 2 E 2 n 2 ds 2 E 2 n 2 A. Note ue n = n 2 = n, e portanto, (E E 2 ) n = σ ε 0. Em palavras: a componente perpendicular do campo elétrico, E = E n é descontínua ao se atravessar uma superfície com σ 0. Questão: nossas conclusões mudam se escolhemos n 2 = n = n? Por uê? Quanto à componente tangencial, podemos estudar seu comportamento nas proximidades da superfície carregada se consideramos o rotacional de E em torno de uma curva fechada Γ como na gura. Visto ue Γ E dl = 0, contribuição dos lados menores desaparece, camos com E dl = E dl + E dl l l 2 Γ = E l l + E 2 l 2 l 2, note ue l = l 2 = l e l = l 2, portanto, (E E 2 ) l l = 0, ou seja, as componentes tangenciais do campo elétrico são contínuas: E = E 2. Em resumo: Considerando uma superfície com densidade de carga σ, temos sempre (E E 2 ) n = σ ε 0 E = E 2 Na primeira expressão, n é um vetor ue vai da região 2 para a região. e também ue, no limite ε 0, a NH280 - Fundamentos da Eletrostática t 2 NH280 - Fundamentos da Eletrostática t 3

3 Exemplo: plano innito de carga Para um plano innito com densidade supercial de carga constante σ, escolhemos um referencial tal ue a carga está no plano xy; nestas condições, E está na direção de ẑ. Além do mais, E só depende da distância do ponto considerado até o plano, e E (z) = E ( z). logo, concluímos ue Note ue, na superfície, caixa E da = σa ε 0, E = σ 2ε 0. E ẑ E 2 ẑ = lim z 0 [(Eẑ ẑ) ( Eẑ ẑ)] = σ ε 0, como deveria ser. Considere uma caixa cilíndrica, vista em perl na gura, tendo altura l e tampas superior e inferior (S e S 2 ) com área A. Observe ue, na lateral, da está no plano xy, logo E da = 0. Chamamos E o campo elétrico na superfície S e E 2 na superfície S 2 ; neste caso: E = Eẑ ; E 2 = Eẑ Temos, assim, E da = E da + E da S S 2 caixa Eẑ n A Eẑ n 2 A (mas n = n 2 = ẑ) = 2EA. Por outro lado, da lei de Gauss, NH280 - Fundamentos da Eletrostática t 4 NH280 - Fundamentos da Eletrostática t 5

4 Continuidade do Potencial Elétrostático Imagens Eletrostáticas Diferentemente do campo eletrostátio, a continuidade do potencial eletrostático através de uma superfície carregada vem diretamente da sua denição, ϕ ϕ 2 = P2 P E dl, num limite onde P e P 2 tendem ao mesmo ponto da superfície, mas por lados diferentes da superfície (ver gura). Supondo ue E seja nito, o valor da integral tende a zero uando P e P 2 tendem ao mesmo ponto, ou seja, para P sobre a supefície, ϕ (P ) = ϕ 2 (P ). Imagine uma placa condutora e uma carga mantida a uma distância d da superfície da placa. A presença da carga vai induzir uma distribuição supercial de cargas σ (r) sobre a superfície do condutor. Dentre as perguntas ue gostaríamos de responder sobre este sistema, estão: Qual o potencial eletrostático desta conguração? Como seria a distribuição de carga induzida no condutor devido à presença de? Qual é a força eletrostática ue a placa exerce sobre a carga? De fato é isso ue temos nos condutores. Neles o potencial do lado de fora tende ao valor da superfície uando se aproximamos dela. Por outro lado, a derivada normal do potencial é descontínua ao se atravessar uma superfície carregada, visto ue esta derivada é a componente perpendicular do campo elétrico, ou seja, ( ϕ ϕ 2 ) n = (E E 2 ) n = σ ε 0. Se conhecemos σ (r) de antemão, podemos calcular o potencial, e daí o campo elétrico e as forças envolvidas, mas o problema é ue justamente σ (r) é uma das funções ue não conhecemos e ue gostaríamos de descobrir. Como proceder? Este tipo de problema pertence a uma classe geral de problemas envolvendo condutores e distribuições estáticas de cargas, para os uais essas mesmas perguntas se aplicam. Na região de vácuo entre as distribuições de carga e condutores a solução seria obtida resolvendo a euação de Laplace, e impondo NH280 - Fundamentos da Eletrostática t 6 NH280 - Fundamentos da Eletrostática t 7

5 as condições de contorno apropriadas a ϕ (r), como já discutimos. O teorema da unicidade garante ue, para um dado conjunto de condições de contorno a solução é única. Assim, se for possível, por ualuer método concebível, descobrir uma função ue é solução da euação de Laplace nas regiões de vácuo, e ue satisfaz as condições de contorno do potencial, então esta função é o potencial desejado, e o problema estará resolvido. O problema de uma carga pontual próxima a um plano condutor, conforme descrito acima, pertence a um subconjunto da classe geral de problemas no ual é possível construir a solução da euação de Laplace para uma certa região do espaço. Suponha ue o potencial na região de interesse tenha a forma (Reitz-Milford), onde ϕ (r) = ϕ c (r) + σ (r ) da r r, ϕ c é o potencial produzido pelas distribuições de carga ue conhecemos a priori, e σ (r ) é a distribuição de cargas induzida nos condutores, ue não conhecemos de antemão (subendente-se ue a integral é sobre as superfícies de todos os condutores presentes). Obviamente, o cálculo direto de ϕ por sua denição integral, neste caso, é impossível. Porém, sabemos ue a superfície de um condutor é uma euipotencial. Podemos tentar substituir a integral acima por uma função ϕ I, ue seja solução da euação de Laplace e atenda às condições de contorno de ue as superfícies dos condutores presentes são euipotenciais. Voltamos ao nosso problema inicial da carga a uma distância d de um plano condutor, ue podemos considerar aterrado (ou seja, ϕ = 0 sobre o condutor). Escolha o referencial tal ue o plano condutor coincida com o plano xy e a posição de seja dẑ. Suponha ue o condutor seja sucientemente grande (relativo a d) de tal forma ue possa ser considerado innito. O potencial devido à é conhecido, ϕ c (x, y, z) =. x 2 + y 2 + (z d) 2 Para resolver nosso problema, o truue consiste em olhar para outro problema diferente: se, ao invés do plano condutor, tivéssemos uma carga localizada em dẑ, o potencial correspondente seria facilmente encontrado como ϕ I (x, y, z) =, x 2 + y 2 + (z + d) 2 e é tal ue ϕ = ϕ c + ϕ I é nulo em z = 0 (ou seja, sobre o condutor). NH280 - Fundamentos da Eletrostática t 8 NH280 - Fundamentos da Eletrostática t 9

6 Note ue ϕ = ϕ c + ϕ I satisfaz a euação de Laplace no espaço vazio, em particular na região z > 0 na ual estamos interessados. Ele também obedece à condição de contorno ϕ = 0 em z = 0. Portanto, pela unicidade ue acabamos de discutir, ϕ = ϕ c + ϕ I = x 2 + y 2 + (z d) 2 x 2 + y 2 + (z + d) 2 é exatamente a solução ue estávamos procurando, para z > 0. A carga é ctícia, e foi introduzida apenas para produzir o potencial desejado. Tal carga é denominada de carga imagem, e por isto este método de resolução é chamado de método das imagens. Agora ue conhecemos ϕ, podemos encontrar o campo elétrico ϕ dentro = 0 ϕ dentro = 0. Portanto, σ (x, y, 0) = ε 0 = ε 0 lim = 4π lim ϕ z 0 + fora (x, y, z) n z z 0 + ϕ fora (z d) (x 2 + y 2 + (z d) 2) + 3/2 (z + d) (x 2 + y 2 + (z + d) 2) 3/2 = d 2π (x 2 + y 2 + d 2 ). 3/2 z=0 E = ϕ. Veja mais adiante grácos representando este campo elétrico. Mais instrutivo, agora, é considerar a descontinuidade do campo elétrico, já ue ϕ fora n ϕ dentro n = σ ε 0, (onde n aponta para fora do condutor). Daui podemos encontrar a densidade de carga induzida σ. Como o condutor é uma euipotencial, Conhecendo σ, podemos determinar o total de carga induzida na superfície do condutor: σ (x, y, 0) da = d 2π dφ ρdρ 2π 0 0 (ρ 2 + d 2 ) 3/2 ρ= d = (ρ 2 + d 2 ) /2 = ρ=0 NH280 - Fundamentos da Eletrostática t 0 NH280 - Fundamentos da Eletrostática t

7 Já a força ue a placa condutora exerce sobre a carga, temos 2 F = ϕ (0, 0, d) = (2d) 2ẑ. Problema Resolver o problema agora de uma carga pontual na vizinhança de dois planos condutores ue se intersectam a ângulo reto conforme a gura (a área hachurada corresponde aos condutores). Os planos estão aterrados. Tabela : Campo elétrico do sistema carga-plano condutor. À esuerda, projeção no plano yz (incluindo curvas euipotenciais); à direita, representação tridimensional. Note como o campo elétrico é aproximadamente radial em torno da carga, e tende a car perpendicular ao plano condutor na promidade deste. NH280 - Fundamentos da Eletrostática t 2 NH280 - Fundamentos da Eletrostática t 3

8 Problema Determinar o potencial eletrostático de um sistema composto por uma esfera condutora aterrada de raio R e uma carga pontual a uma distância a > R do centro da esfera, conforme a gura. Já para θ = π, temos ϕ (r = R, θ = π) = [ ] a + R + R + b Destas duas euações resulta ue R b = a R R + b = a + R. = 0. Solução: Seja o centro da esfera a origem do sistema de coordenadas polares esféricas, com o eixo dos z na direção da linha ue une a posição à origem. Neste caso, a carga imagem deve estar situada sobre o eixo dos z. Se b é a distância de à origem (veja gura à direita), então a condição de ue ϕ = 0 sobre a esfera implica, paraθ = 0, ϕ (r = R, θ = 0) = [ ] a R + R b = 0. Este é um sistema de duas euações envolvendo duas incógnitas: e b. Vamos supor b < R, neste caso { (R b) = (a R). (R + b) = (a + R) { = R a b = R2 a Até o momento, estas condições garantem ue ϕ = 0 apenas em dois pontos da superfície do condutor. Temos ue vericar se nossa tentativa de solução, ϕ (r, θ) = = [ r2 + a 2 2ra cos θ + ] r2 + b 2 2rb cos θ [ r2 + a 2 2ra cos θ ] R, a r2 + R 4 /a 2 2r (R 2 /a) cos θ. NH280 - Fundamentos da Eletrostática t 4 NH280 - Fundamentos da Eletrostática t 5

9 satisfaz ϕ (r = R, θ) = 0, para ualuer θ. Este ca como um exercício para o estudante! A densidade supercial de carga induzida no condutor é dada por ϕ σ (θ) = ε 0 [ ϕ (r, θ) r] r=r = ε 0 r, r=r Problema Um o innito com densidade linear de carga λ está a uma distância d de um plano condutor innito aterrado (ϕ = 0), localizado no plano xz. Determinar o potencial em todos os pontos y 0 e a densidade de carga induzida no plano condutor. e pode ser vericado ue 2π 0 π dφ dθ sin θ σ (θ) = = R 0 a. Figura : problema. Campo elétrico obtido a partir do potencial calculado no Solução: A lei de Gauss dá para o campo elétrico do o, em coordenadas cilíndricas com eixo sobre o o, E (r) = 2λ ρ ρ = λ xx + yŷ 2πε 0 ( ) 2, x2 + y 2 NH280 - Fundamentos da Eletrostática t 6 NH280 - Fundamentos da Eletrostática t 7

10 de modo ue o potencial correspondente é ϕ (x, y) = λ ln x 2πε 2 + y 2, 0 onde ignoramos uma possível constante aditiva. Agora vamos mudar para o referencial do problema, ou seja, o plano de carga no eixo xz e o o paralelo ao eixo dos z, localizado em y = d. Neste caso, é fácil escrever o potencial num ponto r ualuer notando ue, na expressão acima, x2 + y 2 não é mais ue a distância entre a projeção de r = (x, y, z) no plano xy e o ponto (0, d, 0). Em nosso referencial de interesse, portanto, o potencial é dado por ϕ d (r) = λ ln 2πε 0 x 2 + (y d) 2. = λ 2πε 0 mente, por ϕ (r) = ϕ d (r) + ϕ I (r) [ ln = λ 2πε 0 ln x 2 + (y d) 2 ln x 2 + (y d) 2 x 2 + (y + d) 2. x 2 + (y + d) 2 ] É fácil ue ver ue ϕ = 0 para y = 0. Por outro lado, também vale ue ϕ = 0 uando x, y, o ue também é razoável. A densidade de carga induzida no plano condutor é ϕ σ = ε 0 ϕ n y=0 = ε 0 λd y = y=0 π (x 2 + d 2 ). Consideramos um o imagem com densidade linear de carga λ, localizado em y = d. O potencial correspondente é: Veja ue σdx = λ. ϕ I (r) = + λ ln 2πε 0 x 2 + (y + d) 2. Observe ue as linhas euipotenciais são denidas por x 2 + (y d) 2 x 2 + (y + d) 2 = constante. A solução do nosso problema é dada, nal- NH280 - Fundamentos da Eletrostática t 8 NH280 - Fundamentos da Eletrostática t 9

Fundamentos da Eletrostática Aula 07 Algumas aplicações elementares da lei de Gauss

Fundamentos da Eletrostática Aula 07 Algumas aplicações elementares da lei de Gauss Fundamentos da Eletrostática Aula 7 Algumas aplicações elementares da lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Aplicações da Lei de Gauss Quando a distribuição de cargas fontes é altamente

Leia mais

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos

Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Fundamentos da Eletrostática Aula 11 Sobre a solução de problemas eletrostáticos Prof. Alex G. Dias Prof. Alysson F. Ferrari Solução de problemas eletrostáticos via Equação de Laplace Especicada a distribuição

Leia mais

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico

Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Fundamentos da Eletrostática Aula 19 Problemas Energia num Dielétrico Problema 1: Capacitor preenchido com dielétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Considere um capacitor de placas paralelas,

Leia mais

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta

Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Coordenadas Curvilíneas Fundamentos da Eletrostática Aula 04 Coordenadas Curvilíneas, Lei de Gauss e Função Delta Até agora, usamos sempre o sistema de coordenadas cartesiano, ou seja: dados três eixos

Leia mais

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico

Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Fundamentos da Eletrostática Aula 18 O Vetor Deslocamento Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari O Vetor Deslocamento Denimos na aula passada o vetor deslocamento D (r) = ε 0 E (r) + P (r).

Leia mais

Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização

Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização Fundamentos da Eletrostática Aula 16 Dielétricos / Polarização Prof. Alex G. Dias Prof. Alysson F. Ferrari Dielétricos Consideramos, em aulas passadas, a resolução de problemas eletrostáticos na presença

Leia mais

Fluxos e Conservação Lei de Gauss Isolantes. III - Lei de Gauss. António Amorim, SIM-DF. Electromagnetismo e Óptica. Lei de Gauss /2011

Fluxos e Conservação Lei de Gauss Isolantes. III - Lei de Gauss. António Amorim, SIM-DF. Electromagnetismo e Óptica. Lei de Gauss /2011 III - Electromagnetismo e Óptica - 2010/2011 III - Índice 1 Fluxos e Conservação 2 3 III - Outline 1 Fluxos e Conservação 2 3 III - Distribuição Contínua (rev.) Denindo a densidade de carga por unidade

Leia mais

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

AULA 03 O FLUXO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO AULA 03 O FLUXO ELÉTRICO Vamos supor que exista certa superfície inserida em uma campo elétrico. Essa superfície possui uma área total A. Definimos o fluxo elétrico dφ através de um elemento

Leia mais

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss

Fundamentos da Eletrostática Aula 06 Mais sobre o campo elétrico e a lei de Gauss Linhas de Força Fundamentos da Eletrostática Aula 6 Mais sobre o campo elétrico e a lei de Gauss Prof. Alex G. Dias Prof. Alysson F. Ferrari Vimos na última aula a denição do campo elétrico E (r), F (r)

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas

Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Campo Escalar e Gradiente Fundamentos da Eletrostática Aula 02 Cálculo Vetorial: derivadas Prof. Alex G. Dias (alex.dias@ufabc.edu.br) Prof. Alysson F. Ferrari (alysson.ferrari@ufabc.edu.br) Um campo escalar

Leia mais

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2

x = u y = v z = 3u 2 + 3v 2 Calculando o módulo do produto vetorial σ u σ v : 9u 2 + 9v 2 MAT 255 - Cálculo Diferencial e Integral para Engenharia III a. Prova - 22/6/21 - Escola Politécnica Questão 1. a valor: 2, Determine a massa da parte da superfície z 2 x 2 + y 2 que satisfaz z e x 2 +

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico

Fundamentos da Eletrostática Aula 05 A Lei de Coulomb e o Campo Elétrico A lei de Coulomb Fundamentos da Eletrostática Aula 5 A Lei de Coulomb e o Campo Elétrico Prof. Alex G. Dias Prof. Alysson F. Ferrari Conforme mencionamos anteriormente, trataremos neste curso de distribuções

Leia mais

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA

PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA PROBLEMA DE FÍSICA INDUÇÃO ASSIMÉTRICA Enunciado: É dado um condutor de formato esférico e com cavidade (interna) esférica, inicialmente neutra (considere que esse condutor tenha espessura não-desprezível).

Leia mais

Segunda Lista - Lei de Gauss

Segunda Lista - Lei de Gauss Segunda Lista - Lei de Gauss FGE211 - Física III 1 Sumário O fluxo elétrico que atravessa uma superfície infinitesimal caracterizada por um vetor de área A = Aˆn é onde θ é o ângulo entre E e ˆn. Φ e =

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas Densidade de Fluxo elétrico (D) Relação entre D e E no vácuo

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Física 3. Resumo e Exercícios P1

Física 3. Resumo e Exercícios P1 Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Aplicação da Lei de Gauss e Lei de Gauss na Forma Diferencial (Páginas 56 a 70 no livro texto) Aplicação da Lei de Gauss: Linha Infinita de Cargas Condutores Coaxiais Lei de

Leia mais

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada. Docente:... nome n.estudante:... Eletromagnetismo / MIEEC; frequência 20.abr.2016;. Instruções e recomendações Não desagrafar! Em cada pergunta só há uma resposta certa e só uma das justificações é a adequada.

Leia mais

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície

Questão 2 (3,5 pontos) Calcule. 48, z e S a parte da superfície Instituto de Matemática e Estatística da UP MAT455 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. emestre 5 - /6/5 Turma A Questão :(, pontos) Calcule a massa da superfície que é parte

Leia mais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais

Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Fundamentos da Eletrostática Aula 03 Cálculo Vetorial: Teoremas Integrais Prof. Alex G. Dias Prof. Alysson F. Ferrari Integrando Campos vetoriais Você já viu que, diferentemente de campos escalares, campos

Leia mais

superfície que envolve a distribuição de cargas superfície gaussiana

superfície que envolve a distribuição de cargas superfície gaussiana Para a determinação do campo elétrico produzido por um corpo, é possível considerar um elemento de carga dq e assim calcular o campo infinitesimal de gerado. A partir desse princípio, o campo total em

Leia mais

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA

CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA CÁLCUL O INTEGRAIS TRIPLAS ENGENHARIA 1 INTERPRETAÇÃO GEOMÉTRICA DE Nas integrais triplas, temos funções f(x,y,z) integradas em um volume dv= dx dy dz, sendo a região de integração um paralelepípedo P=

Leia mais

Energia. 5.2 Equações de Laplace e Poisson

Energia. 5.2 Equações de Laplace e Poisson Capítulo 5 Equações da Eletrostática e Energia 5.1 Introdução Neste momento, já foram vistas praticamente todas as equações e fórmulas referentes à eletrostática. Dessa forma, nesse capítulo estudaremos

Leia mais

Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas

Potencial Elétrico. 3.1 Energia Potencial e Forças Conservativas Capítulo 3 Potencial Elétrico 3.1 Energia Potencial e Forças Conservativas O trabalho W realizado por uma força F ao longo de um caminho C orientado de um ponto a um ponto P é dado por W C P P F d l (3.1)

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Universidade de São Paulo Eletromagnetismo ( ) Prova 1

Universidade de São Paulo Eletromagnetismo ( ) Prova 1 Instituto de Física de São Carlos Universidade de São Paulo Eletromagnetismo 760001) 3 de abril de 018 Prof. D. Boito Mon.:. Carvalho 1 sem. 018: Bacharelados em Física Nome e sobrenome: n. USP: Prova

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalho Densidade de Fluxo Elétrico e Lei de Gauss (Páginas 48 a 55 no livro texto) Experimento com esferas concêntricas

Leia mais

Física III IQ 2014 ( )

Física III IQ 2014 ( ) Atividade de treinamento - Introdução: Esta atividade tem dois objetivos: 1) Apresentar os conceitos de distribuições contínuas de carga e momento de dipolo ) Revisar técnicas de cálculo e sistemas de

Leia mais

ELECTROMAGNETISMO. EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES ELECTROMAGNETISMO EXAME 1ª Chamada 18 de Junho de 2010 RESOLUÇÕES 1. a. Dado a simetria cilíndrica da distribuição de carga, a componente axial (paralela ao eixo do cilindro) do campo eléctrico é nula.

Leia mais

Física. Resumo Eletromagnetismo

Física. Resumo Eletromagnetismo Física Resumo Eletromagnetismo Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv Força Elétrica Duas formas de calcular:

Leia mais

Terceira Lista - Potencial Elétrico

Terceira Lista - Potencial Elétrico Terceira Lista - Potencial Elétrico FGE211 - Física III Sumário Uma força F é conservativa se a integral de linha da força através de um caminho fechado é nula: F d r = 0 A mudança em energia potencial

Leia mais

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012

Física III Escola Politécnica GABARITO DA P1 12 de abril de 2012 Física III - 4320301 Escola Politécnica - 2012 GABARITO DA P1 12 de abril de 2012 Questão 1 Uma distribuição de cargas com densidade linear constante λ > 0 está localizada ao longo do eio no intervalo

Leia mais

Física III-A /1 Lista 3: Potencial Elétrico

Física III-A /1 Lista 3: Potencial Elétrico Física III-A - 2018/1 Lista 3: Potencial Elétrico Prof. Marcos Menezes 1. Qual é a diferença de potencial necessária para acelerar um elétron do repouso até uma velocidade igual a 40% da velocidade da

Leia mais

Aula 3: A Lei de Gauss

Aula 3: A Lei de Gauss Aula 3: A Lei de Gauss Curso de Física Geral F-38 1º semestre, 13 F38 113 1 Fluxo de um campo vetorial Definição: = v ( r ) nˆ da v ( da ds A nˆ dv ds = ; dv= Ads = A = Av dt dt tˆ nˆ v A v v v // v da=

Leia mais

Capítulo 23: Lei de Gauss

Capítulo 23: Lei de Gauss Capítulo 23: Lei de Gauss O Fluxo de um Campo Elétrico A Lei de Gauss A Lei de Gauss e a Lei de Coulomb Um Condutor Carregado A Lei de Gauss: Simetria Cilíndrica A Lei de Gauss: Simetria Plana A Lei de

Leia mais

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores

Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Fundamentos da Eletrostática Aula 01 Introdução / Operações com Vetores Prof. Alex G. Dias Prof. Alysson F. Ferrari Eletrostática Neste curso trataremos da parte estática do eletromagnetismo. Ou seja:

Leia mais

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana

Leia mais

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i

Eletromagnetismo I. Aula 16. Na aula passada denimos o vetor Magnetização de um meio material como. M = n m. n i m i Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 16 Campo Magnético na Matéria - Continuação Na aula passada denimos o vetor Magnetização de um meio material como

Leia mais

Escoamento potencial

Escoamento potencial Escoamento potencial J. L. Baliño Escola Politécnica - Universidade de São Paulo Apostila de aula 2017, v.1 Escoamento potencial 1 / 26 Sumário 1 Propriedades matemáticas 2 Escoamento potencial bidimensional

Leia mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais

Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais Capítulo 6 Condutores 6.1 Breve Introdução Em um mau condutor, como vidro ou borracha, cada elétron está preso a um particular átomo. Num condutor metálico, de forma diferente, um ou mais elétrons por

Leia mais

Aula 6. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 6. Eletromagnetismo I. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - Semestre 14 Preparo: Diego Oliveira Aula 6 Na aula passada derivamos a expressão do potencial produzido por uma distribuição de cargas φ( r) = 1 4πɛ ρ( r ) r

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 7. Trabalho realizado em um campo eletrostático. F ext d l Eletromagnetismo I Prof. Ricardo Galvão - Semestre 015 Preparo: Diego Oliveira Aula 7 Trabalho realizado em um campo eletrostático Suponhamos que numa região do espaço exista um campo elétrico E. Qual

Leia mais

Vamos nos atentar só para o elemento de área da e, portanto, vamos esquecer o restante da superfície S, como mostra a figura a seguir.

Vamos nos atentar só para o elemento de área da e, portanto, vamos esquecer o restante da superfície S, como mostra a figura a seguir. 1 A lei de Gauss A lei de Gauss afirma ue o fluxo do campo elétrico total através da fronteira de uma região do espaço é igual ao valor total de carga no interior dessa região, dividido pela permissividade

Leia mais

Lista de Exercícios 1: Eletrostática

Lista de Exercícios 1: Eletrostática Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET72F Profª Elisabete N Moraes UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRICIDADE E MAGNESTISMO - ET7F Profª Elisabete N Moraes LEI DE GAUSS Lei de Gauss - apresentação Método alternativo

Leia mais

Física III Escola Politécnica GABARITO DA P1 9 de abril de 2015

Física III Escola Politécnica GABARITO DA P1 9 de abril de 2015 Física III - 4323203 Escola Politécnica - 205 GABARITO DA P 9 de abril de 205 uestão Considere o sistema abaixo, mantido fixo por forças externas, que consiste numa partícula pontual de carga q > 0 e massa

Leia mais

Universidade de São Paulo em São Carlos Lista 8, resolver até

Universidade de São Paulo em São Carlos Lista 8, resolver até Universidade de São Paulo em São Carlos Lista 8, resolver até 54206 FCM04 Eletromagnetismo Nome: Campo de uma esfera com buraco (H Na superfície de uma esfera oca de raio R, da qual foi cortado no polo

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

Física. Campo elétrico. Parte II. Lei de Gauss

Física. Campo elétrico. Parte II. Lei de Gauss Física Campo elétrico Parte II Lei de Gauss Lei de Gauss analogia água Lei de Gauss A magnitude do campo, como já visto, estará contida na densidade de linhas de campo: será maior próxima à carga e menor

Leia mais

Capítulo 22 Lei de Gauss

Capítulo 22 Lei de Gauss Capítulo Lei de Gauss 1 Propriedades das linhas de campo elétrico A uantidade de linhas de campo associada a uma distribuição de carga elétrica é proporcional à carga da distribuição Quanto maior a carga,

Leia mais

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3

Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ. 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Métodos de Física Teórica II Prof. Henrique Boschi IF - UFRJ 1º. semestre de 2010 Aulas 3 e 4 Ref. Butkov, cap. 8, seção 8.3 Equações de Poisson e Laplace Vimos na aula passada o método de separação de

Leia mais

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância

Leia mais

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido:

Capítulo 12. Ângulo entre duas retas no espaço. Definição 1. O ângulo (r1, r2 ) entre duas retas r1 e r2 é assim definido: Capítulo 1 1. Ângulo entre duas retas no espaço Definição 1 O ângulo (r1, r ) entre duas retas r1 e r é assim definido: (r1, r ) 0o se r1 e r são coincidentes, se as retas são concorrentes, isto é, r1

Leia mais

POTENCIAL ELÉTRICO. Prof. Bruno Farias

POTENCIAL ELÉTRICO. Prof. Bruno Farias CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III POTENCIAL ELÉTRICO Prof. Bruno Farias Introdução Um dos objetivos da Física é determinar

Leia mais

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa 1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa região próxima ao centro do fio, a uma distância r

Leia mais

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis. Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................

Leia mais

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019

Sétima Lista. MAT0216 Cálculo Diferencial e Integral III Prof. Daniel Victor Tausk 14/04/2019 Sétima Lista MAT216 Cálculo iferencial e Integral III Prof. aniel Victor Tausk 14/4/219 Exercício 1. ados a, b, c >, determine o volume do elipsóide {(x, y, z) R 3 : x2 a 2 + y2 b 2 + z2 } c 2 1 de semi-eixos

Leia mais

Física III para a Poli

Física III para a Poli 4323203 Física III para a Poli Segunda lista de exercícios 1. Considere que uma folha de papel, que possui uma área igual a 0, 250 m 2, está orientada de modo que o vetor NORMAL a sua superfície faça um

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A /2 Data: 28/11/2018

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A /2 Data: 28/11/2018 Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Diurno) Disciplina: Física III-A - 2018/2 Data: 28/11/2018 Múltipla Escolha (12 0,7 + 2 0,8 = 10,0 pontos) 1. (0,7 ponto) Duas partículas

Leia mais

Lei de Gauss. Evandro Bastos dos Santos. 21 de Maio de 2017

Lei de Gauss. Evandro Bastos dos Santos. 21 de Maio de 2017 Lei de Gauss Evandro Bastos dos antos 21 de Maio de 2017 1 Fluxo de Campo Elétrico Com a lei de Coulomb calculamos o campo elétrico utilizando uma distribuição de cargas. E a soma vetorial do campo elétrico

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Física III para a Poli

Física III para a Poli 4323203 Física III para a Poli Uma seleta de exercícios resolvidos Cálculo de alguns campos elétricos Exemplo 1: Fio finito uniformemente carregado Considere que uma carga Q está uniformemente distribuída

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico

Leia mais

Lei de Gauss Objetivos:

Lei de Gauss Objetivos: Lei de Gauss Objetivos: Calcular o Fluxo de Campo Elétrico através de superfícies fechadas; Resolver problemas de Campo Elétrico, usando a simetria do sistema, com emprego da Lei de Gauss. Sobre a Apresentação

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Lista 2 de CF368 - Eletromagnetismo I

Lista 2 de CF368 - Eletromagnetismo I Lista 2 de CF368 - Eletromagnetismo I Fabio Iareke 28 de setembro de 203 Exercícios propostos pelo prof. Ricardo Luiz Viana , retirados de []. Capítulo 3 3-

Leia mais

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q.

raio do arco: a; ângulo central do arco: θ 0; carga do arco: Q. Sea um arco de circunferência de raio a e ângulo central carregado com uma carga distribuída uniformemente ao longo do arco. Determine: a) O vetor campo elétrico nos pontos da reta que passa pelo centro

Leia mais

LIÇÃO 02 O CAMPO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas

LIÇÃO 02 O CAMPO ELÉTRICO. Eletromagnetismo - Instituto de Pesquisas Científicas ELETROMAGNETISMO LIÇÃO 02 O CAMPO ELÉTRICO Como vimos, não é necessário que duas partículas estejam em contato para que interajam entre si. Essa interação ocorre através do chamado campo. Para o caso dos

Leia mais

Integrais Triplas em Coordenadas Polares

Integrais Triplas em Coordenadas Polares Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Triplas em Coordenadas Polares Na aula 3 discutimos como usar coordenadas polares em integrais duplas, seja pela região

Leia mais

Coordenadas esféricas

Coordenadas esféricas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA Assunto: Integrais triplas. Coordenadas esféricas Palavras-caves: integrais triplas, coordenadas esféricas,cálculo de volume Coordenadas esféricas

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Energia e Potencial Elétrico (Capítulo 4 - Páginas 75 a 84no livro texto) Energia despendida no movimento de uma carga imersa num campo Elétrico. Diferença de potencial e potencial.

Leia mais

LISTA COMPLETA PROVA 01

LISTA COMPLETA PROVA 01 LISTA COMPLETA PROVA 1 CAPÍTULO 3 5E. Duas partículas igualmente carregadas, mantidas a uma distância de 3, x 1 3 m uma da outra, são largadas a partir do repouso. O módulo da aceleração inicial da primeira

Leia mais

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014

Integrais Múltiplas. Prof. Ronaldo Carlotto Batista. 23 de outubro de 2014 Cálculo 2 ECT1212 Integrais Múltiplas Prof. Ronaldo Carlotto Batista 23 de outubro de 2014 Cálculo de áreas e Soma de Riemann Vamos primeiro revisar os conceitos da integral de uma função de uma variável.

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho de Carvalho - Eletrostática Potencial de distribuições de cargas e campos conservativos (Capítulo 4 - Páginas 86 a 95) Potencial Elétrico de distribuições contínuas de cargas Gradiente do Campo Elétrico

Leia mais

Instituto de Física UFRJ

Instituto de Física UFRJ AC TORT 1/9 1 Instituto de Física UFRJ 1 a Avaliação a Distância de Física 3A - AD1 Soluções Pólo : Nome : Segundo Semestre de 9 Data: 1 o Q o Q 3 o Q 4 o Q Nota Assinatura : Problema 1 Considere um condutor

Leia mais

1º teste / exame parte I. Resolução Abreviada. Electromagnetismo e Óptica MEEC. 12 de Janeiro de 2018, 8h00 Duração: 1h30 (T1), 3h00 (Exame) +d/2.

1º teste / exame parte I. Resolução Abreviada. Electromagnetismo e Óptica MEEC. 12 de Janeiro de 2018, 8h00 Duração: 1h30 (T1), 3h00 (Exame) +d/2. Resolução Abreviada 12 de Janeiro de 218, 8h Duração: 1h3 (T1), 3h (Exame) 1º teste / exame parte Electromagnetismo e Óptica MEEC Docentes: Prof Eduardo V Castro (responsável); Prof António Jorge Silvestre;

Leia mais

Exame de Matemática II - Curso de Arquitectura

Exame de Matemática II - Curso de Arquitectura Exame de Matemática II - Curso de ruitectura o semestre de 8 7 de Junho de 8 esponsável Henriue Oliveira a Parte. Considere a seguinte função f! de nida por f(x ; x ; x ) (x cos (x ) ; x sin (x ) ; x ).

Leia mais

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4

Eletromagnetismo I. Preparo: Diego Oliveira. Aula 4 Eletromagnetismo I Prof. Ricardo Galvão - 2 emestre 2015 Preparo: Diego Oliveira Aula 4 Equações de Maxwell O livro texto inicia a apresentação de Eletromagnetismo pela Eletrostática. No entanto, antes

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA ELETROMAGNETISMO AULA 06 - CAPACITÂNCIA Vamos supor que temos duas placas paralelas. Uma das placas está carregada positivamente enquanto que a outra está carregada negativamente. Essas placas estão isoladas

Leia mais

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial

J. Delgado - K. Frensel - L. Crissaff Geometria Analítica e Cálculo Vetorial 178 Capítulo 10 Equação da reta e do plano no espaço 1. Equações paramétricas da reta no espaço Sejam A e B dois pontos distintos no espaço e seja r a reta que os contém. Então, P r existe t R tal que

Leia mais

NOTAS DE AULA DE ELETROMAGNETISMO

NOTAS DE AULA DE ELETROMAGNETISMO UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA NOTAS DE AULA DE ELETROMAGNETISMO Prof. Dr. Helder Alves Pereira Outubro, 2017 - CONTEÚDO DAS AULAS NAS TRANSPARÊNCIAS

Leia mais

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f)

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f) 1 Universidade Federal do Rio de Janeiro Instituto de Física Física III 01/ Primeira Prova: 10/1/01 Versão: A F e = q E, E = V, E = k0 q r ˆr Seção 1 Múltipla escolha 10 0,5 = 5,0 pontos) Formulário onde

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2

Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A /1 Data: 05/07/2018 V 2B 2 R 2 Universidade Federal do Rio de Janeiro Instituto de Física Prova Final (Noturno) Disciplina: Fisica III-A - 2018/1 Data: 05/07/2018 Seção 1 - Multipla escolha (12 0, 7 + 2 0, 8= 10 pontos) 1. (0, 7 ponto)uma

Leia mais

Ney Lemke. Departamento de Física e Biofísica

Ney Lemke. Departamento de Física e Biofísica Revisão Matemática Ney Lemke Departamento de Física e Biofísica 2010 Vetores Sistemas de Coordenadas Outline 1 Vetores Escalares e Vetores Operações Fundamentais 2 Sistemas de Coordenadas Coordenadas Cartesianas

Leia mais

Geometria Analítica II - Aula 4 82

Geometria Analítica II - Aula 4 82 Geometria Analítica II - Aula 4 8 IM-UFF K. Frensel - J. Delgado Aula 5 Esferas Iniciaremos o nosso estudo sobre superfícies com a esfera, que já nos é familiar. A esfera S de centro no ponto A e raio

Leia mais

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30)

ANÁLISE MATEMÁTICA III TESTE 2-9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (19:00-20:30) Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise ANÁLIE MATEMÁTICA III TETE - VERÃO A 9 DE JUNHO DE apresente e justifique todos os cálculos duração: hora e meia (9: - :3

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

CÁLCULO I. 1 Área de Superfície de Revolução

CÁLCULO I. 1 Área de Superfície de Revolução CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida Aula n o 6: Área de Superfície de Revolução e Pressão Hidrostática Objetivos da Aula Calcular a área de superfícies de revolução; Denir pressão hidrostática.

Leia mais

21 e 22. Superfícies Quádricas. Sumário

21 e 22. Superfícies Quádricas. Sumário 21 e 22 Superfícies uádricas Sumário 21.1 Introdução....................... 2 21.2 Elipsoide........................ 3 21.3 Hiperboloide de uma Folha.............. 4 21.4 Hiperboloide de duas folhas..............

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III LEI DE GAUSS Prof. Bruno Farias Introdução Na Física, uma ferramenta importante para a

Leia mais

Dessa forma, podemos reescrever o domínio

Dessa forma, podemos reescrever o domínio Turma A Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - o. Semestre - 9// Questão. (. pontos) Calcule as seguintes integrais: (a) arctg(y)

Leia mais

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas

pelo sistema de coordenadas Cartesianas. Podemos utilizar também o sistema de coordenadas A. Coordenadas Curvilineares. Teorema de Gauss em coordenadas curvilineares Para especificar a posição, utilizamos a base e x, e y, e z e x r = y z pelo sistema de coordenadas Cartesianas. Podemos utilizar

Leia mais

ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira.

ATENÇÃO: O 2 ō Teste corresponde às perguntas 5 a 10. Resolução abreviada. 1. Seja f(x,y) = a) Determine o domínio de f e a respectiva fronteira. Instituto uperior Técnico Departamento de Matemática ecção de Álgebra e Análise Cálculo Diferencial e Integral II 2 ō Teste/ ō Exame - de Janeiro de 2 Duração: Teste - h3m ; Exame - 3h Apresente e justifique

Leia mais

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova

PUC-RIO CB-CTC. Não é permitido destacar folhas da prova PUC-RIO CB-CTC FIS5 P DE ELETROMAGNETISMO 8.4. segunda-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da

Leia mais

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2

x 2 (2 x) 2 + z 2 = 1 4x + z 2 = 5 x = 5 z2 4 Como y = 2 x, vem que y = 3+z2 Turma A Questão 1: (a Calcule Instituto de Matemática e Estatística da USP MAT55 - Cálculo Diferencial e Integral III para Engenharia a. Prova - 1o. Semestre 15-19/5/15 e z dx + xz dy + zy dz sendo a curva

Leia mais