Exercícios de Revisão
|
|
|
- Eliza Bernardes Borja
- 8 Há anos
- Visualizações:
Transcrição
1 Exercícios de Revisão 11/06/ Os gráficos 1 e representam a posição S de dois corpos em função do tempo t. No gráfico 1, a função horária é definida pela equação movimento representado pelo gráfico corresponde a:. Assim, a equação que define o. Uma bola de beisebol é lançada de um ponto 0 e, em seguida, toca o solo nos pontos A e B, conforme representado no sistema de eixos ortogonais: Durante sua trajetória, a bola descreve duas parábolas com vértices C e D. A equação de uma dessas parábolas é. Se a abscissa de D é 35 m, a distância do ponto 0 ao ponto
2 11/06/015 B, em metros, é igual a: d) Pelos programas de controle de tuberculose, sabe-se que o risco de infecção R depende do tempo t, em anos, do seguinte modo: R = R0e kt, em que R0 é o risco de infecção no início da contagem do tempo t e k é o coeficiente de declínio. O risco de infecção atual em Salvador foi estimado em %. Suponha que, com a implantação de um programa nesta cidade, fosse obtida uma redução no risco de 10% ao ano, isto é, k=10%. Use a tabela abaixo para os cálculos necessários: O tempo, em anos, para que o risco de infecção se torne igual a 0,%, é de: 1 3 d) 4 4. Uma fábrica produz sucos com os seguintes sabores: uva, pêssego e laranja. Considere uma caixa com 1 garrafas desses sucos, sendo 4 garrafas de cada sabor.retirando-se, ao acaso, garrafas dessa caixa, a probabilidade de que ambas contenham suco com o mesmo sabor equivale a: 9,1% 18,% 7,3% d) 36,4% 5. A tabela abaixo apresenta os critérios adotados por dois países para a formação de placas de automóveis. Em ambos os casos, podem ser utilizados quaisquer dos 10 algarismos de 0 a 9 e das 6 letras do alfabeto romano.
3 11/06/015 Considere o número máximo de placas distintas que podem ser confeccionadas no país X igual a n e no país Y igual a p. A razão corresponde a: 1 3 d) 6 6. A promoção de uma mercadoria em um supermercado está representada, no gráfico, por 6 pontos de uma mesma reta. Quem comprar 0 unidades dessa mercadoria, na promoção, pagará por unidade, em reais, o equivalente a: 4,50 5,00 5,50 d) 6,00 7. Um modelo de macaco, ferramenta utilizada para levantar carros, consiste em uma estrutura composta por dois triângulos isósceles congruentes, AMN e BMN, e por um parafuso acionado por uma manivela, de modo que o comprimento da base MN possa ser alterado pelo acionamento desse parafuso. Observe a figura: Considere as seguintes medidas: AM = AN = BM = BN = 4dm; MN = x dm; AB = y dm. O valor, em decímetros, de y em função de x corresponde a: 16 4x 64 x
4 11/06/015 d) 16 4x 64 x 8. Um atleta faz seu treinamento de corrida em uma pista circular que tem 400 metros de diâmetro. Nessa pista, há seis cones de marcação indicados pelas letras A, B, C, D, E e F, que dividem a circunferência em seis arcos, cada um medindo 60 graus. Observe o esquema mostrado. O atleta partiu do ponto correspondente ao cone A em direção a cada um dos outros cones, sempre correndo em linha reta e retornando ao cone A. Assim, seu percurso correspondeu a ABACADAEAFA. Considerando 3 1, 7, o total de metros percorridos pelo atleta nesse treino foi igual a: d) Observe o dado ilustrado abaixo, formado a partir de um cubo, e com suas seis faces numeradas de 1 a 6. Esses números são representados por buracos deixados por semiesferas idênticas retiradas de cada uma das faces. Todo o material retirado equivale a 4,% do volume total do cubo. Considerando = 3, a razão entre a medida da aresta do cubo e do raio de uma das semiesferas, expressas na mesma unidade, é igual a: d) 10
5 11/06/ Um sólido com a forma de um cone circular reto, constituído de material homogêneo, flutua em um líquido, conforme a ilustração. Se todas as geratrizes desse sólido forem divididas ao meio pelo nível do líquido, a razão entre o volume submerso e o volume do sólido será igual a: d) Uma embalagem em forma de prisma octogonal regular contém uma pizza circular que tangencia as faces do prisma. Desprezando a espessura da pizza e do material usado na embalagem, a razão entre a medida do raio da pizza e a medida da aresta da base do prisma é igual a: d) 1 1. Na fotografia abaixo, observam-se duas bolhas de sabão unidas.
6 11/06/015 Quando duas bolhas unidas possuem o mesmo tamanho, a parede de contato entre elas é plana, conforme ilustra o esquema: Considere duas bolhas de sabão esféricas, de mesmo raio R, unidas de tal modo que a distância entre seus centros A e B é igual ao raio R. A parede de contato dessas bolhas é um círculo cuja área tem a seguinte medida: R² 3 R² 3 R² 4 4 R² d) 3
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
Mat. Rafael Jesus. Monitor: Fernanda Aranzate
Mat. Professor: Luanna Ramos Rafael Jesus Monitor: Fernanda Aranzate Exercícios de revisão geral 29 set EXERCÍCIOS DE AULA 1. Uma superfície esférica de raio 1 cm é cortada por um plano situado a uma distância
2) UERJ Observe o dado ilustrado abaixo, formado a partir de um cubo, e com suas seis faces numeradas de 1 a 6.
NOTA Aluno (a): Exercícios de ETAPA TURMA DATA a ) UERJ.009 - Um piso plano é revestido de hexágonos regulares congruentes cujo lado mede 0cm. Na ilustração de parte desse piso, T, M e F são vértices comuns
Mat. Monitor: Roberta Teixeira
Professor: Rafael Jesus Monitor: Roberta Teixeira Exercícios de revisão sobre geometria espacial 22 set EXERCÍCIOS DE AULA 1. Dois dados, com doze faces pentagonais cada um, têm a forma de dodecaedros
2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito
Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura
Colégio FAAT Ensino Fundamental e Médio
Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Função Quadrática: Função e gráfico. Valor máximo e mínimo. Noções de probabilidade: Principio multiplicativo.
Sólidos Inscritos. Interbits SuperPro Web
Sólidos Inscritos 1. (Uerj 014) Uma esfera de centro A e raio igual a 3dm é tangente ao plano de uma mesa em um ponto T. Uma fonte de luz encontra-se em um ponto F de modo que F, A e T são colineares.
Sólidos Inscritos e Circunscritos 3.º Ano
Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3
V= V = AULA 7 - GEOMETRIA ESPACIAL CONE DE REVOLUÇÃO. Área Lateral
UL 7 - GEOMETRI ESPCIL Área Lateral CONE DE REVOLUÇÃO É um sólido gerado pela rotação completa de um triângulo retângulo em torno de um de seus catetos. Elementos: R é o raio da base g é a geratriz h é
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
MATEMÁTICA. Questões de 01 a 04
GRUPO 1 TIPO A MAT. 5 MATEMÁTICA Questões de 01 a 04 01. Considere duas circunferências concêntricas em C, conforme figura, em que a externa representa o círculo trigonométrico e a interna, o velocímetro,
Como estudar Matemática para o ENEM
Como estudar para o ENEM 1. A grande pirâmide de Quéops, antiga construção localizada no Egito, é uma pirâmide regular de base quadrada, com 137m de altura. Cada face dessa pirâmide é um triângulo isóscele
REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO
REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura
GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.
GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES
Geometria Plana. Parte I. Página 1. OA = OB, e ABCD é um quadrado. Sendo θ a medida. AE= x e AF= y, a razão x b é igual a
Geometria Plana Parte I 1. (Fuvest 014) Uma circunferência de raio 3 cm está inscrita no triângulo isósceles ABC, no qual AB= AC. A altura relativa ao lado BC mede 8 cm. O comprimento de BC é, portanto,
MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA
MATEMÁTICA - 3 o ANO MÓDULO 55 ESFERA R r d R d r R esfera melancia cunha esférica fatia de melancia fuso esférico casca de melancia r d R d a a R a 2R Como pode cair no enem (ENEM) O globo da morte é
Equação da circunferência e Geometria Espacial
COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Equação da circunferência e Geometria Espacial Questão 01 No plano cartesiano,
(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.
(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em
TREINANDO PARA AS AVALIAÇÕES DO 1º BIMESTRE PROF. OSMAR
TREINANDO PARA AS AVALIAÇÕES DO 1º BIMESTRE PROF. OSMAR 1º ANO ENSINO MÉDIO - QUESTÕES DA APOSTILA 01 1. Considere os dez números abaixo : - 12 ; -0,5 ; 0,111 ; 1,333... ; π ; - 64 ; 12 ; 16 1 ; 5 ; 4
PROVA DE MATEMÁTICA PRIMEIRA ETAPA MANHÃ
PROVA DE MATEMÁTICA PRIMEIRA ETAPA - 1997 - MANHÃ QUESTÃO 01 Durante o período de exibição de um filme, foram vendidos 2000 bilhetes, e a arrecadação foi de R$ 7.600,00. O preço do bilhete para adulto
04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)
RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a
MATEMÁTICA. Use este espaço para rascunho.
MATEMÁTICA Use este espaço para rascunho 01 Cubos brancos de 1cm de aresta foram dispostos formando o paralelepípedo representado abaixo Em seguida, a superfície total desse paralelepípedo foi pintada
Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no
Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a
1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y 2 = 0. (x 3) 2 + (y + 4) 2 =
QUESTÕES-AULA 18 1. A partir da definição, determinar a equação da parábola P, cujo foco é F = (3, 4) e cuja diretriz é L : x + y = 0. Solução Seja P = (x, y) R. Temos que P P d(p, F ) = d(p, L) (x 3)
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem e) 4. b) 3 3
e) 4 GEOMETRIA ESPACIAL FGV Questão 01 - (FGV /017) O líquido AZ não se mistura com a água. A menos que sofra alguma obstrução, espalha-se de forma homogênea sobre a superfície da água formando uma fina
Posteriormente, as esferas são retiradas do recipiente. A altura da água, em cm, após a retirada das esferas, corresponde, aproximadamente, a:
Questão 01 PROVA OBJETIVA MATEMÁTICA Considere uma compra de lápis e canetas no valor total de R$ 9,00. O preço de cada lápis é R$ 1,00 e o de cada caneta é R$,00. A probabilidade de que se tenha comprado
2 ª Fase Exame Discursivo
02/12/2007 2 ª Fase Exame Discursivo matemática Caderno de prova Este caderno, com doze páginas numeradas seqüencialmente, contém dez questões de Matemática. Não abra o caderno antes de receber autorização.
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO UNICAMP Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... GEOMETRIA PLANA Questão 1 - (UNICAMP SP/015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular
Lista de exercícios Prisma e cilindro
Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio
1. (Ufrgs 2011) No hexágono regular representado na figura abaixo, os pontos A e B possuem, respectivamente, coordenadas (0, 0) e (3,0).
Nome: nº Professor(a): Série: 2º EM. Turma: Data: / /2013 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 3º Trimestre 1º Trimestre 1. (Ufrgs 2011) No hexágono regular representado na
Sólidos Inscritos e Circunscritos
Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal
Segunda Etapa SEGUNDO DIA 2ª ETAPA MATEMÁTICA COMISSÃO DE PROCESSOS SELETIVOS E TREINAMENTOS
Segunda Etapa SEGUNDO DIA ª ETAPA MATEMÁTIA OMISSÃO DE PROESSOS SELETIVOS E TREINAMENTOS Matemática 01. Analise as afirmações a seguir, considerando a função f, tendo como domínio e contradomínio o x conjunto
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini
REVISÃO FUVEST Ensino Médio Geometria Prof. Sérgio Tambellini Aluno :... Questão 1 - (FUVEST SP/014) GEOMETRIA PLANA Uma das piscinas do Centro de Práticas Esportivas da USP tem o formato de três hexágonos
CONHECIMENTOS ESPECÍFICOS
IFPB» Concurso Público Professor Efetivo de Ensino Básico, Técnico e Tecnológico» Edital Nº 16/011 CONHECIMENTOS ESPECÍFICOS» MATEMÁTICA (Perfil 1) «1. Classifique os itens a seguir em V (verdadeiro) ou
Matemática 2 LEIA COM ATENÇÃO
LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique
Matemática GEOMETRIA ESPACIAL. Professor Dudan
Matemática GEOMETRIA ESPACIAL Professor Dudan CUBO Um hexaedro é um poliedro com 6 faces, um paralelepípedo retângulo com todas as arestas congruentes ( a= b = c). Exemplo O volume de uma caixa cúbica
c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.
Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência
Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.
Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)
Estudo Dirigido para a Recuperação em Matemática - 3ª etapa Data: 15/12/2018. Ensino Médio Ano/Série: 3º Turma: JC Valor: 20,0 Média: 12,0
Estudo Dirigido para a Recuperação em Matemática - 3ª etapa Data: 15/12/2018 Ensino Médio Ano/Série: 3º Turma: JC Valor: 20,0 Média: 12,0 Nome: Nº Nota: Professor: W. Leão Ass. do Responsável: Querido(a)
3 O ANO EM. Lista de Recuperação tri2. Matemática II RAPHAEL LIMA
3 O ANO EM Matemática II RAPHAEL LIMA Lista de Recuperação tri2 1. Uma indústria de cerâmica localizada no município de São Miguel do Guamá no estado do Pará fabrica tijolos de argila (barro) destinados
MATEMÁTICA. Questões de 01 a 12
GRUPO 5 TIPO A MAT. 1 MATEMÁTICA Questões de 01 a 12 01. Um circo com a forma de um cone circular reto sobre um cilindro circular reto de mesmo raio está com a lona toda furada. O dono do circo, tendo
RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.
1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.
Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição
Geometria Espacial Cilindro, Cone, Esfera, Inscrição e Circunscrição Enem 15 semanas 1. Um quadrado de lados medindo 1 cm sofre uma rotação completa em torno de um eixo paralelo a um de seus lados. A distância
Unidade Senador Canedo Professor (a): Charlles Maciel Aluno (a): Série:2ª Data: / / LISTA DE MATEMÁTICA I
Unidade Senador Canedo Professor (: Charlles Maciel Aluno (: Série:2ª Data: / / 2017. LISTA DE MATEMÁTICA I Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha de papel almaço.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.
CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma
MATEMÁTICA - 3 o ANO MÓDULO 46 RELAÇÕES NA CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 46 RELAÇÕES NA CIRCUNFERÊNCIA G F A D H O S 1 S 2 B E s A M t T t B O O O Secantes Tangentes Externas E T O t ^ AOB = AB A D 150º O β A 60º 150º 60º B C α x 2x x b 0 y y 2y
OS PRISMAS. 1) Definição e Elementos :
1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos
Professor: Pedro Ítallo
Professor: Pedro Ítallo 01 - (UNIRG TO) O reservatório de água de uma cidade tem formato cilíndrico, com 4 m de altura e 6 m de diâmetro. Para resolver o problema de abastecimento de água decidiram construir
MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho
MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta
As cotações dos itens de cada caderno encontram-se no final do respetivo caderno.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones)
Lista 19 - GEOMETRIA ESPACIAL (Cilindros e Cones) 1) Um tipo de descarga de água para vaso sanitário é formado por um cilindro com altura de m e diâmetro interno de 8 cm. Então, dos valores abaixo, o mais
Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz
Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro
LISTA 9 EXERCICIOS. 1. Admita a seguinte sequência numérica para o número natural n: 1 e an an 1 3
. Admita a seguinte sequência numérica para o número natural n: a e an an 3 3 8 Sendo n 0, os dez elementos dessa sequência, em que a e a 0, são: 3 3 0 9 8 37 8,,,,, a 6, a 7, a 8, a 9, 3 3 3 3 3 3 A média
Geometria Plana 2015
Geometria Plana 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t
RESOLUÇÃO DETALHADA DE TODAS AS QUESTÕES ESTUDE CERTO! COMPRE JÁ A SUA!
RESOLUÇÃO DETALHADA DE TODAS AS QUESTÕES ESTUDE CERTO! COMPRE JÁ A SUA! WWW.LOJAEXATIANDO.COM.BR [email protected] (21)995895505 AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL
VESTIBULAR UFPE UFRPE / ª ETAPA NOME DO ALUNO: ESCOLA: SÉRIE: TURMA: MATEMÁTICA 2
VESTIULR UFPE UFRPE / 1998 2ª ETP NOME DO LUNO: ESOL: SÉRIE: TURM: MTEMÁTI 2 01. nalise as afirmações: 0-0) 4 + 2 + 4 2 = 12 (as raízes quadradas são as positivas) 4 1-1) = 0,666... 11 log 2-2) 2 = 2 2
2. (Uerj 2002) Admita uma esfera com raio igual a 2 m, cujo centro O dista 4 m de um determinado ponto P.
1. (Ita 2002) Seja S a área total da superfície de um cone circular reto de altura h, e seja m a razão entre as áreas lateral e da base desse cone. Obtenha uma expressão que forneça h em função apenas
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016
FUNÇÃO QUADRÁTICA PROFESSOR AUGUSTO CORRÊA ENEM 2016 FUNÇÃO QUADRÁTICA Definição: Chama-se função polinomial do 2 o grau ou função quadrática toda função f: do tipo 2 f ( x) ax bx c, com {a, b, c} e a
LISTA CIRCUNFERÊNCIA E CIRCULO
1. (G1 - utfpr 018) Se o perímetro de uma circunferência aumenta em uma unidade de comprimento, assinale a alternativa que apresenta, em unidades de comprimento, o aumento no comprimento do raio. LISTA
Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes
Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,
MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA
MATEMÁTICA - 2 o ANO MÓDULO 09 ESFERA 360 = 4πR 2 α = S t 360 = 4πR 3 3 α = V c Como pode cair no enem (UERJ) A superfície de uma esfera pode ser calculada através da fórmula: 4. π. R 2, onde R é o raio
Geometria Espacial. Parte I. Página 1
Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais
Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição
Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção
Turma 3.a série Professor(a)
Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios
UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues
UECEVEST - ESPECÍFICA Professor: Rikardo Rodrigues 01) (UECE 2017.2) Seja YOZ um triângulo cuja medida da altura OH relativa ao lado YZ é igual a 6 m. Se as medidas dos segmentos YH e HZ determinados por
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. Questão 5. alternativa C. alternativa B. alternativa A.
Questão TIPO DE PROVA: A Sabe-se que o quadrado de um número natural k é maior do que o seu triplo e que o quíntuplo desse número k é maior do que o seu quadrado. Dessa forma, k k vale: a) 0 b) c) 6 d)
REVISÃO ENEM 2013 Professor: FABRÍCIO MAIA
REVISÃO ENEM 013 Professor: FABRÍCIO MAIA ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: Problema 01 Para trocar uma lâmpada, Roberto encostou uma escada na parede de sua casa, de forma que o topo da escada
TRABALHO DE RECUPERAÇÃO 3º TRIMESTRE 2012
TRABALHO DE RECUPERAÇÃO 3º TRIMESTRE 2012 QUESTÃO 1 O domínio, a imagem e o período da função f, definida por y = 2 + sen x, são, respectivamente, A) R+, [1, 3], π. B) R, [0, 1], 2π. C) R, [ 2, 2], 2π.
2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.
1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o
Prova da UFRGS
Prova da UFRGS - 01 01. O algarismo das unidades de 9 10 é a) 0. b) 1.. d). e) 9. 0. A atmosfera terrestre contém 1.900 quilômetros cúbicos de água. Esse valor corresponde, em litros, a a) 1,9.10 9. b)
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova
Geometria Espacial - Prismas
Geometria Espacial - Prismas ) As três dimensões de um paralelepípedo reto retângulo de volume 05 m, são proporcionais a, e 5. A soma do comprimento de todas as arestas é: a) 08m b) 6m c) 80m d) m 7m )
18REV - Revisão. LMAT 3B-2 - Geometria Analítica. Questão 1
18REV - Revisão LMAT 3B-2 - Geometria Analítica Questão 1 (Unicamp 2017) Seja i a unidade imaginária, isto é, i 2 = 1. O lugar geométrico dos pontos do plano cartesiano com coordenadas reais (x, y) tais
Unidade 10 Geometria Espacial. Esfera
Unidade 10 Geometria Espacial Esfera Esfera Na série anterior, você estudou dois dos chamadas corpos redondos: o cilindro e o cone Estudaremos outro sólido que sem dúvida, aparece com extrema frequência
Geometria Espacial - AFA
Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual
Cones e cilindros. Matemática 29/10/2015. Exatas para Todos
Cones e cilindros 1. Um recipiente cilíndrico de 60 cm de altura e base com 20 cm de raio está sobre uma superfície plana horizontal e contém água até a altura de 40 cm, conforme indicado na figura. lmergindo-se
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS
MATEMÁTICA - 3 o ANO MÓDULO 48 ÁREA DO CÍRCULO E SEMELHANÇA COM ÁREAS R p R R α R 10 cm 72º = - A segmento = A setor - A triângulo 60º 60º 12 12 60º a b a S S c e e d d b c 1 2 3 4 Lado = 1 área = 1 Lado
Caderno 1: 35 minutos. Tolerância: 10 minutos. (é permitido o uso de calculadora)
Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 1: 7 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2016 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.
PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 10 Páginas Entrelinha 1,5, sem figuras nem imagens
Se tgx =, então cosx =. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2.
4 4 A distância do ponto P (- 2; 6) à reta de equação 3x + 4y 1 = 0 é. 19. 0 0 Se cos x > 0, então 0 < x < 90. Se tgx =, então cosx =. 2 2. 3 3 O valor máximo de y = senx cos 60 + sen 60 cosx é 2. 4 4
Prova Final de Matemática
PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 9 Páginas Braille Duração da Prova: 90 minutos.
LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER
ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.
3 ÁREAS E VOLUME DO TRONCO DE CONE 1 TRONCO DE CONE 2 SEMELHANÇA ENTRE OS CONES. 3.1 Área lateral. 3.2 Área das bases. 3.3 Área total. 3.
Matemática Pedro Paulo GEOMETRIA ESPACIAL IX 1 TRONCO DE CONE Chamaremos de tronco de cone de bases paralelas a porção do cone limitada por sua base e por uma secção transversal qualquer deste cone. A
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica)
SIMULADO DA ETAPA III - (9º Anos) Professor: Rivaildo (Matemática Básica) 1ª) As três figuras sobrepostas parcialmente, representam a cobertura de um Shopping de certa cidade. Deseja-se colocar a parte
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III
UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE MATEMÁTICA LISTA DE EXERCÍCIOS DE MAT243-CÁLCULO III Capítulo 1 Vetores no Rn 1. Sejam u e v vetores tais que e u v = 2 e v = 1. Calcule v u v. 2. Sejam u
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.
1 Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome Q U E S T Ã
João mediu o comprimento do seu sofá com o auxílio de uma régua.
1 a fase/20 DE DEZEMBRO Matemática Questão 01 João mediu o comprimento do seu sofá com o auxílio de uma régua. Colocando 12 vezes a régua na direção do comprimento, sobraram 15 cm da régua; por outro lado,
1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}
1. A imagem da função real f definida por f(x) = é R {1} R {2} R {-1} R {-2} 2. Dadas f e g, duas funções reais definidas por f(x) = x 3 x e g(x) = sen x, pode-se afirmar que a expressão de (f o g)(x)
Ciência Hoje das Crianças. FNDE; Instituto Ciência Hoje, ano 19, n. 166, mar
lista de exercícios - 3º ano - matemática Aluno: Série: Turma: Data: Questão 1 É possível usar água ou comida para atrair as aves e observá-las. Muitas pessoas costumam usar água com açúcar, por exemplo,
Matemática. Ficha Extra - Temas do 2º Bim. 3 os anos Walter/Blaidi Nome: Nº: Turma:
Matemática Ficha Extra - Temas do º Bim. 3 os anos Walter/Blaidi 01 Nome: Nº: Turma: 1. (PUCRS) A região plana limitada por uma semicircunferência e seu diâmetro faz uma rotação completa em torno desse
NOTAÇÕES. R N C i z. ]a, b[ = {x R : a < x < b} (f g)(x) = f(g(x)) n. = a 0 + a 1 + a a n, sendo n inteiro não negativo.
R N C i z det A d(a, B) d(p, r) AB Â NOTAÇÕES : conjunto dos números reais : conjunto dos números naturais : conjunto dos números complexos : unidade imaginária: i = 1 : módulo do número z C : determinante
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco
