EXERCÍCIOS DE REVISÃO PFV
|
|
|
- Sarah Valgueiro Morais
- 10 Há anos
- Visualizações:
Transcrição
1 COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV 1) Seja f uma função de N em N definida por f(n) = 10 n. Escreva o conjunto domínio e o conjunto imagem desta função. ) Considere a relação R {(, y) A B y = ² } = X e os conjuntos A = {1,, 3} e B = {0, 1,, 3, 4, 5, 6}. a) Determine o conjunto R. b) Determine domínio e imagem da relação R. c) R é uma função de A em B? Justifique sua resposta. 3) Considere as funções com domínio nos números reais dadas por = 3² + 5 e g ( ) = + 9. f (0) + g(1) a) Calcule o valor de f (1) b) Determine o valor de tal que f() = g(). 4) Considere a função = a) f ( 5) b) o elemento do domínio cuja imagem é igual a 1., definida em R { }. Determine: 5) Considere as funções f e g definidas por f ( ). g(4) 1 ² = e g ( ) =. Determine o valor de 6) Determine o domínio da função =. 7) Observe a função f cujo gráfico está representado abaio. a) indique o domínio e a imagem de f. b) indique os intervalos onde f é crescente e decrescente. 1
2 c) indique os intervalos onde f > 0 e f < 0. d) calcule o valor de f(0) + f() + f(4) + f(8) + f(1) + f(4) 8) Observe o gráfico da função polinomial f : IR IR mostrado a seguir. Responda: a) Qual imagem da função no intervalo [-, ]? b) Determine o valor da epressão: y = f(f(-)) + 3.f(). 9) Dado o gráfico da função f mostrada, responda. a) Qual o domínio e a imagem da função? b) Em que intervalos a função é crescente? c) Em que intervalo a função é decrescente? f (5) d) Qual o valor de? f ( 3) f () 10) A empresa de telefonia celular ABC oferece um plano mensal para seus clientes com as seguintes características: Para um total de ligações de até 50 minutos, o cliente paga um valor fio de R$40,00; Se os 50 minutos forem ecedidos, cada minuto de ecesso será cobrado pelo valor de R$1,50 (além dos R$40,00 fios). a) Determine o valor pago por um cliente que utilizou o celular por 74 minutos em certo mês. b) Em certo mês, utilizando o plano descrito acima, o valor a ser pago por um cliente foi de R$101,50. Determine quantos minutos foram utilizados.
3 11) Um grupo de amigos decidiu fazer um churrasco para comemorar seus dez anos de formatura. O local escolhido cobra um valor fio de R$ 00,00 pelo aluguel do espaço mais R$ 30,00 por pessoas presente. a) Determine uma epressão que dê o valor total a ser pago y em função do número de presentes ao churrasco. b) Todos os presentes vão dividir a conta igualmente. Determine uma epressão que relacione o valor m pago por pessoas com o número de presentes ao churrasco. c) Se cada pessoa presente teve que pagar R$ 38,00, calcule o número de pessoas que compareceu ao churrasco. 1) As três escalas mais usadas para medir temperaturas são Celsius ( C), Fahrenheit ( F) e Kelvin (K). As conversões podem ser feitas de acordo com as instruções da tabela abaio. Celsius Fahrenheit Multiplicar os graus Celsius por 1,8 e somar 3 Celsius Kelvin Somar 73 aos graus Celsius a) A água entra em ebulição aos 100ºC. Qual é o valor correspondente a essa temperatura na escala Fahrenheit? b) Escreva uma sentença que epresse uma temperatura y na escala Fahrenheit em função da temperatura na escala Celsius. c) Um termômetro indica uma temperatura de 68 F. Converta essa temperatura em graus Celsius e em Kelvin. 13) (FGV) O gráfico da função f() = m + n passa pelos pontos (-1,3) e (,7). Determine o valor de m. 14) O gráfico da função afim y = a + b passa pelos pontos de coordenadas (,3) e ( 4,5). Determine os valores de a e de b. 15) Determine a lei da função afim cujo gráfico está representado abaio. 3
4 16) O gráfico abaio é da função de lei f. ( ) = b, onde b é um número real positivo. a) Determine o valor de b. b) Calcule f ( ). 17) O valor de um carro novo é de R$9.000,00 e, com 4 anos de uso, é de R$4.000,00. Supondo que o preço caia com o tempo, segundo uma linha reta, o valor de um carro com 1 ano de uso é: a) R$8.50,00 b) R$8.000,00 c) R$7.750,00 d) R$7.500,00 e) R$7.000,00 18) Construa um esboço dos gráficos das funções quadráticas a seguir e indique o domínio e a imagem: a) f() = b) f() = 19) (PUC) Usando uma unidade monetária conveniente, o lucro obtido com a venda de uma unidade de certo produto é 10, sendo o preço de venda e 10 o preço de custo. A quantidade vendida, a cada mês, depende do preço de venda e é, aproimadamente, igual a 70. Nas condições dadas, o lucro mensal obtido com a venda do produto é, aproimadamente, uma função quadrática de, cujo valor máimo, na unidade monetária usada, é: a) 100 b) 1000 c) 900 d) 800 e) 600 4
5 0) O número de jogos de uma competição com n participantes, onde cada participante joga contra cada um dos demais uma vez, é dada pela função n( n 1) ( n) = f. a) Determine o número de jogos de um campeonato com 10 participantes. b) Se um campeonato disputado nesses moldes teve 1 jogos, qual foi o seu número de participantes? 1) Uma bola, ao ser chutada num tiro de meta por um goleiro, numa partida de futebol, teve a altura de sua trajetória descrita pela equação h( t) = t² + 8t (t 0), onde t é o tempo medido em segundos e h(t) é a altura da bola, em metros, no instante t. Determine, após o chute: a) a altura máima atingida pela bola; b) o tempo que a bola leva para retornar ao solo. ) O lucro mensal de uma empresa é dado pela lei: L = ² , onde representa a quantidade de peças a serem produzidas e L o valor do lucro, em milhares de reais. a) Qual a quantidade ideal de peças a serem produzidas, para gerar o maior lucro possível? b) Qual o valor máimo possível para esse lucro? 3) Resolva as inequações abaio: a) ( 1. )( ) b) ( )( ) > 5
EXERCÍCIOS DE REVISÃO PFV - GABARITO
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva
Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()
Função Quadrática Função do 2º Grau
Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática
UFPel - CENG - CÁLCULO 1
UFPel - CENG - CÁLCULO 1 FUNÇÕES -Parte I 1. Esboce os gráficos das funções afins, indicando as interseções com os eixos. a) f(x) = 400 3x b) f(x) = 10x + 75 c) S(t) = s 0 + vt, sendo s 0 = 20m e v = 5m/s
3.400 17. ( ) 100 3400 6000, L x x. L x x x. (17) 34 60 Lx ( ) 17 34 17 60 L(17) 289 578 60 L(17) 289 638 L(17) 349 40 40 70.40 40 1.
REDE ISAAC NEWTON ENSINO MÉDIO 3º ANO PROFESSOR(A):LUCIANO IEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul EXERCÍCIOS DE REISÃO - AALIAÇÃO ESPECÍFICA 3º TRIMESTRE 01 MATEMÁTICA
Função Afim Função do 1º Grau
Colégio Adventista Portão EIEFM MATEMÁTICA Função Afim 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 4 1º Bimestre/01 Aluno(: Número: Turma: Função Afim Função do
Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco
Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,
Universidade Federal de Goiás Instituto de Informática
Universidade Federal de Goiás Instituto de Informática EXERCÍCIOS DE ESTRUTURAS SEQUÊNCIAIS 1. O coração humano bate em média uma vez por segundo. Desenvolver um algoritmo para calcular e escrever quantas
2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau)
2ª Lista de Exercícios Função Linear (ou Função polinomial de 1 o grau) Problema 01. Determine o coeficiente angular das retas cujos gráficos são dados abaixo: a) b) Problema 02. Através do coeficiente
LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:
1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12
3º Trimestre TRABALHO DE MATEMÁTICA - 2012 Ensino Fundamental 9º ano classe: A-B-C Profs. Marcelo/Fernando Nome:, nº Data de entrega: 09/ 11/12 NOTA:. Nota: Toda resolução deve ser feita no seu devido
2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).
MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico
Matemática. Resolução das atividades complementares. M4 Funções
Resolução das atividades complementares Matemática M Funções p. Responda às questões e, tomando por base o teto abaio: (Unama-PA) O ATAQUE DOS ALIENS Caramujos africanos, medindo centímetros de comprimento
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.
Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1
Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) O preço de uma corrida de táxi é R$ 2,50 fixos ( bandeirada ), mais R$ 0,10 por 100 metros rodados.
FUNÇÕES DE 1º GRAU. 02) Determine f(x) cujo gráfico está ilustrado abaixo. Uma função de 1º grau é caracterizada pela seguinte lei: Observações:
1 FUNÇÕES DE 1º GRAU 0) Determine f() cujo gráfico está ilustrado abaio. Uma função de 1º grau é caracterizada pela seguinte lei: Observações: 1) O fator a determina o crescimento da função: se y 1, então
(c) 2a = b. (c) {10,..., 29}
11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação
(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.
Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações
Universidade Federal de Alagoas Eixo da Tecnologia Campus do Sertão Programa de Educação Tutorial
Grandezas, Unidades de Medidas e Escala 1) (Enem) Um mecânico de uma equipe de corrida necessita que as seguintes medidas realizadas em um carro sejam obtidas em metros: a) distância a entre os eixos dianteiro
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita
Matemática. Resolução das atividades complementares. M5 Função polinomial do 1 o grau
Resolução das atividades complementares Matemática M5 Função polinomial do o grau p. 8 O perímetro p de um quadrado é função linear de seu lado. Qual a sentença que define essa função? p 5 O perímetro
Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES
FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça
2. Função polinomial do 2 o grau
2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r
UFPR 2012 2ª Fase. Matemática. Página1. 01 - Considere as funções f(x) = x 1 e g(x) = 2/3 (x 1)(x 2)
Página UFPR 0 ª Fase Matemática 0 - Considere as funções f() = e g() = / ( )( ) y 0 a) Esoce o gráfico de f() e g() no sistema cartesiano ao lado. ) Calcule as coordenadas (,y) dos pontos de interseção
www.cursoavancos.com.br
LISTA DE EXERCÍCIOS DE FIXAÇÃO - PROF.: ARI 0) (ANGLO) Sendo FUNÇÕES INVERSAS f a função inversa de f() = +, então f (4) é igual a : 2 a) 4 b) /4 c) 4 d) 3 e) 6 02) (ANGLO) Sejam f : R R uma função bijetora
1ª LISTA DE EXERCÍCIOS - FUNÇÕES 2010/2
Número de pontos Dívida ($ bilhão) 1ª LISTA DE EXERCÍCIOS - FUNÇÕES 010/ 1. A dívida pública dos EUA (em bilhões de dólares) para alguns anos encontra-se no gráfico abaio. 400 300 00 100 000 1900 1800
1 2 c) y 2x 2 d) y 2x 2 e) y 2x 2
ALUNO(a): Nº: SÉRIE: ª TURMA: UNIDADE: VV JC JP PC DATA: / /05 Obs.: Esta lista deve ser entregue apenas ao professor no dia da aula de Recuperação Valor: 0,0 SETOR A. O gráfico representa a função real
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade
MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios 1. Para um certo número real k, é contínua em R a função f definida por 2 + e +k se 0 f() = 2 + ln( + 1)
PROBLEMAS DE OTIMIZAÇÃO
(Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é
Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.
Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80
Gabarito de Matemática do 7º ano do E.F.
Gabarito de Matemática do 7º ano do E.F. Lista de Exercícios (L5) a 1) As temperaturas acima de 0 C são representadas por números positivos e as temperaturas abaixo de 0 C, por números negativos. Represente
1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES
1º LISTÃO QUINZENAL DE MATEMÁTICA MAIO/2011 1º ANO PARTE 1 ESTUDO DAS FUNÇÕES 01. Dadas as funções definidas por f(x) = 1 2 x 2 x + e g(x) = + 1 2 5, determine o valor de f(2) + g(5). 02. Dada a função
9. Derivadas de ordem superior
9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de
LANÇAMENTO OBLÍQUO (PROF. VADO)
LANÇAMENTO OBLÍQUO (PROF. VADO) 01) PUCSP- Suponha que em uma partida de futebol, o goleiro, ao bater o tiro de meta, chuta a bola, imprimindo-lhe uma velocidade V 0 cujo vetor forma, com a horizontal,
, então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0
LOGARITMOS Professor Clístenes Cunha -(CESGRANRIO-RJ) Se 5 0 a solução vale: a) 5 c) 7/ 0 -(PUC-MG) A soma das raízes da equação 5 a) c) -(CESGRANRIO-RJ) O valor de a) / / c) / / -(UEL-PR) Se 5 7 é igual
Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior
Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados
Função do 2º Grau. V(x) 3x 12x. C(x) 5x 40x 40.
Função do º Grau. (Espcex (Aman) 04) Uma indústria produz mensalmente x lotes de um produto. O valor mensal resultante da venda deste produto é dado por C(x) 5x 40x 40. V(x) 3x x e o custo mensal da produção
{ } PROVA DE RACIOCÍNIO MATEMÁTICO. 1)a)Dê o domínio da função f ( x) = + 12. b)resolva a inequação: 2 + 3 x. 4 + x RESOLUÇÃO.
)a)dê o domínio da função f ( ) = 7 + b)resolva a inequação: + 3 4 a)devemos ter 0 7 + Fazendo N = e D = 7 +, teremos o seguinte quadro de sinais: 3 4 N - + + + D + + - + N/D - + - + Tendo em conta que
Equipe de Matemática MATEMÁTICA
Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma
Questão 1 Descritor: D4 Identificar a relação entre o número de vértices, faces e/ou arestas de poliedros expressa em um problema.
SIMULADO SAEB - 2015 Matemática 3ª série do Ensino Médio GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO QUESTÕES E COMENTÁRIOS Questão 1 D4 Identificar a relação entre o número de vértices, faces
INTITUTO SUPERIOR TUPY 2009/1
1ª LISTA DE EXERCÍCIOS CÁLCULO I ANÁLISE GRAFICA, FUNÇÃO CONSTANTE, FUNÇÃO DO 1º GRAU E FUNÇÃO DO º GRAU 1) A dívida pública dos EUA (em bilhões de dólares) para alguns anos encontra-se no gráfico abaixo.
Geogebra, uma ferramenta genial
Geogebra, uma ferramenta genial Eduardo Antônio Soares Júnior Jéssica Amorim Mamed Paulo Tarso Farias Teixeira Roberta Layra Faragó Jardim Jaime Batista de Souza Deborah Faragó Jardim 3 de julho de 2013
MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II
Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas
Lista de Exercícios - Integrais
Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)
CPV O Cursinho que Mais Aprova na GV
CPV O Cursinho que Mais Aprova na GV FGV ADM 31/maio/015 Prova A MATEMÁTICA 01. Fabiana recebeu um empréstimo de R$ 15 000,00 a juros compostos à taxa de 1% ao ano. Um ano depois, pagou uma parcela de
b) a 0 e 0 d) a 0 e 0
IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,
6. Aplicações da Derivada
6 Aplicações da Derivada 6 Retas tangentes e normais - eemplos Encontre a equação da reta tangente e da normal ao gráfico de f () e, em 0 Represente geometricamente Solução: Sabemos que a equação da reta
MATERIAL DIDÁTICO DE CÁLCULO I
MATERIAL DIDÁTICO DE CÁLCULO I Acadêmico(a): Turma: 9/ Capítulo : Funções Cálculo I. ANÁLISE GRÁFICA DAS FUNÇÕES.. EXERCÍCIOS Abaio estão representadas graficamente algumas funções. Analise cada uma dessas
RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14
FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 0 DA UNICAMP-FASE. POR PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO Em uma determinada região do planeta, a temperatura média anual subiu de 3,35 ºC em 995 para
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :
ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.
Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:
Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.
PUERI DOMUS ENSINO MÉDIO MATEMÁTICA. Saber fazer saber fazer + MÓDULO
PUERI DOMUS ENSINO MÉDIO MATEMÁTICA Saber fazer saber fazer + MÓDULO Saber fazer Função do Primeiro Grau. (Cefet-MG) Sabendo-se que f() = a + b, que f( ) = 4 e que f() = 7, deduz-se que f(8) vale: a) 0
FUNÇÃO DO 2 GRAU. Chamamos de função do 2 grau, ou também função quadrática, toda função que assume a forma: onde
FUNÇÃO DO GRAU Professora Laura 1. Definição Chamamos de função do grau, ou também função quadrática, toda função que assume a forma: f : R R; f ( x) ax bx c onde a, b, c R e a 0. Podemos classificar as
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA
RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor
Matemática A. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 6.05.2010. 11.º Ano de Escolaridade
Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de
Funções. Funções. Você, ao longo do curso, quando apresentado às disciplinas de Economia, terá oportunidade de fazer aplicações nos cálculos
Funções Funções Um dos conceitos mais importantes da matemática é o conceito de função. Em muitas situações práticas, o valor de uma quantidade pode depender do valor de uma segunda. A procura de carne
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia
PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.
Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo
Universidade Federal do Rio de Janeiro - Instituto de Matemática Bacharelado de Ciências Matemáticas e da Terra Introdução ao Cálculo 1 a Questão: Observando, em cada caso, os gráficos apresentados, responda
3. Trace os gráficos das retas de equação 4x + 5y = 13 e 3x + y = -4 e determine seu ponto de intersecção.
Assunto: Função MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE VIÇOSA 67-000 - VIÇOSA - MG BRASIL a LISTA DE EXERCÍCIOS DE MAT 0 0/0/0. a) O que é uma unção? Dê um eemplo. b) O que é domínio
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever
Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES
número de bactérias Bacharelado em Ciências da Computação Profª. Adriana FUNÇÕES. Um biólogo, ao estudar uma cultura bacteriológica, contou o número de bactérias num determinado instante ao qual chamou
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir.
1. Um corpo arremessado tem sua trajetória representada pelo gráfico de uma parábola, conforme a figura a seguir. Nessa trajetória, a altura máxima, em metros, atingida pelo corpo foi de a) 0,52m. b) 0,64m.
C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9
RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as
O gráfico de. Freqüentemente você se depara com tabelas. Nossa aula
O gráfico de uma função A UUL AL A Freqüentemente você se depara com tabelas e gráficos, em jornais, revistas e empresas que tentam transmitir de forma simples fatos do dia-a-dia. Fala-se em elevação e
Lista de exercícios nº 2
F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º TRIMESTRE 8º ANO DISCIPLINA: FÍSICA
ATIVIDADES DE RECUPERAÇÃO PARALELA 3º TRIMESTRE 8º ANO DISCIPLINA: FÍSICA Observações: 1- Antes de responder às atividades, releia o material entregue sobre Sugestão de Como Estudar. 2 - Os exercícios
Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período
Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos
CÁLCULO DE ZEROS DE FUNÇÕES REAIS
15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em
ProfMat 2011. Conexões Matemáticas. Sessão Prática 29. Dinamizadores: Assunção Pires - Escola Secundária c/ 3º ciclo Vila Real de Santo António
ProfMat 2011 Sessão Prática 29 Conexões Matemáticas Dinamizadores: Assunção Pires - Escola Secundária c/ 3º ciclo Vila Real de Santo António Jacinto Salgueiro - Escola Secundária de Montemor o Novo Manuela
QUESTÕES MATEMÁTICA MASTERMED. n 2. 20x 40 se 0 x 2 0 se 2 x 10 T(x) 10x 100 se 10 x 20 100 se 20 x 40
1 QUESTÕES 01. Em uma experiência realizada com camundongos, foi observado que o tempo requerido para um camundongo percorrer um labirinto, na enésima tentativa, era dado pela função f(n) = 3 + n minutos.
Considere um triângulo eqüilátero T 1
Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.
Guião Revisões: Funções ESA-IPVC. Funções
GUIÃO REVISÕES Funções Conceito de função Quatro amigos decidiram apostar no totoloto, tendo cada um deles preenchido o seu boletim da seguinte forma: Boletim do Hugo Boletim do João Jogos Apostas Jogos
ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE
Disciplina: Matemática Curso: Ensino Médio Professor: Aguinaldo Série: 1ªSérie Aluno (a): ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO 2º BIMESTRE Número: 1 - Conteúdo: Notação científica Área de polígonos
Lista de exercícios 1º Ensino médio
1. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$800,00 mais uma comissão de 5% sobre as vendas do mês. Em geral, cada duas horas e meia de trabalho, ele vende o equivalente a R$500,00. a)
Colégio XIX de Março Educação do jeito que deve ser
Aluno(a): Nº Ano: 1º Turma: Data: /09/018 Nota: Professor(a): LUIZ GUSTAVO Valor da Prova: 40 pontos Orientações gerais: 1) Número de questões desta prova: 15 ) Valor das questões: Abertas (5): 4,0 pontos
Resolução dos Exercícios sobre Derivadas
Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas
EXERCÍCIOS. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos números lidos.
EXERCÍCIOS 1. Faça um algoritmo que receba dois números e exiba o resultado da sua soma. 2. Faça um algoritmo que receba dois números e ao final mostre a soma, subtração, multiplicação e a divisão dos
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA
UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS MATEMÁTICA 2 PROF. ILYDIO PEREIRA DE SÁ
UNIVERSIDADE SEVERINO SOMBRA UNIDADE MARICÁ CURSO DE ADMINISTRAÇÃO DE EMPRESAS 1 MATEMÁTICA PROF. ILYDIO PEREIRA DE SÁ ESTUDO DAS DERIVADAS (CONCEITO E APLICAÇÕES) No presente capítulo, estudaremos as
Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.
6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.
DISCURSIVAS SÉRIE AULA AULA 01
ANÁLISE MATEMÁTICA BÁSICA DISCURSIVAS SÉRIE AULA AULA 01 H40120M 4800 35 M120 1200M) H80 M MATEMÁTICA V M H 1) (Unicamp SP) M120H 50 A média aritmética das idades de um grupo de 120 pessoas é de 40 anos.
Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões:
Lista de eercícios: Funções Problemas Gerais Prof ºFernandinho Questões: 01.(Unesp) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fia de 0 C. Baseado nos
Determine, em graus kelvins, o módulo da variação entre a maior e a menor temperatura da escala apresentada.
TERMOMETRIA ESCALAS TERMOMÉTRICAS 1. (Uerj 2015) No mapa abaixo, está representada a variação média da temperatura dos oceanos em um determinado mês do ano. Ao lado, encontra-se a escala, em graus Celsius,
SITE_INEP_PROVA BRASIL - SAEB_MT_3ªSÉRIE (OK)
000 IT_00558 Um copo cilíndrico, com 4 cm de raio e cm de altura, está com água até a altura de 8 cm. Foram, então, colocadas em seu interior n bolas de gude, e o nível da água atingiu a boca do copo,
F-128 Física Geral I 2 o Semestre 2012 LISTA DO CAPÍTULO 2
Questão 1 Um motorista de um carro que vai 52 km/h freia, desacelera uniformemente e para em 5 segundos. Outro motorista, que vai a 34 km/h, freia mais suavemente, e para em 10 segundos. Represente em
FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:
FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro
Lógica Matemática e Computacional 5 FUNÇÃO
5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e
Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 12º ano Cálculo Diferencial II - Exercícios saídos em Exames (séc XX)
Escola Secundária Dr. Ângelo Augusto da Silva Matemática - 1º ano Cálculo Diferencial II - Eercícios saídos em Eames (séc XX) 1. Seja f a função real de variável real tal que f()= - /. Quanto ao limite
< 0, conclui-se, de acordo com o teorema 1, que existem zeros de f (x) Pode-se também chegar às mesmas conclusões partindo da equação
. Isolar os zeros da função f ( )= 9 +. Resolução: Pode-se construir uma tabela de valores para f ( ) e analisar os sinais: 0 f ( ) + + + + + Como f ( ) f ( ) < 0, f ( 0 ) f ( ) < 0 e f ( ) f ( ) < 0,
Neste caderno você encontrará um conjunto de 06 (seis) páginas numeradas seqüencialmente, contendo 10 (dez) questões de Matemática.
2 a FASE - EXAME DISCURSIV ISCURSIVO 02 02/12 12/2001 Matemática temática (UENF - Grupo I) Neste caderno você encontrará um conjunto de 06 (seis) páginas numeradas seqüencialmente, contendo 10 (dez) questões
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 2005/2
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO B 00/ SUMÁRIO. LIMITES E CONTINUIDADE..... NOÇÃO INTUITIVA DE LIMITE..... FUNÇÃO CONTÍNUA NUM
física EXAME DISCURSIVO 2ª fase 30/11/2014
EXAME DISCURSIVO 2ª fase 30/11/2014 física Caderno de prova Este caderno, com dezesseis páginas numeradas sequencialmente, contém dez questões de Física. Não abra o caderno antes de receber autorização.
PA Progressão Aritmética
PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0
Colégio dos Santos Anjos Avenida Iraí, 1330 Planalto Paulista www.colegiosantosanjos.g12.br A Serviço da Vida por Amor
Colégio dos Santos Anjos Avenida Iraí, 1330 Planalto Paulista www.colegiosantosanjos.g12.br A Serviço da Vida por Amor Curso: EF II Ano: 9º ano A/B Componente Curricular: Ciências Naturais Professor: Mario
LISTA DE MATEMÁTICA. Aluno(a): Nº. 1. Determinada editora pesquisou o número de páginas das revistas mais vendidas em uma cidade.
LISTA DE MATEMÁTICA Aluno(a): Nº. Professor: Rosivane Série: 2 ano Disciplina: Matematica Data da prova: Pré Universitário Uni-Anhanguera MEDIDAS DE DISPERSÃO 1. Determinada editora pesquisou o número
Identifique qual ou quais dos gráficos a seguir podem representar uma função.
1 Considere os conjuntos A = {1, d, 3} e B = {-3, -2, e}. Sabendo que os pontos destacados no plano cartesiano abaio são a representação de A B, determine o valor de d e e. 1-1 1 2 3 4-1 -2-3 2 Identifique
COLÉGIO MACHADO DE ASSIS. Turma: Data: / /
Disciplina: Matemática Professor: Eduardo Nagel COLÉGIO MACHADO DE ASSIS Turma: Data: / / Aluno: ( ) Avaliação ( x ) Exercício / Revisão ( ) Recuperação Bim ª Chamada ( ) 1ª Prova ( ) ª Prova Estude e
