Resoluções das Atividades
|
|
|
- Pedro Henrique Bandeira Meneses
- 9 Há anos
- Visualizações:
Transcrição
1 VOLUME MTEMÁTI 1 Resoluções das tividades Sumário ula 1 Operações e problemas envolvendo conjuntos...1 ula 1 onjuntos numéricos... ula 1 Operações e problemas envolvendo conjuntos tividades para Sala 0 Pessoas que gostam apenas de azul: X Y X Y 01 0 asta fazer o diagrama de Venn e somar todos os valores = Sejam M, T e N os conjuntos dos alunos que frequentaram as piscinas pela manhã, pela tarde e pela noite, respectivamente. Note que sendo 0 pela manhã e pela tarde faz referência ao conjunto M T. O número de alunos que frequentaram as piscinas somente pela manhã e pela tarde é igual ao número de alunos que o fizeram pela manhã e pela tarde menos o número de alunos que o fizeram pela manhã, pela tarde e pela noite, ou seja, 0 8 = 1. Observe o diagrama de Venn a seguir: M T Pessoas que gostam apenas de branco: Y X X Y Pessoas que gostam apenas de 1 cor: (X Y) (Y X) Sabemos que o número total de alunos que frequentaram as piscinas é 8, ou seja, = 8. Logo, = 1. Note que a soma anterior epressa o número de alunos que frequentaram a piscina à noite. N Pré-Universitário 1
2 VOLUME MTEMÁTI 1 0 onsidere o conjunto dos alunos entrevistados como o conjunto universo e F, P e como os conjuntos dos alunos que optaram por frango, peie e carne bovina, respectivamente. Note que, por eemplo, 7 por carne bovina e frango faz-se referência ao conjunto F. Observe o diagrama de Venn a seguir: 0 situação-problema pode ser demonstrada no diagrama a seguir: Professores ientistas F 9 P 0 U Dado que pessoas não optaram por carne bovina ( tem elementos), equacionamos = =, e dado que pessoas não optaram por peie (P tem elementos), equacionamos = =. ssim, foram entrevistadas = = = 8 pessoas tividades Propostas 01 E Representemos por meio de um diagrama de Venn a situação descrita no problema. Nele, os conjuntos, e representam, respectivamente, as pessoas que gostam dos refrigerantes, e ; U é o conjunto de todas as pessoas pesquisadas. Indicaremos no próprio diagrama os percentuais de pessoas em cada um dos conjuntos e em suas interseções U Professores, Matemáticos, ientistas Matemáticos I. Eistem somente professores. II. Eistem professores e cientistas. III. Eistem professores, cientistas e matemáticos. 0 Sejam os conjuntos: = tem antígeno = tem antígeno = não tem nenhum dos dois = n( ) = n() + n() + n() n( ) = n( ) n( ) = =. 0 omo 0% dos candidatos à dministração Pública eram homens 0% eram mulheres. Mas 0% dos candidatos = candidatos a dministração Pública = % dos candidatos =.000, 70% de.000 =.000 = mulheres candidatas para dministração Pública = homens candidatos para dminstração Pública. 0 Usando o diagrama de Venn e sendo T o total de entrevistados: Líquido Drágeas 1 ssim, a probabilidade de que uma pessoa entrevistada goste de uma única marca ou de nenhuma é 9% + % + 0% + 8% = 7%. T + z = T T T + z = + + z+ z = T T T T z = T 1 + = + 7 T + T T T = 1 7 1T = 1 T = z Pré-Universitário
3 VOLUME MTEMÁTI 1 0 E Sejam: : quem acertou a primeira. : quem acertou a segunda. : quem acertou a terceira. Fazendo o diagrama de Venn: = = 8 = 1 = 07 E Sejam: : hemofílicos : homosseuais : toicômanos O diagrama fica: Temos que = = e n o de pacientes = 7 7 = = 7 + = 1 omo eistem mulçumanos que não são árabes T ( M) = conjunto de pessoas que não são árabes nem mulçumanos. 09 I. hamaremos o total de pessoas de. II. Leem notícia =. III. Leem O informativo =. IV. Leem os dois =. V. Temos o diagrama: N = = I a = a + = + a = + a a= = = a = D Pelo diagrama de Venn: ula 1 I. asta somar os valores: 00 II = 7 III = 8 IV. 0 = % de 00 V. 98 = 19,% de E Se a família obteve quilogramas de latas de alumínio e quilogramas de garrafas de plástico, resulta, de acordo com o enunciado, que: = =, 90+ 0, 17 = 1, 0 90, + 0, 17 =, = =, = 1, 0 = Portanto, foram quilogramas de plástico. 0 Temos os conjuntos: I. = [ 1; ) = II. = [1; ] = III. = [; ) = IV. D = (1; ] = V. E = (0; ] = VI. = VII. D = VIII. ( ) ( D) = onjuntos numéricos IX. [( ) ( D)] E = tividades para Sala Sendo a, b, c e d, respectivamente, as quantidades de conceitos,, e D que alvin tirou, temos: d= b d= b c = a+ c = a+ 0a+ b+ c+ d= a b = Pré-Universitário
4 VOLUME MTEMÁTI 1 01 I. = { Q / = } = II. = { Z / < < } = { ; 1; 0; 1; } III. = { N / 1 < < } = {1; ; } 0 Sejam V, E e D, respectivamente, as quantidades de vitórias, empates e derrotas dessa equipe no campeonato. Do enunciado, temos: 0 D 70 omo b a 0 a a. Sendo a um número par, temos: a= 0 b= N a = b = 1 a= b= N a= b= N Logo b = 1, que é um quadrado perfeito. 0 ada galão tem capacidade de,8l, como foram 0 galões: 0,8 = 190L Sabemos que um dólar, durante a semana da viagem, valia 1,0 real e que o turista teve um custo total de 1 dólares, então: 1 1, =, reais Dividindo o gasto total em R$ pela quantidade total de litros, temos o valor em R$/L:, = 18, R$/L 190 () 1 E= D V+ E= J ( ) V+ E+ D= J ( ) V+ 1 E= P E= P V Da duas igualdades anteriores, segue que: V + (P V) = J V + P V = J V = P + J V P J = Sejam e as quantidades iniciais de mulheres e homens, respectivamente, presentes na festa. pós a retirada de 1 mulheres, sobram 1 mulheres e homens e, depois, com a saída de homens, sobram 1 mulheres e homens. Temos: ( 1) = 1= ( ) = tividades Propostas Logo, incialmente havia pessoas na festa. 0 0 Sejam: o número de candidatos que se declaram na primeira situação; o número de candidatos que se declaram na segunda situação; z o número de candidatos que se declaram na terceira situação. Temos: + z = z = 0 + = 0 Somando membro a membro, temos: + + z = 00 e, portanto, + + z = 170. Das informações do enunciado, o volume de água necessário para abastecer toda a população do planeta por um ano, em litros, é: = 7 9 1,, = 8, 1,8 1 Ou seja, está entre 1 e 1. 0 D Em 1 hora = 00 segundos, a quantidade máima de voos que irão decolar, respeitando a norma, é de = 81. ssim, para a regra não ser respeitada, é suficiente que: Q = D omo houve provas, foram distribuídas medalhas de ouro, medalhas de prata e medalhas de bronze. Da tabela, concluímos que: + + = + = (1) + + z = () omo a equipe III obteve 18 pontos, temos, da tabela, que + + z = 18 () Das igualdades em (1), () e (), resulta o sistema: + = + + z = + + z = 18 Resolvendo esse sistema, obtemos =, = e z =. Número de pontos da equipe I: + z + 1 = Número de pontos da equipe II: () = 0 Número de pontos da equipe III: 18 equipe I foi a vencedora, por ter o maior número de pontos. Pré-Universitário
5 VOLUME MTEMÁTI 1 08 D I. Temos o número. II. Se invertermos a ordem para, temos que >, com isso temos >. III. + = soma dos algarismos é um quadrado perfeito. IV. = + = + = = = 7 9( ) = 7 =, confirma que >. V. omo + = quadrado perfeito e = 9, então temos = e =. 09 D Em reais, cada broa custou a Luiz a importância de, =,. Pelas duas broas cedidas, José, que recebeu R$,, deveria ter recebido R$,. Pelas três broas, Geraldo recebeu R$, R$, = R$,80, mas deveria ter recebido R$,1. Portanto, Geraldo deveria ter recebido R$0, a mais, pois R$,80 + R$0, = R$,1. D Para n = 11, temos as seguintes passagens: São necessárias 1 passagens. Pré-Universitário
Conjuntos e Aritmética (resolução)
Revisão 01 Conjuntos e Aritmética (resolução) 01. O conjunto A tem os seguintes elementos Assim sendo, temos 1, 2, 3, {1, 2}, {3, 4} a) {3} A verdadeira, pois 3 A b) {1, 2, 3} A verdadeira, pois 1, 2,
Matemática A Extensivo V. 2
GRITO Matemática Extensivo V. Exercícios 0) a) Verdadeira. e são elementos de. b) Verdadeira. Pois {} é elemento de. c) Verdadeira. Pois não é elemento de. d) Verdadeira. Pois {} é um subconjunto de. e)
NOÇÕES. 04- (F. Santo André-SP) Seja A um conjunto com 7 elementos. O número total de subconjuntos de A é: a) 16 b) 128 c) 56 d) 100 e) 256
MATQUEST CONJUNTOS PROF.: JOSÉ LUÍS NOÇÕES 01- (CATANDUVA-SP) Dado o conjunto A = {, {a}, b} com {a} b a 0, pode-se afirmar que: a) {, {b}} A b) {, {a}} A c) {, a} A d) {a, b} A e) A 02- (CEFET) Considerando
Simulado. enem. Matemática. e suas. Tecnologias VOLUME 1 DISTRIBUIÇÃO GRATUITA
Simulado enem 20 2a. série Matemática e suas ISTRIUIÇÃO GRTUIT Tecnologias VOLUM Simulado NM 20 Questão lternativa: Para uma quantidade de 50% de Q, temos Q(d) = logo: 2 = 4 d 6 2 = 2 2-2 = 2 - d 8 d 6
Gabarito da lista de Exercícios sobre Conjuntos
Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais
Encontro 11: Resolução de exercícios da OBMEP
Encontro 11: Resolução de exercícios da OBMEP Exercício 1: Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em
Exercícios de Matemática II
Eercícios de Matemática II Sequências 1) Os números 4, + 1 e + 1 formam, nesta ordem, uma progressão aritmética. O maior desses três números é: R$ 1 000,00. Quanto esse cliente pagou de entrada na aquisição
Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep.
Contagem 4: resolução de exercícios da obmep No ciclo 1 estudamos o princípio aditivo e o princípio multiplicativo. No ciclo 2 estudamos o conceito de permutação e resolvemos alguns exercícios de contagem.
Raciocínio Lógico I. Solução. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 3 Raciocínio Lógico I O estudo da Lógica é essencial para os alunos que desejam participar de olimpíadas de matemática.
ENTREGAR ESSE ROTEIRO DIRETAMENTE AO PROFESSOR DA DSCIPLINA DATA DA ENTREGA: 29/05/2019
Disciplina: Matemática 01 Data: 29 /05 / 19 Segmento: E. Médio Série: 3º ano Turma: JC Valor: 5,0 Média: 3,0 Assunto: Roteiro de Estudos Para Recuperação da I Etapa/2019 Tipo: A Aluno(a): Nº: Nota: Professor(a):
República de Moçambique Ministério da Educação Conselho Nacional de Exames, Certificação e Equivalências
buso Seual nas escolas Não dá para aceitar Por uma escola livre do SI República de Moçambique Ministério da Educação onselho Nacional de Eames, ertificação e Equivalências ESG / 0 Eame de Matemática ª
Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial.
Lista de exercícios Prof: Maurício Baffi 06/2017 Ensino Médio - 3º ano Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. 1. (G1 - ifsul 2017) Em uma consulta à comunidade acadêmica sobre
RESOLUÇÃO PRATIQUE EM CASA
RESOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [D] SOLUÇÃO PC2. SOLUÇÃO PC3. MULHERES HOMENS TOTAL MENORES 3% (III) (72%) 6=12% 15% (II) MAIORES 25% (IV) 60% (III)(V) 85%(I) TOTAL 28% (I) 72% (II) 100% As cores
C: R$ 40,000 D: R$ 90,00
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES MATEMÁTICA 6º ANO ENSINO FUNDAMENTAL = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
LISTA DE EXERCÍCIOS 9º ANO 1º BIMESTRE MATEMÁTICA-REVISÃO
1. (G1 - ifsc) A solução da equação 0,1x 0,6 3 tem como resultado, 1 0,4x 2 a) um número racional negativo. b) um número irracional. c) um número inteiro negativo. d) um número racional maior que 5. e)
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento 9 Nível 1
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução do treinamento
Mais Exercícios sobre Equações. Sétimo Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz Neto
Material Teórico - Módulo de EQUAÇÕES E INEQUAÇÕES DO PRIMEIRO GRAU Mais Eercícios sobre Equações Sétimo Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antônio Caminha Muniz
Visite :
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
AULA 1 - Conjuntos numéricos (GABARITO)
L - Conjuntos numéricos (GRITO). de exercícios. Se, determine: a) b) c) d) e). Sendo, represente o conjuntos e pelo diagrama de Venn e determine: 0 6 a) b) c) d). Determine se as proposições abaixo são
Matemática A Intensivo V. 1
Matemática A Intensivo V Eercícios ) V F F F F V V V ) D a) Verdadeiro Zero é elemento do conjunto {,,, 3, } b) Falso Nesse caso temos {a} como subconjunto de {a, b}, logo a relação correta seria a} {a,
Teoria dos Conjuntos FBV. Prof. Rossini Bezerra
Teoria dos onjuntos FV Prof. Rossini ezerra Os resultados do trabalho de Georg Ferdinand Ludwing Phillip antor estabeleceram a teoria de conjuntos como uma disciplina matemática completamente desenvolvida
Unidade 8 Equações e Sistemas de Equações do 1º grau. Sentenças matemáticas
Unidade 8 Equações e Sistemas de Equações do 1º grau Sentenças matemáticas A matemática pode ser considerada uma linguagem e, como todas elas, é preciso algum tempo para dominá-la. Sentenças, em matemática,
Solução do Simulado PROFMAT/UESC 2012
Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo
Bernoulli Resolve Matemática
ernoulli Resolve Matemática V Volume Sumário - Matemática Módulo 0 Raciocínio Lógico 0 Potenciação e radiciação Módulo 0 7 Produtos notáveis e fatoração 0 8 Divisibilidade, MD e MM Módulo 0 Teoria dos
Capítulo 1 Números Reais
Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {
ANÁLISE COMBINATÓRIA
ANÁLISE OMBINATÓRIA ANÁLISE OMBINATÓRIA é uma parte da matemática que estuda os agrupamentos de elementos sem precisar enumerá-los. A origem desse assunto está ligada ao estudo dos jogos de azar, tais
Lista de Exercícios - Conjuntos
01) (UFE) e e são dois conjuntos não vazios e é o conjunto vazio, é verdade que, das afirmações: I. = { } II. ( ) ( ) = ( ) ( ) III. { } = {} {} IV. {,, } são verdadeiras somente: a) I e II d) III e IV
III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição
ENEM 2015 (Questões 164 a 170)
(Questões 164 a 170) Provas de Vestibular 1. (Questão 164) Uma família composta por sete pessoas adultas, após decidir o itinerário de sua viagem, consultou o site de uma empresa aérea e constatou que
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
[C] [D] [A] [B] Calculando: = 4035 Divisores 4035 = (1 + 1).(1 + 1).(1 + 1) = 2.2.
RESOLUÇÕES 1 4 2 Calculando: 2018 2-2017 2 4072324-4068289 = 4035 Divisores 4035 = 3 1.5 1.269 1 (1 + 1).(1 + 1).(1 + 1) = 2.2.2 = 8 Sejam x, y, z e w, respectivamente, a idade da professora e de suas
XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
Soluções Nível 1 Segunda Fase Parte A XXVII Olimpíada Brasileira de Matemática GABARITO Segunda Fase CRITÉRIO DE CORREÇÃO: PARTE A Cada questão vale pontos se, e somente se, para cada uma o resultado escrito
XXXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 1 (6 o. ou 7 o. anos) GABARITO
XXXI OLIMPÍ RSILEIR E MTEMÁTI PRIMEIR FSE NÍVEL 1 (6 o. ou 7 o. anos) GRITO GRITO NÍVEL 1 1) 6) 11) 16) 2) 7) 12) E 17) 3) 8) 13) E 18) 4) 9) 14) E 19) 5) 10) 15) 20) ada questão da Primeira Fase vale
Módulo de Conjuntos. 9 ano E.F. Professores Tiago Miranda e Cleber Assis
Módulo de Conjuntos Noções ásicas 9 ano E.F. Professores Tiago Miranda e Cleber ssis Conjuntos Noções ásicas 1 Exercícios Introdutórios Exercício 1. nalise o diagrama abaixo e conclua como verdadeira ou
1. (OBMEP 2016 N2Q12 1ª
Exercício 1. (OBMEP 2016 N2Q12 1ª fase) Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em ordem alfabética:
Lista de Exercícios de Recuperação de MATEMÁTICA 2
Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM ) Uma prova tem 4 testes com 5 alternativas cada um. Respondendo aleatoriamente
Questões escritas. volume 1
Questões escritas volume 0. Se b é ímpar, então ele é da forma b k +, k d N, ou seja, a + (k + ) + k + k + + k + k ( + k + k ), de forma que a é par, pois + k + k d N. 0. Fazendo a Divisão Euclidiana de
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º. ou 9º. anos) (antigas 7ª. ou 8ª. séries) GABARITO GABARITO NÍVEL 1) D 6) B 11) A 16) A 1) B ) C 7) E 1) D 17) A ) B 3) C 8) C 13) C 18) B
Operações com conjuntos: união, interseção e complementar
PREPARATÓRIO IFRN Cargo: Auxiliar em Administração Disciplina: Matemática Professor: Daniel Almeida Operações com conjuntos: união, interseção e complementar CONJUNTOS Formado pelo agrupamento ou ausência
Matemática. Resoluções. Aula 01. Extensivo Terceirão Matemática 1A E = =
ula Resoluções Matemática.. E ( + ) + ( ) E ( + + ) + ( + ) E +.. a b a b ( a b).. M a + a M ( a) + ( a) M ( a) + ( a) M ( a)( + ).. ( cos α ) ( cos α) ( cos α) +.... ( cos α ) cos α cosα + + + + + + +
Resolução: Conjuntos. 06. Observe o diagrama CAPÍTULO. 01. Note que A C = {0,1,3,5,8,9} então B (A C) = {7}. Gabarito: B = 540
CAPÍTULO 01 Resolução: Conjuntos 06. Observe o diagrama A B 01. Note que A C = {0,1,3,5,8,9} então B (A C) = {7}. 120 190 80 Gabarito: B 150 02. Observe o diagram 120+80+190+150 = 540 X Y X Y 07. Observe
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene
UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição
XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase Nível de agosto de 2017
UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA PET MATEMÁTICA XX OLIMPÍADA REGIONAL DE MATEMÁTICA DE SANTA CATARINA Resolução da prova 1 a fase
a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.
Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um
2 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c
Matemática e suas Tecnologias
Matemática A. d As distâncias nadadas formam uma progressão aritmética. a 5 m a5 m a5 a+ 4 r 5 + 4 r r m a a+ 9 r a 5 + 9 a m. c Sejam r, e + r as medidas dos ângulos internos do triângulo. Como a soma
Inferência Estatística. Medidas de Tendência Central Medidas de Variação Medidas de Posição
Inferência Estatística Medidas de Tendência Central Medidas de Variação Medidas de Posição Notações Estatísticas Característica amostra população Somatório de um conjunto de valores Valores individuais
Colégio MATEMÁTICA DESAFIO. RESOLUÇÃO Observando que 38 = temos que: 38 = Resposta: A. Nome: N.º: Endereço: Data: Telefone:
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 208 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Da igualdade 38 = 5. 7 + 3 podemos obter
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO
RESOLUÇÃO DAS QUESTÕES DE RACIOCÍNIO LÓGICO-MATEMÁTICO Caro aluno, Disponibilizo abaixo a resolução das questões de Raciocínio Lógico- Matemático das provas para os cargos de Técnico do CNMP 2015. Resolvi
Introdução: A necessidade de ampliação dos conjuntos Numéricos. Considere incialmente o conjunto dos números naturais :
Introdução: A necessidade de ampliação dos conjuntos Numéricos Considere incialmente o conjunto dos números naturais : Neste conjunto podemos resolver uma infinidade de equações do tipo A solução pertence
QUESTÃO 16 (OBM) Ana começou a descer uma escada no mesmo instante em que Beatriz começou a
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 05 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (OBM) Ana começou a descer uma escada no
Matemática e suas Tecnologias
Matemática e suas Tecnologias Olá, estudante! Algo bastante comum nas provas do ENEM, em diversas disciplinas, é o uso de gráficos e tabelas para abordar determinado tema, relacionando-os a algum assunto
Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios
1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos
Prova: DESAFIO. QUESTÃO 16 Numa cesta, havia cinco dúzias de maçãs. Algumas foram vendidas e as que sobraram estão representadas na figura a seguir:
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSARÁ O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 09 QUESTÃO 6 Numa cesta, havia cinco dúzias de maçãs. Algumas
Nome: N.º: endereço: data: Telefone: PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 6 Ọ ANO DO ENSINO FUNDAMENTAL EM 206 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 (FUNCAB) Complete os círculos com os algarismos,,
Capítulo 2 Noções de conjuntos
THE BRIDGEMAN/KEYSTONE Capítulo 2 Noções de conjuntos X SAIR Para representar o conjunto A formado pelos números naturais de 0 a 10, podem-se utilizar três possibilidades: 1ª forma: pela citação dos elementos.
ADA 1º BIMESTRE CICLO I MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL 2018
ADA 1º BIMESTRE CICLO I MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL 2018 ITEM 2 DA ADA Observe os objetos a seguir que representam figuras geométricas planas e espaciais. Com base nas informações acima, desenhe
A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO
37ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 2 1) C 6) C 11) A 16) D 21) D 2) B 7) A 12) B 17) A 22) E 3) B 8) C 13) D 18) C
x 2y z 9 2x y z 3, 3x y 2z 4
PROFESSOR: Equipe BANCO DE QUESTÕES - MATEMÁTICA - 2ª SÉRIE - ENSINO MÉDIO - PARTE 3 ============================================================================================= Sistemas 01- Se a terna
2 a Lista de Exercícios 2001/I
1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um
Matemática B Intensivo V. 2
Matemática Intensivo V. Eercícios ) ) C ( ) (5 7) Usando a fórmula do ponto médio: X + X Y + Y C + 5 + 7 6 8 ( ) ERRT: considere (6 ). Temos d () d (C). ssim: ( 6) + ( b ) ( ) + ( 6 b) 9 + b 9 + b b +
1ª PARTE NÍVEL 1 SOLUÇÕES QUESTÃO 1
1ª PARTE NÍVEL 1 SOLUÇÕES QUESTÃO 1 Numa sala de aula, os estudantes participam da seguinte brincadeira. Um dos alunos conta em voz alta os números inteiros de 1 até 100, enquanto todos os outros batem
Resolução: Focando o Enem 02
RevEnem 0 01. Resposta: [C] Resolução: Focando o Enem 0 m A = massa atômica do elemento A E m B = massa atômica do elemento B E 0,75.m A + 0,5.m B = 35,47 0,75. 34,97 + 0,5m B = 35,47 0,5m B = 35,47 6,75
TEORIA DOS CONJUNTOS
FACULDADE PITÁGORAS Curso Superior em Tecnologia Redes de Computadores e Banco de dados Matemática Computacional Prof. Ulisses Cotta Cavalca TEORIA DOS CONJUNTOS EXERCÍCIOS Belo
Algoritmos e Lógica de Programação. Prof. Marcos Antonio Estremoe. 1 - Faça um programa que imprima a frase: Bem Vindo à Engenharia Firb 2014.
Algoritmos e Lógica de Programação Prof. Marcos Antonio Estremoe 1 - Faça um programa que imprima a frase: Bem Vindo à Engenharia Firb 2014. 2 - Faça um programa que imprima a palavra Bem Vindo à Engenharia
APOSTILA DE MATEMÁTICA PM/PA 2016
APOSTILA DE MATEMÁTICA PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca
12 A interseção de retas e a solução de sistemas
A UA UL LA A interseção de retas e a solução de sistemas Introdução Aqui está um problema que serve de eemplo para as questões que serão tratadas nesta aula. Pense, e veja se consegue resolvê-lo com as
GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.
Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto
Disciplina: Matemática Data da entrega: 14/03/2015.
Lista de Exercícios - 01 Aluno (a): Nº. Professor: Flávio Turma: 1ª série: (ensino médio) Disciplina: Matemática Data da entrega: 14/03/2015. Observação: A lista deverá apresentar capa, enunciados e as
Matemática. Probabilidade. Maria Augusta Ferreira Neves M. Carlos Silva Bruno Ribeiro Sandra Jorge Luís Guerreiro ENSINO PROFISSIONAL MÓDULO
Matemática Probabilidade Maria ugusta Ferreira Neves M. Carlos ilva runo Ribeiro andra Jorge Luís Guerreiro MÓDULO 7 ENINO PROFIIONL Oo Índice Introdução ao estudo das probabilidades. Experiências aleatórias.
CURSO DO ZERO. Indicamos um conjunto, em geral, com uma letra maiúscula A, B, C... e um elemento com uma letra minúscula a, b, c, d, x, y,...
ssunto: Conjunto e Conjuntos Numéricos ssunto: Teoria dos Conjuntos Conceitos primitivos. Representação e tipos de conjunto. Operação com conjuntos. Conceitos Primitivos: CURSO DO ZERO Para dar início
MATEMÁTICA - 3o ciclo Organização e Tratamento de Dados (7 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Organização e Tratamento de Dados (7 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Organizando as idades das 16 raparigas da turma da Ana numa
Interbits SuperPro Web
. (Ufpr 07) Rafaela e Henrique participaram de uma atividade voluntária que consistiu na pintura da fachada de uma instituição de caridade. No final do dia, restaram duas latas de tinta idênticas (de mesmo
MEDIDAS E INCERTEZAS
MEDIDAS E INCERTEZAS O Que é Medição? É um processo empírico que objetiva a designação de números a propriedades de objetos ou a eventos do mundo real de forma a descrevêlos quantitativamente. Outra forma
Combinatória: Dicas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 2010 São José do Rio Preto
Combinatória: icas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 00 São José do Rio Preto? Nível Uma dificuldade que é bastante frequente nos alunos do nível (ou em outros quaisquer
Proposta de Resolução
Novo Espaço Matemática A 1.º ano Proposta de Teste Intermédio [novembro 014] Proposta de Resolução GRUPO I 1. Seja Ω = { a, b, c, d} o espaço de resultados de uma eperiência aleatória. P ({ a} ) = P ({
Matemática B Intensivo V. 1
Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto
TD AULÃO ENEM - Matemática. Prof. Antonio Junior
TD AULÃO ENEM - Matemática Prof. Antonio Junior 1) Uma pesquisa realizada com 1.700 jovens na faixa etária de 17 a 5 anos quanto à utilização das redes sociais constatou que 700 jovens utilizam o Facebook,
Olimpíada Pernambucana de Matemática Caderno de Questões Com Resoluções
Olimpíada Pernambucana de Matemática 07 NÍVEL Caderno de Questões Com Resoluções LEIA COM ATENÇÃO 0. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 0.
Unidade 5 Estatística e probabilidade
Sugestões de atividades Unidade 5 Estatística e probabilidade 9 MATEMÁTICA 1 Matemática 1. (Enem) Um apostador tem três opções para participar de certa modalidade de jogo, que consiste no sorteio aleatório
MATEMÁTICA E RACIOCÍNIO LÓGICO
MATEMÁTICA E RACIOCÍNIO LÓGICO Raciocínio lógico: resolução de problemas envolvendo frações, conjuntos, porcentagens, sequencias (com números, com figuras, de palavras). Raciocínio lógico-matemático: proposições,
Módulo de Plano Cartesiano e Sistemas de Equações. Equações de Primeiro Grau com Duas Incógnitas. Professores: Tiago Miranda e Cleber Assis
Módulo de Plano Cartesiano e Sistemas de Equações Equações de Primeiro Grau com Duas Incógnitas 7 ano EF Professores: Tiago Miranda e Cleber Assis Plano Cartesiano e Sistemas de Equações Equações de Primeiro
Parte II. votos D 34 A 66 P 63. D e A 17. D e P 22. A e P 50. D,A e P 10. Sem problemas
Parte II 1) Numa pesquisa feita com todos os moradores de um prédio, constatou-se que mais de 45% são homens e que mais de 60% pintam o cabelo. Explique por que se pode concluir que, nesse prédio, há homens
Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2018 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 16 Dada a expressão 9x² - 24x + P. Sabendo
OPERAÇÕES COM CONJUNTOS
OPERAÇÕES COM CONJUNTOS 14243 Operações com conjuntos 1. União de conjuntos Dados dois conjuntos, A e B, a união de A e B é o conjunto formado por todos os elementos que pertencem a A ou a B. A B = {x
Matemática A Semiextensivo V. 1
Semiextensivo V. 1 Exercícios 01) a) ( 6) 6 b) ( 6) 6 c) 5 5 d) 7 1 7 1 49 e) 4 4 64 7 f) 0 4 1 Lembre-se de que todo número elevado a zero é igual a 5 um! 0) B 0) E 04) E 1 g) 5 5 5. Lembre-se de que:
GABARITO Prova Verde. GABARITO Prova Rosa
Sistema ELITE de Ensino COLÉGIO NAVAL 011/01 GABARITO Prova Verde MATEMÁTICA 01 E 11 D 0 D 1 A 03 E 13 ANULADA 0 E 1 ANULADA 05 D 15 B 06 D 16 C 07 B 17 C 08 E 18 B 09 A 19 A 10 C-Passível de anulação
2) Existem três suspeitos de um assalto a banco, que podem ou não ter agido em. (A) Lenin e Rasputin não existiram. (B) Lenin não existiu.
www.exatasconcursos.mat.br 1) Se Rasputin não tivesse existido, Lenin também não existiria. Lenin existiu. Logo, (A) Lenin e Rasputin não existiram. (B) Lenin não existiu. (C) Rasputin existiu. (D) Rasputin
MATEMÁTICA. A partir dessas informações, quantas pessoas foram entrevistadas?
MATEMÁTICA 1 Um estudante fez uma pesquisa com um grupo de universitários para obter um panorama a respeito da utilização de três redes sociais. Ao computar as informações fornecidas pelas pessoas entrevistadas,
Gabarito de Matemática do 8º ano do E.F. Lista de Exercícios (L17)
Gabarito de Matemática do 8º ano do E.F. Lista de Eercícios (L7) Queridos alunos, nesta lista vamos resolver equações fracionárias (aquelas que possuem incógnita nos denominadores) e mais algumas situações-problema
Resolução da Prova de Raciocínio Lógico da Agente Penitenciário/MA, aplicada em 24/04/2016.
de Raciocínio Lógico da gente Penitenciário/M, aplicada em 24/04/206. - sentença Se Maria é médica, então Silvio é engenheiro. é logicamente equivalente a () se Maria é médica, então Silvio é engenheiro.
GABARITO DO CADERNO DE QUESTÕES
OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1.
