GABARITO DO CADERNO DE QUESTÕES
|
|
|
- Giulia Aveiro
- 6 Há anos
- Visualizações:
Transcrição
1 OLÍMPIADAS DE MATEMÁTICA DO OESTE CATARINENSE GABARITO DO CADERNO DE QUESTÕES NÍVEL 3 Ensino Médio Universidade Federal da Fronteira Sul Campus Chapecó 017
2 OLIMPÍADA REGIONAL DE MATEMÁTICA GABARITO: 1. Usando velas: A opção correta é d. MATEMÁTICA-UFFS Com 43 velas a casa de João pode ser iluminada por 43 noites, sobrando 43 tocos de vela. Como 43 = , com esses 43 tocos pode-se guardar 3 tocos e fazer 10 novas velas para iluminar 10 noites. Dessas 10 velas obtemos 10 tocos que, com os 3 que haviam sobrado, dão 13 tocos. Como 13 = , com esses 13 tocos pode-se guardar 1 toco e fazer 3 novas velas para iluminar 3 noites. Dessas 3 velas obtemos 3 tocos que, com o que havia sobrado, dão 4 tocos, com os quais podemos fazer mais uma vela. Assim, no total, a casa de João pode ser iluminada por = 57 noites.. Número de latas: A opção correta é a. Em cada caixote de madeira de dimensões a, b e c cabem (a.b.c)/l 3 cubos de lado l, empilhados regularmente. No caso dos palmitos temos, em centímetros, a = 60, b = 80, c = 10 e l = 0. Como 60, 80 e 10 são múltiplos de 0, podemos preencher o caixote, sem deixar espaços, com ( )/03 = 7 caixas de papelão de formato cúbico com 0 cm de lado. Logo, em cada caixote cabem 7.8 = 576 latas de palmito. 3. Qual é a menor fração: A opção correta é c. Transformando tudo em números decimais, temos 7 = 0, e 1 = 0, 5, = 0, , = 0, 75, 4 = 0, 8, 5 = 0, Logo, a sequência é crescente e apenas 1 = 0, 5, = 0, e 3 = 0, 75 são menores do que 7 = 0, Dízima periódica: A opção correta é d Como 1 3 = 0, segue que 0, = 0, , = = Dobrando papel: A opção correta é e. O corte é realizado pela base média do triângulo, retirando um pequeno triângulo semelhante ao original, com razão de semelhança 1. Assim, a área do triângulo retirado é um quarto da área do triângulo original. Abrindo a folha, vemos essa situação reproduzida quatro vezes, donde o buraco tem um quarto da área do quadrado original.
3 6. A opção correta é e. Para cada um dos três caminhos para ir de A até B, existem três opções para ir de B a C. Logo, há um total de 3.3 = 9 possibilidades. Mais geralmente, se fossem m os caminhos de A até B e n os de B até C, então o número de caminhos que nossa formiguinha poderia tomar de A até C seria m.n. 7. Equação quadrática: A opção correta é d Como 3 e 1 3 são raízes da equação ax 6x + c = 0, temos 9a 18 + c = 0 e a 9 + c = 0, ou seja, 9a + c = 18e a + 9c = 18. Somando essas duas equações, resulta 10(a + c) = 36, isto é, a + c = = Altura de salário: A opção correta é d. O enunciado diz que 1 real= cruzados. O salário de João é 640 reais, o que é equivalente a = = cruzados. O número de pilhas de cem notas que se pode fazer com essa quantidade de notas de 1 cruzado é = Como cada uma destas pilhas tem 1, 5 cm de altura, a altura de todas elas é 1, = cm. Agora lembramos que 1 km=1000m=10 3 m e que 1 m=100 cm=10 cm, donde 1 km= = 10 5 cm. Assim, a pilha de cm tem = = km de altura. 9. A opção correta é b. A figura mostra as dobras que serão feitas para montar a caixa, que terá as di-mensões seguintes: 0 cm de largura, 15 cm de comprimento e 10 cm de altura. Logo, seu volume será de V = = 3000cm Muitos fatores: A opção correta é d. Cada um dos fatores é uma diferença de quadrados, isto é, a b, em que a = 1 e b = ( 1 c ). Usando a fatoração a b = (a + b)(a b), obtemos: (1 1 4 )(1 1 9 )( )(1 1 5 )...(1 1 5 ) = (1 1 )(1 1 3 )(1 1 4 )(1 1 5 )...( ) = (1 1 )(1 + 1 )(1 1 3 )( )(1 1 4 )( )(1 1 5 )( )...( )( ) = = = 8 15
4 11. Falta um ângulo: A opção correta é a. Os ângulos internos do quadrilátero dado são 50, = 150, α e = 140. Como a soma dos ângulos internos de um quadrilátero é 360 temos que α = Circulos vizinhos: A opção correta é b. Lembramos primeiro que se duas circunferências são tangentes então a reta que passa por seus centros passa também pelo ponto de tangência. No nosso caso, chamando de P, Q e R os centros das circunferências (como na figura abaixo), isso mostra que P R = 3, P Q = 4 e QR = 5. Como = 5, segue que o triângulo P QR é retângulo em P e como temos que P A = P B = 1 vemos que AB é a diagonal de um quadrado de lado 1, ou seja AB = 13. Pentágonos e segmentos: A opção correta é e O pentágono tem 5 lados e 5 diagonais, num total de 10 segmentos. Uma figura consiste de destes segmentos, e escolhas distintas de dois segmentos correspondem a figuras distintas. Segue que o número de figuras distintas é C 10 = 10! = 45 8!! 14. Porcentagem de mortalidade: A opção correta é a. A proporção de toda a população que fica doente da enfermidade é 15 e, entre os que 100 ficam doentes, a proporção dos que morrem é 8. Assim, a proporção da população que 100 morre pela doença é , o que corresponde a = 1, % da população Perímetro e diagonal: A opção correta é b. Denotando por a e b os comprimentos dos lados do retângulo, temos a + b = 0, de modo que a + b = 10. O quadrado do comprimento da diagonal, dado pelo Teorema de Pitágoras, é d = a + b. Mas, (a + b) + (a b) = a + b = d e como a + b = 10 temos que d = 50 + (a b). Portanto, podemos observar que o minimo do comprimento da diagonal ocorre quando a = b e isso nos diz que d = Dois motoristas: Sabemos que a velocidade é a razão da distância percorrida pelo tempo gasto. Seja d a distância entre as duas cidades A e B. O primeiro motorista percorre a distância de d à velocidade constante de 80 km/h, portanto, o tempo total gasto por esse motorista é t = d horas. 80 O segundo motorista percorre a distância d na ida à uma velocidade constante de 90 km/h e, na volta, percorre a mesma distância d à velocidade constante de 70 km/h. Logo, o tempo gasto na ida e volta é t = d + d = 8d horas Como d = 8d < 8d, verificamos que o motorista que viaja à velocidade constante de km/h é o que gasta menos tempo no percurso de ida e volta.
5 17. A paridade do número a ser formado depende da paridade do número escrito na bola a ser retirada por Maria. Dentre os números inteiros de 1 a 9, existem cinco ímpares, 1, 3, 5, 7 e 9, e quatro pares,, 4, 6 e 8. Portanto, a probabilidade de que o número a ser formado seja par é = PA e PG: Os quatro termos de uma progressão aritmética de razão r podem ser escritos como x, x + r, x + r, x + 3r. Assim, os três números em progressão geométrica são x, x+r, x+3r. Então, pela própria definição de progressão geométrica, x + r é a média geométrica de x e x + 3r,ou seja,. x(x + 3r) = (x + r) Segue daí que, x + 3xr = x + 4xr + 4r e, portanto, xr = 4r. O caso r = 0 não é interessante, pois daria origem a progressões constantes. Supondo r diferente de 0 temos x = 4r. Atribuindo valores não-nulos a x, obtemos soluções do problema. Por exemplo, para x = 4, obtemos r = 1 com progressão aritmética 4, 3,, 1 tal que os números 4,, 1 formam uma progressão geométrica. Note que esse problema tem uma infinidade de soluções, uma paracada valor escolhido de x diferente de 0 escolhido. 19. O triângulo de moedas: Supondo que o triângulo esteja formado por n linhas, foram usadas n moedas, ou seja, n = n(n + 1) = = 465, o que fornece n + n 930 = 0. Resolvendo essa equação obtemos n = 30. Logo o triângulo tem 30linhas. 0. Área em azulejos: A figura dada pode ser decomposta em quatro figuras congruentes à figura dada. Para calcular a área do triângulo sombreado nessa figura, escolhemos como base o lado BC. Então, a altura correspondente é AE e, como os azulejos são quadrados com 10cm de lado, segue que AE = BC = 10cm. Logo, a área do triângulo BCE é 50cm. Assim, a área desejada é A = 4.50cm = 00cm
Soluções do Nível 3 (Ensino Médio) 1 a Fase
Soluções do Nível (Ensino Médio) a Fase. (alternativa C) Como A, B e C são pontos médios, os quatro triângulos rotulados com I na figura ao lado são congruentes, bem como os dois indicados por II. Logo
UFRGS MATEMÁTICA
- MATEMÁTICA 6) O Estádio Nacional de Pequim, construído para a realização dos Jogos Olímpicos de 008, teve um custo de 500 milhões de dólares, o que representa 1,5% do investimento total feito pelo país
Raciocínio Lógico. Sabendo que o triângulo ABC é congruente ao triângulo DCE, então o valor da soma de e é superior a 20º.
Raciocínio Lógico 01- O campus de uma Universidade está sendo ampliado e passará a ter 18 prédios de ensino. Se a quantidade atual de prédios de ensino da Universidade supera em 4 unidades a quantidade
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
Olimpíada Mineira de Matemática 2008
Questão 1) Alternativa C) Olimpíada Mineira de Matemática 008 Resolução Nível III Refletindo a imagem Após 1 hora e 0 minutos Refletindo novamente Observação: A posição original do relógio não é uma configuração
MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES
MATEMÁTICA UFRGS 2010 RESOLVIDA PELO PROF. REGIS CORTES Nesta prova serão utilizados os seguintes símbolos e conceitos com os respectivos significados: l x l : módulo no número x i : unidade imaginária
Matemática. x : módulo do número x. 29. Com base nos dados do gráfico, que fração das mulheres viviam na zona rural do Brasil em 1996?
Matemática Nesta prova serão utilizados os seguintes símbolos com seus respectivos significados: x : módulo do número x i: unidade imaginária sen x: seno de x 9. Com base nos dados do gráfico, que fração
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 2. 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 2 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de horas. - Não é permitido o uso de calculadoras nem
26 A 30 D 27 C 31 C 28 B 29 B
26 A O total de transplantes até julho de 2015 é de 912 transplantes. Destes, 487 são de córnea. Logo 487/912 53,39% transplantes são de córnea. 27 C O número de subnutridos caiu de 1,03 bilhões de pessoas
Teste Intermédio de MATEMÁTICA - 8o ano 29 de fevereiro de 2012
Teste Intermédio de MATEMÁTICA - 8o ano 29 de fevereiro de 2012 Proposta de resolução 1. Localizando os quatro números das opções na reta real, temos: 0,75 0,65 0,065 0,055 0.8 0.7 0.6 0.5 0.4 0.3 0.2
02. Uma maneira rudimentar e eficiente para se medir o ângulo de inclinação α de uma rua R, em relação à horizontal H, é construir um triângulo
o PROCESSO SELETIVO/005 1 O DIA GABARITO 1 1 MATEMÁTICA QUESTÕES DE 01 A 15 01. Um motorista percorre 600 km em 9 horas, dirigindo durante 4 horas numa velocidade v 1, e 5 horas numa outra velocidade v.
Solução do Simulado PROFMAT/UESC 2012
Solução do Simulado PROFMAT/UESC 01 (1) Encontre uma fração equivalente a 9/5 cuja soma dos termos é igual a 196: (A) 96/100 (B) 106/90 (C) 116/80 (D) 16/70 (E) 136/60 9 5 = 9 5 14 14 = 16 70 () Um grupo
INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.
OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
RESPOSTA ESPERADA MATEMÁTICA
Questão 1 a) Suponha que o ângulo de giro do ponteiro seja diretamente proporcional à velocidade Nesse caso, qual é o ângulo entre a posição atual do ponteiro (0 km/h) e sua posição quando o velocímetro
1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,
1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é
Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental
Candidatos ao 6º ano do Ensino Fundamental Produção de Texto - Gênero Textual Conto As 4 operações Situações- problemas (Raciocínio lógico matemático) Gráficos e tabelas Fração (leitura, representação,
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS
1 MATEMÁTICA III º ANO ESTRATÉGIAS PARA CÁLCULO DE ÁREAS DESCONHECIDAS 1. Após assistir ao programa Ecoprático, da TV Cultura, em que foi abordado o tema do aproveitamento da iluminação e da ventilação
01. (UFRGS/2003) Se n é um número natural qualquer maior que 1, então n! + n 1 é divisível por. (A) n 1. (B) n. (C) n + 1. (D) n! - 1. (E) n!.
0. (UFRGS/00) Se n é um número natural qualquer maior que, então n! + n é divisível por n. n. n +. n! -. n!. 0. (UFRGS/00) Se num determinado período o dólar sofrer uma alta de 00% em relação ao real,
7 1 3 e) 1,3. 4) O termo geral de uma progressão aritmética é dado por a 2n 1. A razão dessa PA é PROGRESSÕES ARITMÉTICAS
PROGRESSÕES ARITMÉTICAS 1) Considere um polígono convexo de nove lados, em que as medidas de seus ângulos internos constituem uma progressão aritmética de razão igual a 5 o. então, seu maior ângulo mede,
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
2 3 x. 5. Resolve a seguinte equação: 8º ANO TPC PÁSCOA. EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 2014/ 15
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano Letivo 014/ 15 8º ANO TPC PÁSCOA 1. Tendo em atenção os seguintes polinómios: A= x 1 B= 3x C= x x 1 Calcula BC A. Resolve as seguintes equações: 3 x 3x.1.
LISTA DE EXERCÍCIOS 2º ANO GABARITO
º ANO GABARITO Questão Matemática I 8 9 7 a9 = = 7 9 6 a8 = = 6 9 55 a7 = = Portanto, a média aritmética dos últimos termos será dada por: 8 7 6 55 + + + 7 7 M = = = 6 Questão O número de vigas em cada
UPE/VESTIBULAR/2002 MATEMÁTICA
UPE/VESTIBULAR/00 MATEMÁTICA 01 Os amigos Neto, Maria Eduarda, Daniela e Marcela receberam um prêmio de R$ 1000,00, que deve ser dividido, entre eles, em partes inversamente proporcionais às respectivas
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - o ciclo 006-1 a Chamada Proposta de resolução 1. 1.1. Como a Marta pesa 45 kg, e para evitar lesões na coluna vertebral, o peso de uma mochila e o do material que se transporta
LISTA DE EXERCÍCIOS PARA PROVA FINAL/2015
ESCOLA ADVENTISTA SANTA EFIGÊNIA EDUCAÇÃO INFANTIL E ENSINO FUNDAMENTAL Rua Prof Guilherme Butler, 792 - Barreirinha - CEP 82.700-000 - Curitiba/PR Fone: (41) 3053-8636 - e-mail: [email protected]
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
6ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) C 6) A ) D 6) A ) D ) A 7) A ) E 7) B ) E ) A 8) E ) B 8) E ) A ) C 9) C ) D 9) E ) B ) A 0) B ) A 0)
Soluções. Nível 2 7 a e 8 a séries (8º e 9º anos) do Ensino Fundamental
1. (alternativa A) No diagrama ao lado cada quadradinho tem 1 km de lado e o ponto C indica a casa de Carlos. Representando o trajeto descrito no enunciado pelas flechas em traço fino, vemos que a escola
RESPOSTAS ESPERADAS MATEMÁTICA
RESPOSTS ESPERDS MTEMÁTI Questão 1 a) omo o ângulo de giro do ponteiro é diretamente proporcional à velocidade, podemos escrever 10 40km x 104 km Desse modo, x 104 10 / 40 91 Resposta: O ângulo mede 91º
05. Um retângulo ABCD está dividido em quatro retângulos menores. As áreas de três deles estão na figura abaixo. Qual é a área do retângulo ABCD?
XXI OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 1 a. Fase Olimpíada Regional BA - ES - GO - RJ - RN - RS - SC - SP - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 24 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 17 GABARITO COMENTADO 1) O valor, em reais, pago pelo contribuinte é 0,15. (34000 26000) = 0,15. 000 = 1200
TD GERAL DE MATEMÁTICA 2ª FASE UECE
Fundação Universidade Estadual do Ceará - FUNECE Curso Pré-Vestibular - UECEVest Fones: 3101.9658 / E-mail: [email protected] Av. Dr. Silas Munguba, 1700 Campus do Itaperi 60714-903 Fone: 3101-9658/Site:
MATEMÁTICA. Um pintor pintou 30% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar
MATEMÁTICA d Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % ) 60% de 70% % ) 00% % 0% 8% d Se (x y) (x + y) 0, então
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019
RESOLUÇÃO DA PROVA DE MATEMÁTICA - UFRGS 2019 26. Resposta (D) I. Falsa II. Correta O número 2 é o único primo par. Se a é um número múltiplo de 3, e 2a sendo um número par, logo múltiplo de 2. Então 2a
MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) Propostas de resolução
MATEMÁTICA - 3o ciclo Monómios e Polinómios (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Identificando a diferença de quadrados na expressão (1), o quadrado da
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (7ª. e 8ª. séries) GABARITO
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (ª e ª séries) GABARITO GABARITO NÍVEL ) E ) E ) B ) D ) E ) E ) C ) D ) B ) D ) E ) C ) C ) A ) B ) D ) A ) C ) B ) Anulada ) B 0) E ) A 0)
PROMILITARES 08/08/2018 MATEMÁTICA. Professor Rodrigo Menezes
MATEMÁTICA Professor Rodrigo Menezes Colégio Naval 2012/2013 QUESTÃO 1 Sejam P = 1 + 1 3 1 + 1 5 1 + 1 7 1 + 1 9 1 + 1 11 e Q = 1 1 5 1 1 7 1 1 9 1 1 11 Qual é o valor de P Q? a) 2 b) 2 c) 5 d) 3 e) 5
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
Gabarito Prova da Primeira Fase - Nível Alfa
. Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida
GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012
GABARITO COMENTADO MATEMÁTICA SIMULADO EDUCON ENEM 2012 Questão 46. D Divide o círculo em 6 partes iguais Custo = C/6. Questão 47. D R + 2R = 1m 5R = 100 cm R = 20 cm = 3.(200).100 = 60000cm 3 M = 60000.(0,9)
2ª série do Ensino Médio
2ª série do Ensino Médio Geometria Plana Cálculo de Áreas e Relações na Circunferência. Polígonos Regulares, Polígonos Inscritos na Circunferência e Trigonometria. Relações Métricas no Triângulo Retângulo
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
Prova Escrita de MATEMÁTICA A - 12o Ano a Fase
Prova Escrita de MATEMÁTICA A - o Ano 06 - a Fase Proposta de resolução GRUPO I. Como P A B ) P A B ) P A B), temos que: P A B ) 0,6 P A B) 0,6 P A B) 0,6 P A B) 0,4 Como P A B) P A) + P B) P A B) P A
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
Soluções dos Problemas do Capítulo 2
138 Temas e Problemas Soluções dos Problemas do Capítulo 2 1. Note que + 1 é o dobro da média aritmética de e 1, logo é maior do que ou igual ao dobro da média geométrica desses números, que é igual a
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
CADERNO DE EXERCÍCIOS 2B
CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema
Resolução do Vestibular UDESC 2019/1. Logo o dado foi jogado 8 vezes
As faces do cubo são os primos: 2, 3, 5, 7, 11 e 13 Fatorando 1171170 temos: 1171170 2 585585 3 195195 3 65065 5 13013 7 1859 11 169 13 13 13 1 Logo o dado foi jogado 8 vezes 1 2 A 1 3 1 1 4 2 0 1 2 0
Álgebra. Progressão geométrica (P.G.)
Progressão geométrica (P.G.). Calcule o valor de sabendo que: a) + 6 e 0-6 formam nessa ordem uma P.G.. b) + e + 6 formam nessa ordem uma P.G. crescente.. Calcule o seto termo de uma progressão geométrica
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. [email protected] 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos
0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
UFRGS MATEMÁTICA
UFRGS 00 - MATEMÁTICA ) Alguns especialistas recomendam que, para um acesso confortável aos bebedouros por parte de crianças e usuários de cadeiras de rodas, a borda desses equipamentos esteja a uma altura
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
Provas de Acesso ao Ensino Superior Para Maiores de 23 anos PROVA MODELO DE MATEMÁTICA
Provas de Acesso ao Ensino Superior Para Maiores de anos PROVA MODELO DE MATEMÁTICA Duração: horas + 0 minutos Material necessário: Material de escrita Máquina de calcular científica (não gráfica) A prova
Quadro de conteúdos MATEMÁTICA
Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO
XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou
ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere
MATEMÁTICA COMENTÁRIO DA PROVA DE MATEMÁTICA
COMENTÁRIO DA PROVA DE MATEMÁTICA A prova manteve a característica dos anos anteriores quanto à boa qualidade, contextualização e originalidade nos enunciados. Boa abrangência: 01) Funções (relação entre
Gabarito da Primeira Fase Nível Beta
. Gabarito da Primeira Fase 2019 - Nível Beta Questão 1 (20 pontos) A Figura 1 a seguir é uma representação da praça do ciclo básico na Unicamp. Nos extremos desta praça, cujo formato é circular, se encontram
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
QUESTÃO 16 (SPM) Pedro está rodando um triângulo em torno do ponto P, em sentido horário, tal como se vê nas figuras a seguir.
Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSARÁ A ạ SÉRIE DO ENSINO MÉDIO EM 08 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 (SPM) Pedro está rodando um triângulo em torno
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo
Gabaritos das aulas 1 a 20
Gabaritos das aulas 1 a 20 Aula 1 - Recordando operações Introdução a) adição (180 + 162) b) subtração (0-37) c) multiplicação (16 ) d) divisão (24 : 3) Eercícios a) 80 b) 37 c) - 37 d) e) 19 f) - 1 g)
8º ANO ENSINO FUNDAMENTAL Matemática. 1º Trimestre 45 questões 26 de abril (Sexta-feira)
8º ANO ENSINO FUNDAMENTAL Matemática S º Trimestre 5 questões 6 de abril (Sexta-feir 09 SIMULADO OBJETIVO 8º ANO º TRIMESTRE. O número, corresponde à fração 0. 00. 000.. 99. MATEMÁTICA COMENTÁRIO/RESOLUÇÃO:
Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2
MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800
A) são da mesma cor. B) são vermelhas. C) uma é vermelha e duas são brancas. D) uma é branca e duas são vermelhas. E) pelo menos uma é vermelha.
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTIA Primeira Fase Nível 1 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consultas a notas ou livros. - Você pode solicitar papel para
1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70
OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA
PROFESSOR ARTHUR LIMA ESTRATÉGIA CONCURSOS
TÉCNICO(A) DE ADMINISTRAÇÃO E CONTROLE JÚNIOR TÉCNICO(A) DE COMERCIALIZAÇÃO E LOGÍSTICA JÚNIOR PROFESSOR ARTHUR LIMA ESTRATÉGIA CONCURSOS CESGRANRIO PETROBRÁS 2018) Uma mercadoria no valor A será comprada
Resolução 2 a fase 2015 Nível 3
UNIVERSIDADE FEDERAL DE SANTA CATARINA XVIII OLIMPÍADA REGIONAL DE MATEMÁTICA PET MATEMÁTICA Resolução a fase 015 Nível 3 Problema 1. O jogo das luzes é composto por um tabuleiro 3 3 com nove botões numerados
OBMEP na Escola 2014 Soluções QUESTÃO 1. Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f.
1 QUESTÃO 1 Começamos por designar os valores a serem colocados nos diversos quadradinhos pelas letras a, b, c, d, e, f. a. [6 pontos] Igualando os produtos dos números na primeira linha e na primeira
Relação de Conteúdos para Seleção Candidatos ao 6º ano do Ensino Fundamental
Candidatos ao 6º ano do Ensino Fundamental Interpretação de texto Substantivos Adjetivos Encontros vocálicos Encontros consonantais Dígrafos Artigo Verbos As 4 operações Situações- problemas (Raciocínio
QUESTÃO 16 Quando simplificamos a expressão:
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 7 Ọ ANO DO ENSINO FUNDAMENTAL EM 206 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Quando simplificamos a expressão: ( 0)
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98.
AUTOR: SÍLVIO CARLOS PEREIRA TODO O CONTEÚDO DESTE MATERIAL DIDÁTICO ENCONTRA-SE REGISTRADO. PROTEÇÃO AUTORAL VIDE LEI 9.610/98. ÍNDICE: Estatística e conteúdos abordados na prova de 2018 1... 5 Prova
Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante
CURSO MENTOR Soluções Comentadas Matemática Processo Seletivo da Escola de Formação de Oficiais da Marinha Mercante Versão.8 05/0/0 Este material contém soluções comentadas das questões de matemática do
1 35. b) c) d) 8. 2x 1 8x 4. 3x 3 8x 8. 4 tgα ˆ MAN é igual a 4. . e) Sendo x a medida do segmento CN, temos a seguinte figura:
7. Considere um retângulo ABCD em que o comprimento do lado AB é o dobro do comprimento do lado BC. Sejam M o ponto médio de BC e N o ponto médio de CM. A tangente do ângulo MAN ˆ é igual a a) 5. b) 5.
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO
CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA
TIPO-A. Matemática. 03. Considere os números naturais a = 25, b = 2, c = 3, d = 4 e analise as afirmações seguintes:
2 Matemática 01. Recorde que uma função f: R R diz-se par quando f( x) = f(x) para todo x real, e que f diz-se ímpar quando f( x) = f(x) para todo x real. Com base nessas definições, analise a veracidade
1. Área do triângulo
UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:
CONCURSO VESTIBULAR UNIFICADO 2008
QUESTÃO: 12 12. Um ônibus de 40 lugares foi fretado para uma excursão. A empresa exigiu de cada passageiro R$ 20,00 mais R$ 2,00 por lugar vago. Sobre esse contexto, analise as afirmações a se seguir:
Programa Olímpico de Treinamento. Aula 5. Curso de Geometria - Nível 2. Problemas OBM - 1 Fase. Prof. Rodrigo Pinheiro
Programa Olímpico de Treinamento Curso de Geometria - Nível 2 Prof. Rodrigo Pinheiro Aula 5 Problemas OBM - 1 Fase Problema 1. Dois espelhos formam um ângulo de 0 no ponto V. Um raio de luz, vindo de uma
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira
Exercícios Obrigatórios
Exercícios Obrigatórios 1) (UFRGS/2015) Para fazer a aposta mínima na mega sena uma pessoa deve escolher 6 números diferentes em um cartão de apostas que contém os números de 1 a 60. Uma pessoa escolheu
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA
APOSTILA PREPARATÓRIA DE MEDICINA PROVAS DA SUPREMA DE MATEMÁTICA RESOLVIDAS E COMENTADAS RESOLUÇÃO DETALHADA DE TODAS AS QUESTÕES ESTUDE CERTO! COMPRE JÁ A SUA! WWW.LOJAEXATIANDO.COM.BR [email protected]
QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram
Datas de Avaliações 2016
ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
Gasto calórico (em calorias por hora) = velocidade da corrida (em km/h) x massa do indivíduo (em kg)
UNIFESP 07 º dia Questão 6 O gasto calórico no eercício da atividade física de corrida é uma função de diversas variáveis, porém, a fórmula simplificada pode dar uma estimativa desse gasto. Gasto calórico
