Nome: nº Data: / / FICHA DE TRABALHO MATEMÁTICA
|
|
|
- Walter Braga Palma
- 9 Há anos
- Visualizações:
Transcrição
1 Nome: nº Data: / / Professora: Tosca Regina Xocaira Hannickel FICHA DE TRABALHO MATEMÁTICA QUESTÃO 01 (Descritor: calcular o perímetro de um circuito utilizando a conseqüência do Teorema de Tales ) Assunto: Geometria e Proporcionalidade Figuras semelhantes são muito utilizadas na cartografia para confecção de mapas. O circuito triangular de uma corrida está esquematizado na figura a seguir: Rua TS = 3 km Rua SQ = 3 km Rua PQ = km As ruas TP e SQ são paralelas. Partindo de S, cada corredor deve percorrer o circuito passando, sucessivamente, por R, Q, P, T, retornando, finalmente, a S. Assinale a alternativa, a seguir, que indica corretamente o valor do perímetro do circuito. a) 19,5 km. b) 0,0 km. c),5 km. d) 4,0 km. QUESTÃO (Descritor: utilizar o conceito de proporcionalidade de segmentos de reta e base média de um trapézio para solucionar o problema proposto) Assunto: Geometria e Proporcionalidade As bases de um trapézio medem 3 cm e 9 cm. Os segmentos x, y e z, determinados pelas diagonais do trapézio sobre a base média, são proporcionais aos números: 3 cm x y z Base média = 6 cm a) 1, 1, 1 b) 1,, 1 9 cm c) 1, 4, 1 d), 3, 4
2 QUESTÃO 3 (Descritor: calcular o intervalo ao qual pertence o número irracional dado) Assunto: Potências e Radicais Observe a representação de uma parte da reta dos números reais a seguir: Marque a alternativa que apresenta o intervalo correto ao qual pertence o número irracional 8 4 0, 15. a) Entre -1 e 0. b) Entre 0 e 1. c) Entre 1 e. d) Entre e 3. QUESTÃO 4 (Descritor: calcular e classificar o resultado da expressão matemática, racionalizando os denominadores) Assunto: Potências e Radicais A professora de Matemática escreveu a seguinte expressão no quadro: Quatro alunos simplificaram a expressão e formularam as afirmativas seguintes: Aluno I - O resultado da expressão é um número irracional positivo. Aluno II - O resultado da expressão é um número inteiro negativo. Aluno III - O resultado da expressão é um número inteiro negativo. Aluno IV - O resultado da expressão é um número irracional negativo. Marque a alternativa que apresenta o número do aluno que formulou uma afirmativa CORRETA. a) I b) II c) III d) IV QUESTÃO 5 (Descritor: analisar o gráfico de setores com a finalidade de identificar a afirmativa correta) Assunto: Funções e Gráficos
3 Analise, atentamente, o gráfico a seguir: Marque a afirmativa CORRETA de acordo com os dados do problema. Os pesos dos fatores que levam uma pessoa a ultrapassar os 65 anos de idade. a) O fator que mais interfere na longevidade é o Meio ambiente. b) O gráfico apresentado é chamado Gráfico de Seções Circulares. c) Morrem, a cada ano, 10 pessoas em um grupo de 100, devido à falta de assistência médica. d) O Estilo de Vida de uma pessoa é o fator mais importante na longevidade. Resolva as Questões 6, 7 e 8, baseadas no seguinte enunciado: No quadro a seguir foi representada a conta de água de uma residência. Além do valor a pagar, a conta mostra como calculá-lo em função do consumo de água (em m 3 ). Nessa conta de água, existe uma tarifa mínima e diferentes faixas de tarifação. QUESTÃO 6 (Descritor: calcular o consumo de água da residência de acordo com a conta apresentada) Assunto: Funções e Gráficos Marque a alternativa que apresenta o valor CORRETO do consumo de água, em m 3, de acordo com a conta apresentada. a) 7 b) 11 c) 17 d) 0 QUESTÃO 7 (Descritor: calcular o custo da conta de água se o consumo hídrico da residência for o triplo do mês apresentado) Assunto: Funções e Gráficos Suponha que, no próximo mês, triplique o consumo de água dessa residência. Marque a alternativa que apresenta o valor correto da conta.
4 a) R$ 44,73 b) R$ 67,3 c) R$ 9,83 d) R$ 10,36 QUESTÃO 8 (Descritor: associar o tipo de gráfico à função dada em forma de tabela) Assunto: Funções e Gráficos Analise os gráficos apresentados a seguir. Marque a alternativa que possui o aspecto do gráfico que representa o valor da conta de água (em R$), de acordo com o consumo de água (em m 3 ), de acordo com o quadro apresentado. a) R$ R$ R$ b) c) d) R$ m 3 m 3 m 3 m 3 QUESTÃO 9 (Descritor: representar o problema proposto através de uma equação do º grau e resolvê-la) Assunto: Equações de º Grau Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: Por um preço y ela consegue vender x unidades do produto, de acordo com a equação x y 50. Sabe-se que a receita (quantidade vendida vezes o preço de venda) obtida foi de R$ 1.50,00. Marque a alternativa, a seguir, que possui o valor correto da quantidade de produtos vendidos. a) 5 unidades b) 35 unidades c) 40 unidades d) 50 unidades QUESTÃO 10 (Descritor: determinar os valores da variável a para que a função do º grau tenha duas raízes reais distintas ou duas raízes reais iguais) Assunto: Equações de º Grau
5 Assinale a alternativa CORRETA relativa à função do º grau f x x a x 1. a) Tem sempre duas raízes reais distintas. b) Tem exatamente uma raiz real para a =. c) Tem exatamente uma raiz real para infinitos valores de a. d) Tem exatamente uma raiz real para a = 0. QUESTÃO 11 (Descritor: formular uma equação de º grau que represente o problema proposto e calcular o valor da incógnita x) Assunto: Equações de º Grau De uma folha retangular de 30 cm por 0 cm são retirados, de seus quatro cantos, quadrados de lados medindo x cm (de acordo com a figura apresentada). Dessa maneira, a área que sobrou da folha é de 404 cm. Marque a opção que apresenta a classificação CORRETA do valor de x. Fonte: Foto de Sérgio Dotta Jr. a) Um número par. b) Um número múltiplo de 3. c) Um número primo. d) Um número decimal exato. QUESTÃO 1 (Descritor: representar a situação proposta em forma de sistema e resolvê-lo) Assunto: Equações de º Grau Observe o Mural Informativo de uma escola, na forma retangular, no qual foi fixada uma informação sobre a reciclagem de papel. Mural Informativo
6 Sabendo que esse mural tem perímetro 13 dm e área 10 dm, marque a alternativa que apresenta a soma correta de suas dimensões (largura + comprimento). a) 6,5 dm b) 7,0 dm c) 7,5 dm d) 8,0 dm QUESTÃO 13 (Descritor: calcular um dos catetos de um triângulo retângulo, utilizando o teorema de Pitágoras) Assunto: Relações Métricas no Triângulo Retângulo É comum encontrarmos uma ripa na diagonal de portões de madeira como nesse apresentado na foto a seguir. Isso se deve a rigidez dos triângulos, que não se deformam com movimentos. O portão de uma fazenda mede 1,0 m de comprimento e a ripa, que forma a diagonal, mede 1,36 m. Marque a opção que apresenta a altura correta desse portão. Fonte: Foto de Neil Rabinowitz O.B.S: Considere o portão perpendicular ao solo. a),56 m b) 1,80 m c) 0,64 m d) 0,16 m QUESTÃO 14 (Descritor: calcular distâncias e consumo utilizando as relações métricas em um triângulo retângulo) Assunto: Relações Métricas no Triângulo Retângulo Analise atentamente a representação Matemática das posições relativas entre as cidades A, B e E a seguir. Um motorista, dirigindo um veículo cujo consumo é de 16 km por 1 litro de combustível, foi da cidade A até a cidade E passando pela cidade B. Marque a alternativa CORRETA. a) A distância percorrida pelo veículo foi de 41 km.
7 b) O consumo de combustível foi de,5 litros. c) O menor caminho que interliga as cidades A e E mede 15 km. d) Percorrendo o trajeto cidade A B E A, o veículo percorreria mais que 48 km. QUESTÃO 15 (Descritor: utilizar o teorema de Pitágoras com a finalidade de identificar os Ternos de números Pitagóricos) Assunto: Relações Métricas no Triângulo Retângulo Ternos de Números Inteiros Positivos a, b e c que obedecem à relação Pitagóricos. Marque a alternativa a seguir que apresenta Ternos Pitagóricos. a) 9, 10 e15 b) 7, 10 e 11 c) 11, 60 e 61 d) 1, 13 e 4 a b c são chamados Ternos QUESTÃO 16 (Descritor: calcular as raízes de uma equação do º grau e selecionar a que será solução do problema proposto) Assunto: Equações de º Grau O nível N de óleo em um reservatório varia com o tempo t, contado em horas, conforme a lei: N 0,6 t 0,5 t 0,70. Calcule aproximadamente o tempo gasto para que o nível de óleo chegue a zero. QUESTÃO 17 (Descritor: determinar a expressão matemática que relaciona o salário de um vendedor com a quantidade de produtos por ele vendidos e calcular essa quantidade para um dado salário) Assunto: Mais Funções Na loja Super Legal, foram contratados dois vendedores, Fabrício e Paulo, cada um deles com uma remuneração fixa de R$ 500,00, acrescida de uma comissão de vendas no valor de R$10,00 para cada venda efetuada. Em um mês no qual o gerente da loja autorizou uma grande liquidação, Fabrício recebeu R$ 1.860,00, e Paulo recebeu R$ 1.740,00. Considerando V o total de vendas no referido mês, marque a afirmativa CORRETA. a) O vendedor Paulo realizou 1 vendas a mais que o vendedor Fabrício. b) A expressão que representa a remuneração (S) de cada vendedor é S = R$ 10,00 ( V + R$ 50,00 ). c) Os dois vendedores, Fabrício e Paulo, fizeram, juntos, 360 vendas. d) A remuneração máxima que os vendedores dessa loja podem receber é de R$ 1.860,00.
8 QUESTÃO 18 (Descritor: calcular o tempo necessário para se obter uma certa quantidade de água em uma caixa d água a partir da equação do º grau que representa seu volume em função do tempo) Assunto: Mais Funções O volume de uma caixa d água, inicialmente vazia, é de 1000 litros, e é dado pela função f t 50t 300t, onde t é o tempo em minutos e f ( t ) é o volume em litros. Uma torneira é aberta e uma quantidade de água é colocada constantemente. Marque a opção que possui o valor correto do tempo gasto para a caixa ter 350 litros de água. a) 8 minutos b) 7 minutos c) 6 minutos d) 5 minutos QUESTÃO 19 (Descritor: calcular o valor mínimo e o minimante de uma função do º grau) Assunto: Mais Funções O coração é um órgão muscular oco que bombeia o sangue de forma que circule no corpo. Os fisiologistas afirmam que, para um indivíduo sadio e em repouso, o Número N de batimentos cardíacos, por minuto, varia em função da temperatura ambiente t ( em graus Celsius ), segundo a função: N t 0,1t 4t 90. Marque a opção que apresenta corretamente o número mínimo de batimentos por minuto e a temperatura em que ocorre, nessa ordem. a) 50 e 0ºC b) 50 e 40ºC c) 80 e 0ºC d) 60 e 30ºC
Conteúdos Exame Final e Avaliação Especial 2017
Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
COLÉGIO MARQUES RODRIGUES - SIMULADO
COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe
Matemática. Geometria plana
Matemática Geometria plana 01.Os valores que podem representar os lados de um triângulo obtusângulo são a) 1 cm, 2 cm e 3 cm. b) 2 cm, 3 cm e 4 cm. c) 3 cm, 4 cm e 5 cm. d) 4 cm, 5 cm e 6 cm. e) 5 cm,
1º Trimestre Matemática - 27/03/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof. Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS
1º Trimestre Matemática - /0/ 18 Ensino Fundamental 9º ano classe: A-B-C-D - Prof Marcelo Nome:, nº LISTA DE EXERCÍCIOS ROTEIRO DE ESTUDOS RACIONALIZAÇÃO DE DENOMINADORES PARTE 1 São três casos: 1 caso:
Disciplina: MATEMÁTICA Data: 25 /09 /2018. Ensino Fundamental Ano/Série: 9º Turma: Valor: 10 Pts. Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO
Disciplina: MATEMÁTICA Data: 5 /09 /018 Ensino Fundamental Ano/Série: 9º Turma: Valor: 10 Pts Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO Etapa II Aluno(a): Nº: Nota: Professor(a): W. Leão Querido(a) aluno(a),
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA TRABALHO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA TRABALHO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 Aluno: Ano Atual Data : Matéria: MATEMÁTICA Turno: VESPERTINO
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO
Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede
REVISÃO 9º ANO - MATEMÁTICA MATEMÁTICA - PROF: JOICE
MATEMÁTICA - PROF: JOICE 1- Resolva, em R, as equações do º grau: 7x 11x = 0. x² - 1 = 0 x² - 5x + 6 = 0 - A equação do º grau x² kx + 9 = 0, assume as seguintes condições de existência dependendo do valor
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE TEMA I: INTERAGINDO COM OS NÚMEROS E FUNÇÕES N DESCRITOR
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA TRABALHO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA TRABALHO ESTUDOS INDEPENDENTES DE RECUPERAÇÃO RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 Aluno: AnoAtual Data : Matéria:MATEMÁTICA Turno: VESPERTINO Valor
2) Aplicando as relações métricas nos triângulos retângulos abaixo, determine o valor da incógnita: a) b)
Roteiro de Estudo: Matemática 9º ANO 3ºTRIMESTRE ( prova mensal)- prof. Lilian RELEMBRANDO... 1) O valor de x no triângulo retângulo abaixo é: a) 10. b) 12. c) 15. x A d) 18. 9 B 25 C 2) Aplicando as relações
Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:
Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )
Matéria: Matemática Concurso: Auditor Tributário ISS São José dos Campos 2018 Professor: Alex Lira
Concurso: Professor: Alex Lira Prova comentada: Auditor Tributário ISS SÃO JOSÉ DOS CAMPOS 2018 Matemática SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL... 3 QUESTÕES COMENTADAS... 3 LISTA DE QUESTÕES...
Colégio RESOLUÇÃO. Dessa maneira, a média geométrica entre, 8 e 9 é: Portanto, a média geométrica entre, 8, é um número maior que zero e menor que 1.
Colégio Nome: N.º: Endereço: Data: Telefone: E-mail: Disciplina: MATEMÁTICA Prova: DESAFIO PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2019 QUESTÃO 16 1 1 1 1. Determinando a média geométrica entre
NOÇÕES DE GEOMETRIA PLANA
NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono
Complemento Matemático 03 Ciências da Natureza I TEOREMA DE PITÁGORAS Física - Ensino Médio Material do aluno
01. Para essa atividade sugerimos inicialmente que você observe a ilustração abaio e responda aos questionamentos: 1 cm 1 cm a. Calcule a área dos dois quadrados menores que estão em destaque: b. Some
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 9º ANO Ensino Fundamental II 1º Trimestre Leia as orientações de estudos antes de responder as questões Conteúdos para estudos: ÁLGEBRA Noções elementares
DATA DA ENTREGA: 23/05/2018
Disciplina: MATEMÁTICA Segmento: Ensino Fundamental Série: 9º Ano Turma: Valor: 5,0 Pontos Assunto: Roteiro de Estudos Para Recuperação da I Etapa/08 Aluno (a): Nº: Nota: Professor (a): W. Leão Querido
ACLÉSIO MOREIRA MATEMÁTICA
ACLÉSIO MOREIRA MATEMÁTICA 1. (VUNESP-2017) Em um terreno retangular ABCD, que tem 15 m de frente para a Avenida Sumaré e uma medida x, em metros, da frente até o fundo, a diagonal AC mede 25 m, conforme
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 2010 / 11) MÚLTIPLA-ESCOLHA. (Marque com um X a única alternativa certa)
(PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO AO 1º ANO CMB 010 / 11) MÚLTIPLA-ESCOLHA (Marque com um X a única alternativa certa) QUESTÃO 01. Uma empresa oferece serviços de acesso a internet cobrando
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES
ESCOLA ESTADUAL DR. JOSÉ MARQUES DE OLIVEIRA - ANO 2013 TRABALHO ESTUDOS INDEPENDENTES Nome Nº Turma 9º Data 04/12 Nota Disciplina Matemática Prof. Ariele Valor 70 1) Aplicando as relações métricas nos
1 Curso Eduardo Chaves-www.eduardochaves.com
1 Curso Eduardo Chaves-www.eduardochaves.com Lista de exercícios de equação do 2º grau, biquadrada e equações irracionais, para estudar para prova do 2º bimestre. 1) Resolva as seguintes equações do 2º
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA
11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem
2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.
Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados
Exercícios (Potenciação)
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.
Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas
araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação
Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.
Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. [email protected] 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2017 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
Ensino Infantil - Ensino Fundamental Ensino Médio Período Integral EXERCÍCIOS DE REVISÃO PROVA MENSAL 9º ANO 2º TRIMESTRE
EXERCÍCIOS DE REVISÃO PROVA MENSAL 9º ANO 2º TRIMESTRE 1. (G1 - ifba) Abaixo estão duas retas paralelas cortadas por duas transversais e um triângulo retângulo. Então, o valor da área de um quadrado de
PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL
NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³
Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática
Nome: Lista de Recomendação - Verificação Suplementar Prof. Marcos Matemática 1. O valor de x, de modo que os números 3x 1, x + 3 e x + 9 estejam, nessa ordem, em PA é: 2. O centésimo número natural par
Matemática Básica Função polinomial do primeiro grau
Matemática Básica Função polinomial do primeiro grau 05 1. Função polinomial do primeiro grau (a) Função constante Toda função f :R R definida como f ()=c, com c R é denominada função constante. Por eemplo:
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C
COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.
3º TRIMESTRE DE 2016
COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 20 PROFESSOR (a) DISCIPLINA BRUNO REZENDE PEREIRA MATEMÁTICA ALUNO (a) SÉRIE
R.: R.: c) d) Página 1 de 8-17/07/18-15:06
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Em um triângulo retângulo, a
Atividades de Recuperação Paralela de Matemática
Atividades de Recuperação Paralela de Matemática 1ª série Ensino Médio 2º Trimestre/2018 Leia as orientações de estudos antes de responder as questões Orientações de estudos O estudo da matemática começa
Formação continuada em Matemática. Fundação CECIERJ
Formação continuada em Matemática Fundação CECIERJ Matemática 9º Ano 2º Bimestre / 2013 Plano de Trabalho Teorema de Pitágoras. Tarefa 2 Cursista: Roberta Costa Tutora: Maria Claudia Padilha Tostes. Sumário
Equipe de Matemática
Lista - O.M. I ( límpiada de Matemática do Integral )-015 Série: 1º ano Questões: Equipe de Matemática 1. Em um ginásio de esportes, uma quadra retangular está situada no interior de uma pista de corridas
Equações do 2º grau 21/08/2012
MATEMÁTICA Revisão Geral Aula 5 Parte 1 Professor Me. Álvaro Emílio Leite Equações do º grau Toda epressão que possui a forma + + =0, onde, e são números reais e 0, é uma equação do grau na incógnita.
x 1. Em cada uma das figuras, eles são apenas os primeiros elementos dos
0) Nas figuras a seguir, a curva é o gráfico da função x retângulos hachurados para infinitos que possuem as mesmas características. f x. Observe atentamente o que ocorre com os x. Em cada uma das figuras,
RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 23/04/12 PROFESSOR: MALTEZ
RSOLUÇÃO VLIÇÃO MTMÁTI o NO O NSINO MÉIO T: /0/1 PROSSOR: MLTZ Um terreno será vendido através de um plano de pagamentos mensais em que o primeiro pagamento de R$ 500,00 será feito 1 mês após a compra,
Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.
Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,
1. Encontre a equação das circunferências abaixo:
Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o
1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):
EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================
8º Ano Ficha de Trabalho 16. fevereiro de ) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5.
8º Ano Ficha de Trabalho 16 fevereiro de 2012 1) Na frutaria Pomar Verde, cada quilograma de cerejas do Fundão custa 2,5. a) No enunciado são referidas duas variáveis, a quantidade (em kg) e o preço a
9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão
Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),
1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :
Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos
Trabalho de Recuperação
Trabalho de Recuperação Matemática II 1 ANO ALUNO: Observação: É importante fazer os exercícios, pois é uma oportunidade de sanar dúvidas e aprimorar os seus conhecimentos para obter resultado satisfatório
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
Avaliação Diagnóstica Matriz de Referência
SECRETARIA DE ESTADO DE EDUCAÇÃO DE MINAS GERAIS SUBSECRETARIA DE INFORMAÇÕES E TECNOLOGIAS EDUCACIONAIS SUPERINTENDÊNCIA DE AVALIAÇÃO EDUCACIONAL DIRETORIA DE AVALIAÇÃO DA APRENDIZAGEM Avaliação Diagnóstica
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 2ª PROVA PARCIAL DE MATEMÁTICA
COLÉGIO XIX DE MARÇO Educação do jeito que deve ser 2016 2ª PROVA PARCIAL DE MATEMÁTICA Aluno(a): Nº Ano: 9º Turma: Data: 16/08/2016 Nota: Professor(a): Luiz Gustavo Valor da Prova: 40 Pontos Orientações
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação
ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo
Unidade 3 Geometria: semelhança de triângulos
Sugestões de atividades Unidade Geometria: semelhança de triângulos 9 MTEMÁTI 1 Matemática 1. (Unirio-RJ) eseja-se medir a distância entre duas cidades e sobre um mapa, sem escala. Sabe-se que 80 km e
Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas
Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas
Plano de Recuperação Semestral 1º Semestre 2016
Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos
MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à201
MATEMÁTICA LIVRO 1 Capítulo 5 Teorema de Pitágoras Relações Métricas nos Triângulos Páginas: 190 à201 Teorema de Pitágoras: II b² b III IV a c c² II a² I I IV III "A área do quadrado formado com o lado
1. Um exemplo de número irracional é (A) 4, (B) 4, (C) 4, (D) 3,42 4,
1. Um exemplo de número irracional é (A) 4,2424242... (B) 4,2426406... (C) 4,2323... (D) 3,42 4,2426406... Solução: Número irracional é o número decimal infinito e não periódico. (A) A parte decimal é
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
CADERNO DE EXERCÍCIOS 2B
CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema
Mat. Monitor: Fernanda Aranzate
Professor: Gabriel Miranda Monitor: Fernanda Aranzate Exercícios: Teorema de Tales (FUVEST, UNICAMP E UNESP) 28 fev EXERCÍCIOS DE AULA 1. Para melhorar a qualidade do solo em uma fazenda, aumentando a
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU
LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.
Plano de Recuperação Semestral EF2
Série/Ano: 9º ANO Matemática Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para
Plano de Recuperação Semestral 1º Semestre 2017
Disciplina: MATEMÁTICA 1 - Álgebra Série/Ano: 9º ANO Professores: Tammy, Figo, Pupo, Laendle Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos
Plano de Recuperação Final EF2
Professores: Tammy, Sandra, Figo, Laendle, Pupo. Série: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o ano nos quais apresentou dificuldade e que servirão
30's Volume 9 Matemática
30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões
Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho
Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales
COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 23/02/2016 Disciplina: Matemática Teorema de Tales Período: 1 o Bimestre Série/Turma: 1 a série EM Professor(a): Cleubim Valor: Nota: Aluno(a): Razão e Proporção
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3
C O L É G I O F R A N C O - B R A S I L E I R O
C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de
Escola Secundária com 3º CEB de Lousada
Escola Secundária com º CE de Lousada Ficha de Trabalho de Matemática do 8º no N.º7 ssunto: Ficha de Preparação para o Teste Intermédio (Parte ) bril 011 1. Indique qual das seguintes afirmações é verdadeira:
9º ano. Matemática. 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g)
9º ano Matemática 01. Nas figuras, a // b // c, calcule o valor de x. a) b) c) d) e) e) f) g) Matemática Avaliação Produtiva 02. Determine x e y, sendo r, s, t e u retas paralelas. a) b) c) d) 03. Determine
MATEMÁTICA Função do 2º grau
MATEMÁTICA Função do º grau Resolução dos eercícios 4, 5, 7, 17, 19 a 6 Série O Pensador Professor Marcelo Gonsalez Badin 4. (UFRJ) Oscar arremessa uma bola de basquete cujo centro segue uma trajetória
Matemática do 9º ano FT 9 Data: / / 2012 Assunto: Funções: Proporcionalidade Direta e Função Afim
Escola Secundária de Lousada Matemática do 9º ano FT 9 Data: / / 01 Assunto: Funções: Proporcionalidade Direta e Função Afim Uma função é uma correspondência entre dois conjuntos (o domínio e o conjunto
C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.
MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08
Exercícios de Aplicação do Teorema de Pitágoras
Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse
Escola Secundária de Lousada Matemática do 9º ano FT 13 Data: / / 2013 Assunto: Resumo das funções Lições nº, e,
Escola Secundária de Lousada Matemática do 9º ano FT 1 Data: / / 01 Assunto: Resumo das funções Lições nº, e, 1. Considera as funções: ( ) = ; g ( ) = + 4 ; h ( ) ; i( ) = ; j ( ) = e l( ) f = 7 = 5 1.1.
3ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2016 MATEMÁTICA
3ª série EM - Questões para a RECUPERAÇÃO FINAL RF 2016 MATEMÁTICA 01. De quantas maneiras 6 pessoas podem sentar-se num banco de 6 lugares de modo que duas delas fiquem sempre juntas, em qualquer ordem?
ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA
ROTEIRO DE RECUPERAÇÃO TRIMESTRAL DE GEOMETRIA Professor da Disciplina: VAGNER ANTIQUEIRA 2017 Aluno (a): Nº Ano: 9º ANO Ensino Fundamental II Período: Matutino 2º TRIMESTRE O estudo da matemática começa
Roteiro de Estudos - RECUPERAÇÃO FINAL
Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados
BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL ===========================================================================================
PROFESSOR: MARCELO SOARES BANCO DE QUESTÕES ÁLGEBRA 9º ANO ENSINO FUNDAMENTAL =========================================================================================== 01- Um azulejista usou 2000 azulejos
DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS:
DISCIPLINA: MATEMÁTICA PROFESSORES: MÁRIO,ADRIANA E MAGNO DATA: 17/ 12 / 2016 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9º ANO TURMAS: ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO PARA RECUPERAÇÃO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO
Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva
PLANO CURRICULAR DISCIPLINAR. MATEMÁTICA 7º Ano
PLANO CURRICULAR DISCIPLINAR MATEMÁTICA 7º Ano OBJETIVOS ESPECÍFICOS TÓPICOS SUBTÓPICOS METAS DE APRENDIZAGEM 1º Período - Multiplicar e dividir números inteiros. - Calcular o valor de potências em que
DATA: 18 / 12 / 2017 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9 ANO TURMAS: A/B
DISCIPLINA: MATEMÁTICA PROFESSORAS: PATRICIA E ADRIANA DATA: 18 / 12 / 2017 VALOR: 20,0 NOTA: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 9 ANO TURMAS: A/B ALUNO (A): Nº: 01. RELAÇÃO DO CONTEÚDO Equações de segundo
3 pode ser associado a letra C.
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Na figura a seguir foram representados
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane
Exercícios de Revisão para a Prova Final 9º ano Matemática Profª Tatiane 1) Um terreno quadrado tem 289m 2 de área. Parte desse terreno é ocupada por um galpão quadrado e outra, por uma calçada de 3m de
» Potenciação e Radiciação
-* Nome: nº Ano: 9º Ano/EF Data: 30/06/2013 Exercícios de Matemática Professor: Hélio N. Informações Importantes: Não é permitido o uso de calculadora ou qualquer material eletrônico; Esta lista não tem
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a
13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a
PROVA DE MATEMÁTICA Assinale a alternativa correta.
COMANDO DA AERONÁUTICA DEPARTAMENTO DE ENINO DA AERONÁUTICA ECOLA PREPARATÓRIA DE CADETE-DO-AR EXAME DE ADMIÃO AO O ANO DO CPCAR 007 PROVA DE MATEMÁTICA 9 de AGOTO de 006 Transcreva o dado abaixo para
Teorema de Pitágoras
Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,
GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede
GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio
