CADERNO DE EXERCÍCIOS 2C
|
|
|
- Ana Laura Faria Barreiro
- 9 Há anos
- Visualizações:
Transcrição
1 CADERNO DE EXERCÍCIOS 2C Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Polígonos inscritos em uma circunferência. 2 Média aritmética. H24 H50 3 Semelhança entre triângulos Razão de semelhança. H30 4 Proporcionalidade. H36 H37 1
2 1) Em uma circunferência de raio igual a 20 cm, há um quadrado inscrito. Lembre-se: a medida do lado de um quadrado inscrito em uma A x circunferência é igual a r 2, sendo r a medida do raio da circunferência. A partir das informações dadas em relação à circunferência e ao quadrado, responda: a) Qual é a medida do lado do quadrado? b) Qual é a medida do segmento DE? c) O triângulo ADE é isósceles, equilátero ou escaleno? 2
3 d) Qual é a medida do ângulo x? 2) Dois amigos estão brincando de tiro ao alvo, observe a ilustração que representa o tabuleiro que eles utilizaram nessa brincadeira. Cada amigo deveria acertar o tabuleiro três vezes, independente da região 1, 2 ou 3. O acerto do alvo, em diferentes regiões, proporciona pontuação de valores diferentes e, quanto mais próximo do centro, maior é a pontuação. 3
4 Observe algumas regras do jogo: O ganhador é o jogador que obtiver a maior média aritmética entre os três acertos. Não é necessário que o jogador acerte três regiões diferentes, ou seja, em suas três jogadas, o participante poderá acertar uma mesma região mais de uma vez. Acompanhe a média dos pontos obtidos pelos amigos: João obteve 120 pontos. Orlando obteve 100 pontos. a) Qual foi o jogador que ganhou a brincadeira? b) Sabendo que João acertou duas vezes a região 1, uma vez a região 3 e, que cada acerto na região 3 vale 50 pontos, qual foi a pontuação em obtida cada vez que ele acertou a região 1? c) Sabendo que Orlando acertou duas vezes a região 2, uma vez a região 3 e, que cada acerto na região 3 vale 50 pontos, qual foi a pontuação obtida em cada vez que ele acertou a região 2? 4
5 3) Observe as figuras e responda. 1 2 a) Considere que esses triângulos são equiláteros e que o triângulo 1 tem exatamente 1,5 cm de medida de lado. Qual será a medida do lado do triângulo 2, semelhante ao triângulo 1, ampliado na razão 3? b) Considere que esses triângulos são equiláteros e que o triângulo 1 tem exatamente 1,25 cm de medida de lado. Já o triângulo 2, semelhante ao triângulo 1, foi ampliado e tem 3,75 cm de medida de lado. Qual foi a razão de ampliação entre essas figuras? 4) Alícia está em um grande centro comercial realizando algumas pesquisas para as compras de Natal. Ela deseja presentear 10 primas com pares de brincos e, durante suas pesquisas, encontrou a seguinte promoção: Pague 2 e leve 3 por apenas R$ 31,20. 5
6 Sabendo que, fora da promoção, cada par de brincos custa R$ 15,60,qual é a opção de compra mais vantajosa, na promoção ou fora da promoção? 6
7 Gabarito comentado 1. Quando temos um quadrado inscrito em uma circunferência, observamos as seguintes características: A medida do lado do quadrado é igual a r 2, sendo r o raio da circunferência. A medida do ângulo central é igual a quadrado dividida pelo número de lados. 360, ou seja, a soma dos ângulos internos do 4 Lembre-se: denomina-se ângulo central o ângulo que tem o vértice no centro da circunferência. Caro aluno, Na aula 56, do livro didático Novo Telecurso Ensino Fundamental, você encontrará o conteúdo relacionada ao ângulo central. Na oficina de Geometria de Ciências da Natureza I - Ensino Fundamental, você poderá explorar o conteúdo relacionado aos polígonos inscritos em uma circunferência. Link para acesso a oficina: Portal EJ@> Área do educador> Materiais administrativos e pedagógicos> Oficinas> CNI> EF. Vamos agora responder os itens a, b, c e d. a) No enunciado do exercício, informa-se que o quadrado está inscrito na circunferência, logo, pode-se então afirmar que o lado do quadrado apresenta medida igual a 20 2 cm. b) O segmento DE é um dos lados do quadrado, portanto, tem 20 2 cm. c) O triângulo ADE é composto por dois segmentos que representam o raio da circunferência e um segmento que representa o lado do quadrado. Como já foi visto no item a, o lado do quadrado tem medida igual 20 2 cm, conclui-se, então, que dois dos segmentos que 7
8 formam o triângulo ADE têm a mesma medida, 20 cm, e o terceiro segmento tem a medida 20 2 cm. Portanto, temos um triângulo isósceles. d) O ângulo x representa um ângulo central, logo sua medida será 360, o que resulta em a) João, pois ele obteve 120 pontos. b) Denominaremos a pontuação da região 1 como x, a partir dessa identificação, realizaremos os seguintes cálculos: x + x + 50 = x representa a pontuação da região 1. Como o jogador acertou a região 1 duas vezes, temos o valor x aparecendo duas vezes. 2x + 50 = x + 50 = x + 50 = 360 (o denominador passa para o segundo membro da equação multiplicando o valor 120) (agora é só resolver a equação do 1º grau) 2x = x = 310 x = x = 155 Portanto, a pontuação obtida em cada vez que acertou a região 1 foi de 155 pontos. 8
9 c) Denominaremos a pontuação da região 1 como y e, a partir dessa identificação, realizaremos os seguintes cálculos: y + y + 50 = y representa a pontuação da região 2. Como o jogador acertou a região 2 duas vezes, temos o valor y aparecendo duas vezes. 2y + 50 = y + 50 = (o denominador passa para o segundo membro da equação multiplicando o valor 100) 2y + 50 = 300 (agora é só resolver a equação do 1º grau) 2y = y = 250 y = y = 125 Portanto, a pontuação obtida em cada vez que acertou a região 2 foi de 125 pontos. Caro aluno, Acessando o Mapa Curricular, no portal EJ@, você encontrará indicações de materiais que poderão aprimorar o conhecimento relacionado a média aritmética. Link de acesso ao Mapa Curricular: Portal EJ@> área do aluno> Mapa Curricular> Ensino Fundamental> Ciências da Natureza I> Média Aritmética. 9
10 3. a) Para saber a medida do lado do triângulo que foi ampliado, basta multiplicar a medida do lado do triângulo 1 pela razão. Vejamos: 1,5 cm x 3 = 4,5 cm Portanto, a medida do lado do triângulo, após a ampliação, será de 4,5 cm. b) Para saber a razão de ampliação, basta dividir a medida do lado do triângulo (2) que se obteve após a ampliação, pela medida do lado do triângulo inicial (1). Vejamos: 3,75 = 3 1,25 Portanto, a razão de ampliação é igual a 3. Caro aluno, Acessando o Mapa Curricular, no portal EJ@, você encontrará indicações de materiais que poderão aprimorar o conhecimento relacionado a semelhança de polígonos. Link de acesso ao Mapa Curricular: Portal EJ@>área do aluno> Mapa Curricular> Ensino Fundamental> Ciências da Natureza I> Semelhança de figuras. 4. Para realizar a compra, participando da promoção, Alícia terá que adquirir 12 pares de brincos, já que a promoção é, pague 2 leve 3, ou seja, não há a possibilidade dela comprar apenas 10 pares. Portanto, a garota deverá que comprar 4 kits da promoção, pagando R$ 31,20 por cada kit. Veja quanto ela gastaria realizando a compra na promoção: 4 x R$ 31,20 = R$ 124,80. Levando um total de 12 pares de brincos, ou seja, 2 a mais do que ela necessita. Agora vamos analisar quanto ela gastaria sem a promoção. Alícia deseja adquirir 10 pares de brincos, para saber o quanto ela iria gastar vamos multiplicar o valor de cada par por 10. Faremos então: 10 x R$ 15,60 = R$ 156,00. Levando apenas 10 pares, Alícia teria um gasto de R$ 156,00. 10
11 Veja que, na promoção, a garota fará a compra de 2 pares a mais e terá um gasto menor, portanto, a opção mais vantajosa é realizar a compra dos pares de brincos considerando a promoção. Caro aluno, Acessando o Mapa Curricular, no portal EJ@, você encontrará indicações de materiais que poderão aprimorar o conhecimento relacionado à proporcionalidade. Link de acesso ao Mapa Curricular: Portal EJ@> área do auno> Mapa Curricular> Ensino Fundamental> Ciências da Natureza I> Números proporcionais 11
CADERNO DE EXERCÍCIOS 3C
CADERNO DE EXERCÍCIOS 3C Ensino Fundamental Matemática Questão Conteúdo 1 Interpretação gráfica. Razão. Porcentagem. Habilidade da Matriz da EJA/FB H52 H36 H14 2 Sistema de equações do 1º grau. H38 H44
CADERNO DE EXERCÍCIOS 2C
CADERNO DE EXERCÍCIOS 2C Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Progressão Geométrica H16 2 Lei dos cossenos H14 Razões trigonométricas H14 (trigonometria no triângulo
CADERNO DE EXERCÍCIOS 2D
CADERNO DE EXERCÍCIOS 2D Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Teorema de Pitágoras H31 2 Equações do 1º grau H38 H39 3 Triângulos H24 4 Média aritmética
CADERNO DE EXERCÍCIOS 2A
CADERNO DE EXERCÍCIOS A Ensino Fundamental Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Raio e diâmetro da circunferência H4 Ângulos H6 3 Operações com números H9 negativos
CADERNO DE EXERCÍCIOS 3B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Conteúdo Habilidade da Questão Matriz da EJA/FB Equação Exponencial H7 Probabilidade. H7 . Em qual das equações exponenciais temos o valor de x maior ou
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Geométrica Ciências da Natureza I Matemática Ensino médio 5min34seg Habilidades:
CADERNO DE EXERCÍCIOS 3E
CADERNO DE EXERCÍCIOS 3E Ensino Fundamental Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Área de círculo H21 Área do quadrado H21 Multiplicação com números decimais H16 2 Equação do 2º
Oficina Álgebra 2. Após os problemas 1 e 2, há dois desafios para que você possa explorar esse novo conhecimento sobre as equações do 2º grau.
Caro aluno, Oficina Álgebra 2 Nesta atividade, você será convidado a trabalhar com problemas que podem ser representados por meio de equações do 2º grau. Nos problemas 1 e 2, é proposto que, primeiramente,
CADERNO DE EXERCÍCIOS 2B
CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB Equação do º grau H7 H8 2 Teorema de Pitágoras H3 3 Área de figuras planas H3 Proporcionalidade H3 Caderno
Semelhanças do cotidiano
Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Professor Matemática Ensino Fundamental 9ª Geométrico DINÂMICA Semelhanças do cotidiano.
Professores: Elson Rodrigues Marcelo Almeida Gabriel Carvalho Paulo Luiz Ramos
Definição; Número de diagonais de um polígono convexo; Soma das medidas dos ângulos internos e externos; Polígonos Regulares; Relações Métricas em um polígono regular; Professores: Elson Rodrigues Marcelo
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO
SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Aritmética Matemática Ensino médio 5min03seg Habilidades: H15. Relacionar padrões e regularidades
Instruções para a realização da Prova Leia com muita atenção
Nível 2 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
Com este material esperamos que você trabalhe, de acordo com a Matriz de Avaliação, o desenvolvimento das seguintes habilidades:
Caro monitor, Preparamos este material para que possamos auxiliá-lo no desenvolvimento das aulas 4, 43, 45, 46 e 47. Objetivamos que o uso deste material possa elucidar os conteúdos trabalhados nas referidas
Instruções para a realização da Prova Leia com muita atenção
Nível 3 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima segunda edição da Olimpíada de Matemática de São José do
CADERNO DE EXERCÍCIOS 3C
CADERNO DE EXERCÍCIOS 3C Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Princípio Multiplicativo H9 2 Equações exponenciais H18 1 1. (ENEM 2012) O diretor de uma escola convidou
FIGURAS SEMELHANTES CONTEÚDOS. Polígonos semelhantes Semelhança de triângulos AMPLIANDO SEUS CONHECIMENTOS. Observe as imagens a seguir.
FIGURAS SEMELHANTES CONTEÚDOS Polígonos semelhantes Semelhança de triângulos AMPLIANDO SEUS CONHECIMENTOS Observe as imagens a seguir. Figura 1 Balão I Fonte: Microsoft Office Figura 2 Balão II Fonte:
Semelhanças do cotidiano
Reforço escolar M ate mática Semelhanças do cotidiano Dinâmica 6 9º Ano 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Fundamental 9ª Geométrico Semelhança de Polígonos. Aluno Primeira Etapa
GABARITO - ANO 2018 OBSERVAÇÃO:
GABARITO - ANO 018 OBSERVAÇÃO: Embora as soluções neste gabarito se apresentem sob a forma de um texto explicativo, gostaríamos de salientar que para efeito de contagem dos pontos adquiridos, na avaliação
Aplica-se a Lei dos cossenos quando conhecemos o valor de dois lados e de um ângulo do triângulo.
Caro aluno, Objetivamos que o uso deste material possa elucidar os conteúdos trabalhados nas aulas 42, 43, 45, 46 e 47, e assim, proporcionar o seu preparo para aplicar os conhecimentos desenvolvidos nas
CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS. Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS
CÍRCULO E CIRCUNFERÊNCIA CONTEÚDOS Circunferência Círculo Comprimento Área Ângulo central Setor circular Coroa circular AMPLIANDO SEUS CONHECIMENTOS Círculo ou circunferência? Talvez essa pergunta já tenha
Colégio Naval 2008/2009 (PROVA VERDE)
Colégio Naval 008/009 (PROVA VERDE) 01) Um triângulo retângulo, de lados expressos por números inteiros consecutivos, está inscrito em um triângulo eqüilátero T de lado x. Se o maior cateto é paralelo
Grupo de exercícios I.2 - Geometria plana- Professor Xanchão
Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO
E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar
MATEMÁTICA. 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de...
Página 1 de 12 MATEMÁTICA 01. Um polígono convexo que possui todos os lados congruentes e todos os ângulos internos congruentes é chamado de... ( a ) Excêntrico. ( b ) Côncavo. ( c ) Regular. ( d ) Isósceles.
EXERCICIOS - ÁREAS E ÂNGULOS:
EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos
DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares
Exercícios Polígonos Regulares 1 - Calcular a área de um triângulo. Para construção da figura você irá clicar no ícone que tem um triângulo, para fazer um polígono clique no ícone indicado por polígono,
9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão
Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas.
Geometria Plana: Polígonos regulares & Áreas de Figuras Planas. Bruno Cervelin DME IFM Universidade Federal de Pelotas 27 de Junho de 2019 B Cervelin (UFPel) Polígonos 27 de Junho de 2019 1 / 17 Polígonos
CADERNO DE EXERCÍCIOS 1C
CADERNO DE EXERCÍCIOS C Ensino Médio Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Força resultante H2 2ª lei de Newton 2 Análise de gráfico H Aceleração da gravidade Área de figuras
Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática Eduardo 3ª 8 Ano E.F. Competência Objeto de aprendizagem Habilidade Competência 2 Foco: Os conjuntos numéricos Construir significados para os números naturais, inteiros, racionais e reais. Competência
SIMULADO 2 COM GABARITO
SIMULADO 2 COM GABARITO 01) Analise a tirinha abaixo. De acordo com a tirinha, o triângulo é classificado como: a) retângulo. b) equilátero. c) isósceles. d) escaleno. e) impossível concluir com esses
MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015
MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015 Domínio Conteúdos Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental da aritmética e aplicações. Números e Operações Números racionais
Matemática GEOMETRIA PLANA. Professor Dudan
Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A
3ª Igor/ Eduardo. Competência Objeto de aprendizagem Habilidade
Matemática 3ª Igor/ Eduardo 9º Ano E.F. Competência Objeto de aprendizagem Habilidade C3 - Espaço e forma Números racionais. Números irracionais. Números reais. Relações métricas nos triângulos retângulos.
[C] INCORRETA. O gráfico não permite concluir nada sobre as causas do aumento do uso de pelo menos uma droga ilícita em 2012.
Gabarito: Resposta da questão 1: Analisando as afirmativas uma a uma: INCORRETA. Pode-se verificar, pelo gráfico, que as porcentagens de usuários de opioides e usuários de Cannabis em 011 são, respectivamente,
CADERNO DE EXERCÍCIOS 2E
CADERNO DE EXERCÍCIOS 2E Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Proporcionalidade H37 2 Teorema de Tales H29 3 Teorema de Pitágoras H31 4 Proporcionalidade
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales. Teorema de Tales - Parte II. Nono Ano do Ensino Fundamental
Material Teórico - Módulo de Semelhança de Triângulos e Teorema de Tales Teorema de Tales - Parte II Nono no do Ensino Fundamental Prof. Marcelo Mendes de Oliveira Prof. ntonio aminha Muniz Neto Portal
CADERNO DE EXERCÍCIOS 2E
CADERNO DE EXERCÍCIOS 2E Ensino Médio Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Calor e variação da temperatura H45 2 Calor e mudança de fase H45 3 Razões trigonométricas
CADERNO DE EXERCÍCIOS 1B
CADERNO DE EXERCÍCIOS B Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Fração Soma de frações Multiplicação de frações Subtração de frações Divisão de frações
OPEMAT. Olimpíada Pernambucana de Matemática
OPEMAT Olimpíada Pernambucana de Matemática - 206 Nível. O ano de 206 está acabando, vamos ver se você conhece bem esse número. Para isso, julgue os itens a seguir: (V) (F) A maior potência de 2 que divide
a. 0 b. 1 c. 2 d. 3 e. 5
X OM NÍVEL ª OPM. Maria foi à feira e comprou duas dúzias de laranjas, duas dúzias de bananas e uma dúzia de maçãs, gastando R$ 5,80. Na outra semana, quando voltou à feira, comprou três dúzias de laranjas,
CADERNO DE EXERCÍCIOS 1C
CADERNO DE EXERCÍCIOS C Ensino Médio Matemática Questão Conteúdo Teorema de Pitágoras Área de círculo Equação do º grau Área de círculo Equação do º grau Habilidade da Matriz da EJA/FB H H7 H8 H H7 H8
BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL
ROFESSOR: EQUIE DE MTEMÁTIC NCO DE QUESTÕES - GEOMETRI - 9º NO - ENSINO FUNDMENTL ============================================================================ 01- Qual o polígono em que a soma das medidas
COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Final. 3ª Etapa Ano: 6 Turma: 6.1
COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2013 Disciplina: Matemática Professor (a): Flávia Lúcia Ano: 6 Turma: 6.1 Caro aluno, você está recebendo o conteúdo de recuperação.
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA 2 a Fase Nível 1 (6 o ou 7 o ano)
38 a OLIMPÍADA BRASILEIRA DE MATEMÁTICA a Fase Nível 1 (6 o ou 7 o ano) GABARITO PARTE A - Cada problema vale 5 pontos CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta
CADERNO DE EXERCÍCIOS 3D
CADERNO DE EXERCÍCIOS D Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Sistema de equações H8 Operações com frações H Caro aluno, Um dos exercícios presente neste
02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a
01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância
Desenho e Projeto de Tubulação Industrial Nível II
Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante
Resposta: Não. Porque não sabemos o total de pessoas que compareceram às urnas de cada município.
NOTURNO 1 a SÉRIE DO ENSINO MÉDIO 1 QUESTÃO 1 (VALOR: 1,0) No dia 3 de outubro deste ano, o povo decidiu que NÃO era a favor da proibição da comercialização de armas de fogo e munição no país. O referendo
2. (G2 - utfpr 2014) A área do círculo, em cm 2, cuja circunferência mede 10π cm, é: a) 10 π. b) 36 π. c) 64 π. d) 50 π. e) 25 π.
Grupo de exercícios II - Geometria plana- 1. (G - ifsp 014) Um restaurante foi representado em sua planta por um retângulo PQRS. Um arquiteto dividiu sua área em: cozinha (C), área de atendimento ao público
AULA 9 RAZÃO E PROPORÇÃO. 1. Determine a razão do primeiro para o segundo número:
AULA 9 RAZÃO E PROPORÇÃO 1. Determine a razão do primeiro para o segundo número: Para montar a razão, basta fazer o numerador sobre o denominador. Para esse exercício, temos: a) 1 para 9 = 9 1 b) para
Ano: 8º Turma: 801/802/803
COLÉGIO IMACULADO CORAÇÃO DE MARIA Programa de Recuperação Paralela 3ª Etapa 2010 Disciplina: Matemática Educador : Paulo Roberto Ano: 8º Turma: 801/802/803 Caro educando, você está recebendo o conteúdo
POLIGONOS INSCRITOS E CIRCUNSCRITOS. São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência.
POLIGONOS INSCRITOS E CIRCUNSCRITOS POLIGONOS INSCRITOS NA CIRCUNFERÊNCIA São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência. Veja: POLIGONOS CIRCUNSCRITOS NA
Na compra dos dois produtos foi gasto R$ 64,00. Apesar dos produtos terem a mesma função, o de maior valor foi R$ 20 reais mais caro.
SISTEMA DE EQUAÇÕES CONTEÚDO Sistemas de equações do 1º grau com duas incógnitas AMPLIANDO SEUS CONHECIMENTOS Leia as frases: Havia no evento 00 pessoas, somando homens e mulheres. A diferença entre o
BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL
PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.
XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXV Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 4 pontos para cada resposta correta e a pontuação
Prof. Danillo Alves REVISÃO. Operações com números decimais. Retas, triângulo e quadriláteros. números decimais
Prof. Danillo Alves REVISÃO Operações com números decimais Porcentagem Frações e Retas, triângulo e quadriláteros números decimais OPERAÇÕES COM NÚMEROS DECIMAIS Exemplos: Adicionando e Subtraindo números
Treino Matemático. 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? (A) (B) (C) (D)
Treino Matemático ssunto: ircunferência e círculo. 6º ano Ficha de trabalho 1. Em qual das figuras podes observar um polígono inscrito numa circunferência? () () () (). Na figura sabe-se a reta é tangente
1º S I M U L A D O - ITA IME - M A T E M Á T I C A
Professor: Judson Santos / Luciano Santos Aluno(a): nº Data: / /0 º S I M U L A D O - ITA IME - M A T E M Á T I C A - 0 0) Seja N o conjunto dos inteiros positivos. Dados os conjuntos A = {p N; p é primo}
Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:
GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO COLÉGIO MILITAR DO RECIFE PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO
MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEP DEPA COLÉGIO MILITAR DO RECIFE 1 DE OUTUBRO DE 006 Página 1 / 8 ITEM 01 Sendo E (3 11) 11 7, encontramos para E simplificada um valor igual a: A ( ) 7 11 B
CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE
CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase
XXXII Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 3 Segunda Fase Parte A PARTE A Na parte A serão atribuídos pontos para cada resposta correta e a pontuação máima para essa
b Considerando os valores log 2 = 0,30 e log 3 = 0,48, o valor de x que satisfaz a equação 36 x = 24, é: 49
MATEMÁTICA 1 e O Sr. Paiva é proprietário de duas papelarias, A e B. Em 2002 o faturamento da unidade A foi 50% superior ao da unidade B. Em 2003, o faturamento de A aumentou 20% em relação ao seu faturamento
SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR
SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 4º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA
Triângulos classificação
Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE
MATRIZ DE REFERÊNCIA PARA AVALIAÇÃO EM MATEMÁTICA 9º ANO DO ENSINO FUNDAMENTAL SISTEMA PERMANENTE DE AVALIAÇÃO DA EDUCAÇÃO BÁSICA DO CEARÁ SPAECE TEMA I: INTERAGINDO COM OS NÚMEROS E FUNÇÕES N DESCRITOR
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?
Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera
Aula 24 mtm B GEOMETRIA ESPACIAL
Aula 24 mtm B GEOMETRIA ESPACIAL Entes Geométricos Ponto A T Reta r s Plano Espaço y α z x Entes Geométricos Postulados ou Axiomas Teorema a 2 = b 2 + c 2 S i =180 Determinação de uma reta Posições relativas
Observação: Os sistemas de coordenadas considerados são cartesianos ortogonais. n(a B) = 23, n(b A) = 12, n(c A) = 10, n(b C) = 6 e n(a B C) = 4,
NOTAÇÕES N = {0, 1, 2, 3,...} i: unidadeimaginária;i 2 = 1 Z: conjuntodosnúmerosinteiros z : módulodonúmeroz C Q: conjuntodosnúmerosracionais z: conjugadodonúmeroz C R: conjuntodosnúmerosreais Re z: parterealdez
MATEMÁTICA. Teorema de Tales e Semelhança de Triângulos. Professor : Dêner Rocha. Monster Concursos 1
MATEMÁTICA Teorema de Tales e Semelhança de Triângulos Professor : Dêner Rocha Monster Concursos 1 Teorema de Tales O Teorema de Tales foi estabelecido por Tales de Mileto, consiste em uma interseção entre
Associação Catarinense das Fundações Educacionais ACAFE
2 3 4 11) Assinale a alternativa correta em relação à sequência: ( 2, 2, 2, 2,K). A A mesma sequência pode ser representada por ( 2, 4, 8, 16, K) B É uma progressão geométrica de razão igual a -2. C É
Como é possível afirmar que a sala ficou com 5,5 m de comprimento após a ampliação?
EQUAÇÕES DO º GRAU CONTEÚDOS Equações do º grau Processo resolutivo de uma equação Discriminante de uma equação AMPLIANDO SEUS CONHECIMENTOS Iniciaremos agora o estudo das equações do º grau com uma incógnita.
1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.
Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos
01- Que inequação você pode escrever quando multiplica os dois membros da inequação -5x 1 pelo número -1?
PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 7º ANO - ENSINO FUNDAMENTAL ============================================================================= 01- Que inequação você pode escrever
Professor Alexandre Assis. Lista de exercícios de Geometria
1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo
1ª Parte Questões de Múltipla Escolha. Matemática
c UFSCar ª Parte Questões de Múltipla Escolha Matemática O gráfico em setores do círculo de centro O representa a distribuição das idades entre os eleitores de uma cidade. O diâmetro AB mede 0 cm e o comprimento
PG Nível Básico
PG 016 Nível Básico 1. (Efomm 016) Numa progressão geométrica crescente, o 3º termo é igual à soma do triplo do 1º termo com o dobro do º termo. Sabendo que a soma desses três termos é igual a 6, determine
CADERNO DE EXERCÍCIOS 1C
CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.
COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega
Unidade 6 Geometria: polígonos e circunferências
Sugestões de atividades Unidade 6 Geometria: polígonos e circunferências 9 MATEMÁTICA Matemática. Considere um decágono regular dividido em 0 triângulos isósceles congruentes, conforme a figura a seguir..
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta
1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento
EMENTA ESCOLAR III Trimestre Ano 2014
EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro
Ampliando os horizontes geométricos
Reforço escolar M ate mática Ampliando os horizontes geométricos Dinâmica 8 9º Ano 1º Bimestre Professor DISCIPLINA SÉRIE CAMPO CONCEITO Matemática 9º Ano do Ensino Fundamental Geométrico. Semelhança de
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.
COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que
2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS
SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ
Gabarito Prova da Primeira Fase - Nível Alfa
. Gabarito Prova da Primeira Fase - Nível Alfa Questão 1 (0 pontos) A corrida de São Silvestre tem 15 km de percurso, sendo km de subida, 8 km de descida e 5 km de terreno plano. O ganhador da corrida
O quadrado e outros quadriláteros
Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,
Revisional 3 Bim - MARCELO
6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são
Portanto, o percentual de meninas na turma deste ano será:
PROFMAT EXAME NACIONAL DE ACESSO 2018 (21/10/2017) [01] No ano passado uma turma tinha 31 estudantes. Neste ano o número de meninas aumentou em 20% e o de meninos diminuiu em 25%. Como resultado, a turma
DESENHO TÉCNICO ( AULA 02)
DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta
CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:
2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:
MATEMÁTICA FORMULÁRIO 11) A = onde. 13) Para z = a + bi, z = z = z (cosθ + i senθ) 14) (x a) 2 + (y b) 2 = r 2
[ MATEMÁTICA FORMULÁRIO 0 o 45 o 60 o cosec x =, sen x 0 sen x sen cos tg sec x =, cos x 0 cos x sen x tg x =, cos x 0 cos x cos x cotg x =, sen x 0 sen x sen x + cos x = ) a n = a + (n ) r ) A = onde
