Análise e probabilidade Curso férias
|
|
|
- Rui Mendes Candal
- 9 Há anos
- Visualizações:
Transcrição
1 . (Ucs 206) Um supermercado está selecionando, entre 5 candidatos que se apresentaram, 3 funcionários para desempenhar a função de caixa. De quantas maneiras diferentes pode ser feita essa escolha? a) 5 b) 45 c) 25 d) 360 e) (Uerj 206) Um painel de iluminação possui nove seções distintas, e cada uma delas acende uma luz de cor vermelha ou azul. A cada segundo, são acesas, ao acaso, duas seções de uma mesma cor e uma terceira de outra cor, enquanto as seis demais permanecem apagadas. Observe quatro diferentes possibilidades de iluminação do painel: O tempo mínimo necessário para a ocorrência de todas as possibilidades distintas de iluminação do painel, após seu acionamento, é igual a x minutos e y segundos, sendo y 60. Os valores respectivos de x e y são: a) 4 e 2 b) 8 e 24 c) 25 e 2 d) 50 e (Uece 206) Uma urna contém 50 cartelas das quais 20 são azuis, numeradas de a 20, e 30 são vermelhas, numeradas de 2 a 50. De quantas formas diferentes é possível retirar três cartelas (por exemplo, duas vermelhas e uma azul, três azuis,...) dessa urna? a) b) c) d) Assinale a alternativa que representa o número de formas diferentes com que essa escolha pode ser feita. C C a) 0,4 5,3 b) C0,4 C5,3 c) A0,4 A5,3 d) A0,3 A5,4 e) A0,4 A5,3 5. (Ufu 206) A senha de acesso ao cofre de um carro-forte é formada por d algarismos, em que esses algarismos pertencem ao conjunto de inteiros 0,,2,,9. Um dos guardas observa o colega digitar o último algarismo da senha, concluindo que esta corresponde a um número ímpar. Assuma que esse guarda demore,8 segundos para realizar cada tentativa de validação da senha, sem realizar repetições, de maneira que, assim procedendo, no máximo em duas horas e meia terá sucesso na obtenção da senha. Segundo as condições apresentadas, conclui-se que o valor de d é um número a) quadrado perfeito. b) primo. c) divisível por 3. d) múltiplo de (Ueg 206) Um aluno terá que escrever a palavra PAZ utilizando sua caneta de quatro cores distintas, de tal forma que nenhuma letra dessa palavra tenha a mesma cor. O número de maneiras que esse aluno pode escrever essa palavra é a) 64 b) 24 c) 2 d) 4 7. (Upf 206) Na figura a seguir, as linhas horizontais e verticais representam ruas e os quadrados representam quarteirões. A quantidade de trajetos de comprimento mínimo ligando A a B é: 4. (Feevale 206) Em certo bairro, houve um troca-troca de livros usados. João levou 0 livros de romance. Pedro levou 5 de poesia, e Marcelo, 7 de ficção. Marcelo quer levar para casa, em troca de seus livros, 4 de romance e 3 de poesia. Página de 0
2 a) b) c) 256 d) 20 e) (Unisc 206) Newton possui 7 livros distintos, sendo 3 de Álgebra, 2 de Cálculo e 2 de Geometria. O número de maneiras diferentes que Newton pode organizar esses livros em uma estante, de forma que os livros de um mesmo assunto permaneçam juntos, é a) 24 b) 36 c) 56 d) 72 e) (Espcex (Aman) 206) Da análise combinatória, pode-se afirmar que a) o número de múltiplos inteiros e positivos de, formados por três algarismos, é igual a 80. b) a quantidade de números ímpares de quatro algarismos distintos que podemos formar com os dígitos 2, 3, 4, 5 e 6 é igual a 24. c) o número de anagramas da palavra ESPCEX que têm as vogais juntas é igual a 60. d) no cinema, um casal vai sentar-se em uma fileira com dez cadeiras, todas vazias. O número de maneiras que poderão sentar-se em duas cadeiras vizinhas é igual a 90. e) a quantidade de funções injetoras definidas em A {, 3, 5} com valores em B {2, 4, 6, 8} é igual a (Ita 206) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor possível de N é igual a a) 0 b) 5 c) 20 d) 25 e) 30. (Efomm 206) A quantidade de anagramas da palavra MERCANTE que não possui vogais juntas é a) b) c) d) e) (Imed 206) O número de candidatos inscritos para realização do último vestibular de verão, em um determinado curso, corresponde ao número de anagramas da palavra VESTIBULAR que começam por VE e terminam por AR. Esse número é igual a: a) 20. b) 240. c) 360. d) 540. e) (Fatec 206) No Boxe, um dos esportes olímpicos, um pugilista tem à sua disposição quatro golpes básicos: o jab, o direto, o cruzado e o gancho. Suponha que um pugilista, preparando-se para os Jogos Olímpicos do Rio, em 206, queira criar uma sequência com 6 golpes, empregando necessariamente dois jabs, dois diretos, um cruzado e um gancho. Assim, o número máximo de sequências que ele poderá criar será de Lembre-se de que: Permutação com repetição k,k 2,k 3,... n! Pn k!k!k!... a) 80. b) 60. c) 40. d) 20. e) (Epcar (Afa) 206) Uma caixa contém 0 bolas das quais 3 são amarelas e numeradas de a 3; 3 verdes numeradas de a 3 e mais 4 bolas de outras cores todas distintas e sem numeração. A quantidade de formas distintas de se enfileirar essas 0 bolas de modo que as bolas de mesmo número fiquem juntas é a) 8 7! b) 7! c) 5 4! d) 0! Página 2 de 0
3 5. (G - ifsp 206) Um banco está testando um novo produto e disponibilizou a alguns dos seus clientes acesso via internet para esse produto, por meio de senhas compostas por cinco vogais distintas e dois números pares distintos, de 2 a 8, nessa ordem, ou seja, primeiro as vogais e depois os números. O número de clientes que podem acessar esse novo produto, via internet, é: a) 22. b) c).440. d) 80. e) (Ueg 206) Uma montadora de carros oferece a seus clientes as seguintes opções na montagem de um carro: 2 tipos de motores (.8 ou 2.0), 2 tipos de câmbios (manual ou automático), 6 cores (branco, preto, vermelho, azul, cinza ou prata) e 3 tipos de acabamento (simples, intermediário ou sofisticado). De quantas maneiras distintas pode-se montar esse carro? a) 4 b) 3 c) 24 d) 36 e) (G - ifba 206) De acordo com o DETRAN de uma certa cidade, ainda estão disponíveis os prefixos de placa de automóveis com três letras, conforme modelo a seguir: M Se estiverem disponíveis para o 2º espaço as letras X, Y e Z, e para o 3º espaço as letras letras A, B, C, D, E, F, G e H, então o número de prefixos disponíveis para emplacamento é: a) 8 b) 24 c) 28 d) 36 e) 60 saída uma porta diferente da que utilizou para entrar? a) 6 b) 5 c) 2 d) 30 e) (Uece 206) No Brasil, os veículos de pequeno, médio e grande porte que se movimentam sobre quatro ou mais pneus são identificados com placas alfanuméricas que possuem sete dígitos, dos quais três são letras do alfabeto português e quatro são algarismos de 0 a 9. inclusive estes. Quantos desses veículos podem ser emplacados utilizando somente letras vogais e algarismos pares? a) b) c) d) (Upe-ssa 2 206) Um palíndromo ou capicua é um número, que se lê da mesma maneira nos dois sentidos, ou seja, da esquerda para a direita ou ao contrário, como 333, 66 e Assinale a alternativa correspondente à quantidade de palíndromos que são números pares de cinco algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) (Uemg 206) Genius era um brinquedo muito popular na década de 980 (...). O brinquedo buscava estimular a memorização de cores e sons. Com formato semelhante a um OVNI, possuía 4 botões de cores distintas que emitiam sons harmônicos e se iluminavam em sequência. Cabia aos jogadores repetir o processo sem errar. Origem: Wikipédia, a enciclopédia livre. (Adaptado). 8. (G - ifpe 206) Um auditório em forma de um salão circular dispõe de 6 portas, que podem ser utilizadas tanto como entrada ou para saída do salão. De quantos modos distintos uma pessoa que se encontra fora do auditório pode entrar e sair do mesmo, utilizando como porta de Página 3 de 0
4 Considerando uma fase do jogo em que 3 luzes irão acender de forma aleatória e em sequência, podendo cada cor acender mais de uma vez. O número máximo de formas que essa sequência de 3 luzes poderá acender é: a) 2. b) 24. c) 36. a) d) (Ime 206) O valor da soma abaixo é: b) c) a) b) c) d) e) (Fac. Albert Einstein - Medicin 206) Em uma urna vazia foram colocadas fichas iguais, em cada uma das quais foi escrito apenas um dos anagramas da palavra HOSPITAL. A probabilidade de que, ao sortear-se uma única ficha dessa urna, no anagrama nela marcado as letras inicial e final sejam ambas consoantes é a) 5 4 b) 3 7 c) 4 7 d) (Upe-ssa 3 206) Selecionamos ao acaso duas arestas do prisma triangular regular representado abaixo. Qual é a probabilidade de elas não serem paralelas? d) 2 3 e) (Ita 206) Escolhendo-se, aleatoriamente, três números inteiros distintos no intervalo [, 20], a probabilidade de que eles estejam, em alguma ordem, em progressão geométrica é igual a 2 a) b). 27 c) d). 225 e) (Acafe 206) O Exame de Papanicolau é um teste usado para o diagnóstico do câncer cervical (câncer de colo de útero), muitas vezes causado pela infecção do papiloma vírus humano, HPV. Para avaliar a qualidade de diagnóstico do Exame Papanicolau, 600 mulheres de uma determinada região foram submetidas ao teste, sendo que 500 estavam sadias (sem câncer) e 00 estavam doentes (com câncer). Após o teste, verificou-se que, dos resultados referentes às mulheres sadias, 350 eram negativo e, dos resultados referentes às mulheres doentes, 94 deram positivo. Página 4 de 0
5 Analise as proposições abaixo e classifique-as em V - verdadeiras ou F - falsas. ( ) A probabilidade do teste Papanicolau ter resultado negativo, dentre as pacientes que não têm câncer, é de 58%. ( ) A probabilidade do teste Papanicolau ter resultado positivo, dentre as pacientes que realmente têm câncer, é 0,94. ( ) A probabilidade de uma paciente realmente ter câncer, dentre aquelas com resultado positivo no teste Papanicolau, é de 40,6%. ( ) A probabilidade de uma paciente não ter câncer, dentre aquelas com resultado negativo no teste Papanicolau, é aproximadamente 98%. ( ) A probabilidade de uma paciente realmente ter câncer, dentre aquelas com resultado negativo no teste Papanicolau, é inferior a 2%. A sequência correta, de cima para baixo, é: a) V - V - F - F - V b) F - F - V - V - V c) V - F - V - F - F d) F - V - F - V - V 27. (Upe-ssa 2 206) Se dois dados idênticos e não viciados são lançados, a probabilidade de a soma dos pontos obtidos ser um múltiplo de 2 ou um múltiplo de 3 é de aproximadamente a) 66,6% b) 60,0% c) 55,2% d) 35,3% e) 33,0% 28. (Epcar (Afa) 206) Em uma mesa há dois vasos com rosas. O vaso A contém 9 rosas das quais 5 tem espinhos e o vaso B contém 8 rosas sendo que exatamente 6 não tem espinhos. Retira-se, aleatoriamente, uma rosa do vaso A e coloca-se em B. Em seguida, retira-se uma rosa de B. A probabilidade de essa rosa retirada de B ter espinhos é a) 8 8 b) 5 8 c) 8 8 d) (G - ifal 206) Em um grupo de 7 professores, quatro são de Física e 3 são de Matemática. Escolhidos dois professores ao acaso, qual é a probabilidade de pelo menos um deles ser de Matemática? a). 7 b) 2. 7 c) 7. 5 d) 2. 5 e) (Unesp 206) Um dado convencional e uma moeda, ambos não viciados, serão lançados simultaneamente. Uma das faces da moeda está marcada com o número 3, e a outra com o número 6. A probabilidade de que a média aritmética entre o número obtido da face do dado e o da face da moeda esteja entre 2 e 4 é igual a a) 3 b) 2 3 c) 2 d) 3 4 e) 4 3. (Unesp 206) Uma colher foi solta 978 vezes ao acaso em direção ao chão. O registro da posição em que ela caiu sobre o chão está indicado na tabela. Página 5 de 0
6 total de lançamen tos Usando as informações da tabela, é correto concluir que a probabilidade de a colher cair sobre o chão virada para cima é a mesma probabilidade de se obter, no lançamento de um dado convencional honesto de seis faces, um número a) maior que 4. b) primo. c) menor que 6. d) múltiplo de 5. e) maior que (Pucpr 206) Uma máquina produz um certo tipo de peça para motores de combustão. A peça produzida pode estar sem defeito, com defeito, mas recuperável, ou defeituosa. A produção de cada peça custa R$,50 e esta é vendida por R$ 4,50. A peça recuperável tem um custo adicional de R$,00 pelo retrabalho e as defeituosas são descartadas. A probabilidade de uma peça ser recuperável é 0,02 e de ser defeituosa é de 0,0. O lucro esperado na produção de 200 peças é: a) R$ 452,50. b) R$ 587,00. c) R$ 752,00. d) R$ 802,50. e) R$ 884, (Ufrgs 206) No jogo de xadrez, cada jogador movimenta as peças de uma cor: brancas ou pretas. Cada jogador dispõe de oito peões, duas torres, dois cavalos, dois bispos, um rei e uma rainha. Escolhendo ao acaso duas peças pretas, a probabilidade de escolher dois peões é de a) b) c) 7. 5 d) 4. 5 e) (Ucs 206) Numa cidade com domicílios, deles têm acesso à internet, têm assinatura de TV a cabo, e um terço do número de domicílios não tem acesso a nenhum dos dois recursos. Qual é a probabilidade de um domicílio da cidade, escolhido ao acaso, ter acesso à internet e não ter assinatura de TV a cabo? a) 4 b) 2 c) 7 2 d) 3 8 e) (Ueg 206) Renata está grávida e realizará um exame que detecta o sexo do bebê. Se o exame detectar que é um menino, a probabilidade de ela pintar o quarto do bebê de azul é de 70%, ao passo que de branco é de 30%. Mas, se o exame detectar que é uma menina, a probabilidade de ela pintar o quarto do bebê de rosa é de 60% contra 40% de pintar de branco. Sabendo-se que a probabilidade de o exame detectar um menino é de 50%, a probabilidade da Renata pintar o quarto do bebê de branco é de a) 70% b) 50% c) 35% d) 30% e) 20% 36. (Ime 206) Os inteiros n e m são sorteados do conjunto {, 2, 3,..., 206}, podendo haver repetição. Qual a probabilidade do produto n m ser múltiplo de 2? a) 5 2 b) 5 8 c) 5 24 d) e) 44 Página 6 de 0
7 37. (Ufjf-pism 3 206) Na fase final do processo seletivo para o Mestrado em Matemática de uma certa universidade há 0 candidatos. Nessa fase, cada um dos 5 professores do corpo docente do departamento deve escolher apenas um dos candidatos para orientar, formando, assim, uma dupla do tipo (professor, aluno). Os cinco escolhidos serão os aprovados no processo e os demais serão reprovados. Qual é a probabilidade de João, um dos candidatos, ser aprovado para o Mestrado, e Maria, uma das professoras, ser a orientadora de João? a). 2 b). 0 c) d) e) (Fuvest 206) Em um experimento probabilístico, Joana retirará aleatoriamente 2 bolas de uma caixa contendo bolas azuis e bolas vermelhas. Ao montar-se o experimento, colocam-se 6 bolas azuis na caixa. Quantas bolas vermelhas devem ser acrescentadas para que a probabilidade de Joana obter 2 azuis seja? 3 a) 2 b) 4 c) 6 d) 8 e) (Upe-ssa 3 206) Um cadeado está protegido pela combinação dos números em três cilindros numerados de 0 a 9 cada um, conforme a figura a seguir. Qual é a probabilidade de, numa única tentativa, se acertar um senha formada apenas por números primos? a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% 40. (Acafe 206) Uma gaveta tem duas bolas azuis, três bolas brancas e cinco bolas vermelhas. Considere as afirmações a seguir, assinalando V para as verdadeiras e F para as falsas. ( ) Se retirarmos, consecutivamente e sem reposição, todas as bolas dessa gaveta e formarmos uma sequência com essas bolas, o número de sequências diferentes que podemos obter é ( ) Se retirarmos, sem reposição, três bolas dessa gaveta, uma a uma, a probabilidade de tirarmos, nessa ordem, bolas nas cores azul, branca e vermelha é 24. ( ) A probabilidade de se retirar, aleatoriamente, uma bola branca e, em seguida, sem reposição, retirar outra bola branca é inferior a 0%. ( ) O número de bolas amarelas que devem ser colocadas nessa gaveta, de modo que a probabilidade ao retirarmos, aleatoriamente, uma bola amarela seja igual a 3 8, é um número múltiplo de 4. A sequência correta, de cima para baixo, é: a) V - F - F - V b) V - V - V - F c) F - F - F - V d) F - V - V - F 4. (Ufu 206) Uma loja que comercializa celulares registrou, em uma campanha de lançamento, o número de compradores, femininos e masculinos, de um novo modelo de smartphone. O gráfico a seguir descreve o ocorrido nos quatro dias de pré-venda desse modelo. Página 7 de 0
8 Para que um consumidor ganhasse um secador, teria de raspar o cartão exatamente nas letras dessa palavra, como indicado abaixo: Com o sucesso de vendas, a loja decidiu sortear um acessório para este modelo de smartphone entre os compradores femininos e outro acessório entre os compradores masculinos. Qual é a probabilidade de que um dos sorteados tenha feito sua compra no primeiro dia de pré-venda e outro no último dia de pré-venda? a) 7 20 b) 20 c) 7 80 d) (Uerj 206) Os consumidores de uma loja podem concorrer a brindes ao fazerem compras acima de R$ 00,00. Para isso, recebem um cartão de raspar no qual estão registradas 23 letras do alfabeto em cinco linhas. Ao consumidor é informado que cada linha dispõe as seguintes letras, em qualquer ordem: - linha {A, B, C, D, E}; - linha 2 {F, G, H, I, J}; - linha 3 {L, M, N, O, P}; - linha 4 {Q, R, S, T, U}; - linha 5 {V, X, Z}. Observe um exemplo desses cartões, com as letras ainda visíveis: Considere um consumidor que receba um cartão para concorrer a um ventilador. Se ele raspar as letras corretas em cada linha para formar a palavra VENTILADOR, a probabilidade de que ele seja premiado corresponde a: a) 5000 b) 8000 c) d) (Unisc 206) Dentre um grupo formado por 2 Engenheiros e 4 Matemáticos, três pessoas são escolhidas ao acaso. A probabilidade de que sejam escolhidos um Engenheiro e dois Matemáticos é de a) 25% b) 35% c) 39% d) 50% e) 60% 44. (Unicamp 206) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a). 4 b) 3. 8 c). 2 d) 3. 4 Página 8 de 0
9 45. (Efomm 206) Um dado cúbico, não viciado, com faces numeradas de a 6, é lançado três vezes. Em cada lançamento, anota-se o número obtido na face superior do dado, formando-se uma sequência (a, b, c). Qual é a probabilidade de que b seja sucessor de a e que c seja sucessor de b ou que a, b e c sejam primos? 4 a) 26 b) c) d) 26 e) (Pucpr 206) A Dupla Diplomação é uma modalidade de intercâmbio da PUCPR que objetiva o aproveitamento de créditos, a partir de um convênio assinado entre a PUCPR e a instituição parceira, e permite ao aluno receber, ao final do curso, o diploma da PUCPR e também o da instituição onde realizou o período de estudos no exterior. A pergunta é a seguinte: sete pessoas pretendem fazer o intercâmbio na Universidade de Ferrara, na área de Arquitetura, e três pessoas pretendem cursar Economia na Universidade de Vic na Catalunha Espanha. Dentre essas dez pessoas, foram escolhidas duas para uma entrevista que sorteará uma bolsa de estudos no exterior. Qual é a probabilidade dessas duas pessoas escolhidas pertencerem ao grupo que pretende estudar Economia na Espanha? a). 5 Se todos os dardos atingem o alvo e 50% atingem o quadrado de lado x, o valor inteiro mais próximo de x é a) 4. b) 5. c) 6. d) 7. e) (Ueg 206) Pedro jogou dois dados comuns numerados de a 6. Sabendo-se que o produto dos números sorteados nos dois dados é múltiplo de 3, a probabilidade de terem sido sorteados os números 3 e 4 é uma em a) 8 b) 2 c) 0 d) 9 TEXTO PARA A PRÓXIMA QUESTÃO: O gráfico abaixo apresenta informações sobre os números de livros lidos no mês passado pelos alunos de uma determinada turma. Sabendo-se que a informação de todos os alunos consta nesse gráfico, e que não há aluno que leu mais de 3 livros, utilize-o para responder à(s) questão(ões). (modificação no gráfico, para melhor representar a ideia envolvida) b). 2 c). 5 d) 3. 7 e) (Ufrgs 206) Dardos são lançados em direção a um alvo com a forma de um quadrado de lado 0, como representado na figura abaixo, tendo igual probabilidade de atingir qualquer região do alvo. 49. (G - ifsp 206) Escolhido aleatoriamente um aluno dessa turma, a probabilidade de o aluno escolhido não ter lido livro no mês passado é: a) 3,5% b) 2,75% c) 2,5% d),75% e) 7,5% Página 9 de 0
10 Gabarito: Resposta da questão : Resposta da questão 2: Resposta da questão 3: Resposta da questão 4: Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão 9: Resposta da questão 0: Resposta da questão : Resposta da questão 2: Resposta da questão 3: Resposta da questão 4: Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão 9: Resposta da questão 20: Resposta da questão 2: Resposta da questão 22: Resposta da questão 23: Resposta da questão 24: Resposta da questão 25: ANULADA Resposta da questão 26: Resposta da questão 27: Resposta da questão 28: Resposta da questão 29: Resposta da questão 30: Resposta da questão 3: Resposta da questão 32: Resposta da questão 33: Resposta da questão 34: Resposta da questão 35: Resposta da questão 36: Resposta da questão 37: Resposta da questão 38: Resposta da questão 39: Resposta da questão 40: Resposta da questão 4: Resposta da questão 42: Resposta da questão 43: Resposta da questão 44: Resposta da questão 45: Resposta da questão 46: Resposta da questão 47: Resposta da questão 48: Resposta da questão 49: Página 0 de 0
Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:
Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado
ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM
1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros
a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15
. (Ufsm 204) A tabela mostra o resultado de uma pesquisa sobre tipos sanguíneos em que foram testadas 600 pessoas. Qual é a probabilidade de uma pessoa escolhida ao acaso ter sangue do tipo A + ou A? 4.
Progressão Aritmética - Questões Extras
Progressão Aritmética - Questões Extras Exercícios 1. A quantidade de anagramas da palavra MERCANTE que não possui vogais juntas é a) 40320. b) 38160. c) 37920. d) 7200. e) 3600. 2. No Boxe, um dos esportes
ANÁLISE COMBINATÓRIA II E PROBABILIDADE
1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros
Resposta: Resposta: 4 ou seja, 1.
1. (Unicamp 2016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a a) 1. 4 b). 8 c) 1. 2 d). 4
BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE
01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP
Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda)
Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) 1. (Famerp 2018) Lucas possui 6 livros diferentes e Milton possui 8 revistas diferentes. Os dois pretendem fazer uma troca
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução
Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma
COLÉGIO EQUIPE DE JUIZ DE FORA
1. (UPF-RS) O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. (UFF-RJ) Com as letras da palavra prova, podem ser escritos x anagramas que começam
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO
é um número natural 1. (Espcex (Aman) 2016) A solução da equação
Lista de Exercícios: Substitutiva e A.P.E. 3º Trimestre 1. (Espcex (Aman) 2016) A solução da equação a) maior que nove. b) ímpar. c) cubo perfeito. d) divisível por cinco. e) múltiplo de três. 3!(x 1)!
Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial.
Lista de exercícios Prof: Maurício Baffi 06/2017 Ensino Médio - 3º ano Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. 1. (G1 - ifsul 2017) Em uma consulta à comunidade acadêmica sobre
Projeto de Recuperação Final - 2ª Série (EM)
Projeto de Recuperação Final - ª Série (EM) MATEMÁTICA 1 (ÁLGEBRA) MATÉRIA A SER ESTUDADA VOLUME CAPÍTULO ASSUNTO 5 15 5 16 5 17 5 19 6 0 6 1 6 6 Análise combinatória II Atividades para sala: Atividades
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
PROBABILIDADE PROPRIEDADES E AXIOMAS
PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por
Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.
p: João Alvaro w: www.matemaniacos.com.br e: [email protected]. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a
Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)
Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento
Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?
LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo
BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0
MATEMÁTICA A 01. (Pucpr) O número de bactérias N em um meio de cultura que cresce exponencialmente pode kt ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a
01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)
ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: [email protected] LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre
Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.
Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como
Roteiro D. Nome do aluno: Número: Revisão. Combinações;
Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos
Professor (a): Ighor Rimes
Ensino Médio Aluno (: Nº: Turma: ª série Bimestre: º N Disciplina: Matemática I Probabilidade Professor (: Ighor Rimes Data: /06/0 Nota: I Orientações da Prova:. Preencha o cabeçalho corretamente.. O aluno
b) 35 c) 14 d) 35 Gab: D
0 - (PUC SP/006) Em um ônibus há apenas bancos vazios, cada qual com lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares forem escolhidos aleatoriamente,
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES
COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de
QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.
1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES
c) 17 b) 4 17 e) 17 21
Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se
AULA 08 Probabilidade
Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral
PROBABILIDADE. c) 1/4 d) 1/12 e) nda MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS
MATQUEST PROBABILIDADE PROF.: JOSÉ LUÍS PROBABILIDADE 1- (Osec-SP) Foram preparadas noventa empadinhas de camarão, sendo que, a pedido, sessenta delas deveriam ser bem mais apimentadas. Por pressa e confusão
Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.
PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.
Noção de fenómeno aleatório e de experiência aleatória
Muitas vezes deparamo-nos com situações de incerteza, fenómenos aleatórios, em que não se pode prever o resultado. Pelo contrário, nos fenómenos deterministas conseguimos dizer antecipadamente o que vai
LISTA 29 - PROBABILIDADE 1
LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas
Combinatória e Probabilidade
Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)
MTM A Extra 0 Exercícios
MTM A Extra 0 Exercícios UNIFESP Duzentos e cinquenta candidatos submeteram-se a uma prova com 5 questões de múltipla escolha, cada questão com 3 alternativas e uma única resposta correta. Admitindo-se
Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo:
Combinação 016 1. (Fgv 015) Em uma sala estão presentes n pessoas, com n 3. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Quantos trajetos diferentes podem ser percorridos, para ir de A até E, usando-se apenas os caminhos e sentidos indicados na figura abaixo? 05) (FGV) Um inspetor visita 6 máquinas diferentes durante
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente
Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}?
Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0,, 3, 5,, 7, 8, 9}? ) Quantos pares ordenados com elementos distintos podemos formar com os
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA
REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se
Exercícios Obrigatórios
Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um
Probabilidade e Estatística Preparação para P1
robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa.
A tabela abaixo apresenta a distribuição dos equipamentos de uma grande empresa. Qual é a probabilidade de que um equipamento selecionado aleatoriamente esteja inativo ou seja do tipo A? a) 6/27 b) 14/27
8. (Uerj 2010) C30 + C20 A30 + A20
1. (Uerj 2007) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro, o Manual do Candidato do Vestibular Estadual 2007. Um desses grupos está apresentado a seguir. Considere que cada
UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA
ANÁLISE COMBINATÓRIA 1. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto,
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 7 / 8 / 2018 Aluno(: Nº: Turma: Assunto: ANÁLISE
UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios
UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes
Matemática E Extensivo V. 5
Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO
ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização
CAIXA ECONÔMICA FEDERAL
ESTATISTICA (exercícios) 1.) As alturas dos jogadores de basquete da Seleção Brasileira são 1,98 m; 2,04 m; 2,06 m; 2,02 m e 2,05 m. A média de altura dessa seleção, em m, é de: a.) 2,01 b.) 2,02 c.) 2,03
3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos
Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos
Prof.: Joni Fusinato
Introdução a Teoria da Probabilidade Prof.: Joni Fusinato [email protected] [email protected] Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso
Probabilidade em espaços discretos. Prof.: Joni Fusinato
Probabilidade em espaços discretos Prof.: Joni Fusinato [email protected] [email protected] Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade
Matemática. Probabilidade Básica. Professor Dudan.
Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades
Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan
Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de
Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal
Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO
Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial
( ) ( ) Questões tipo exame. O número pedido é: Questões tipo exame Pág Os algarismos 1 e 2 podem ocupar 5 A. posições diferentes.
Questões tipo exame Pág. 6.. Os algarismos e podem ocupar A posições diferentes. Os restantes lugares são ocupados por três algarismos escolhidos de entre oito, portanto, existem A maneiras diferentes
Elaine Cristina e Aline Heloisa
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES ANO 2018 PROFESSOR (a) DISCIPLINA Valor: Elaine Cristina e Aline Heloisa Matemática 30 pontos ALUNO (a) SÉRIE 2º ANO ENSINO MÉDIO
AVALIAÇÃO DE ESTUDOS INDEPENDENTES E. E. DR. JOSÉ MARQUES DE OLIVEIRA
AVALIAÇÃO DE ESTUDOS INDEPENDENTES - 2018 E. E. DR. JOSÉ MARQUES DE OLIVEIRA Professor: Bruno Rezende Pereira Disciplina: Matemática 2º Ano Ensino Médio Valor: 70,0 pontos Aluno: Turma: CONTAS E DESENVOLVIMENTO
(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição?
MAT Lista 3 Data da lista: 01/04/2019 Preceptores: Gabriele Braz Cursos: Administração, Ciências Econômicas e Tec. Biotecnologia Coordenadora: Luciene 1. Um homem vai a um restaurante disposto a comer
Professor Zé Moreira QUESTÕES PROPOSTAS
QUESTÕES PROPOSTAS 01 - Uma dama tem 3 saias e 4 blusas. De quantas maneiras poderá sair usando sala e blusa sem repetir o mesmo conjunto? 02 - Quantos números de 3 algarismos distintos podemos formar
3º trimestre Sala de estudos Data: 29/09/17 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº
º trimestre Sala de estudos Data: 9/09/7 Ensino Médio º ano classe: Prof. Maurício Nome: nº. (Acafe 07) Uma prova consta de 7 questões de múltipla escolha, com 4 alternativas cada uma, e apenas uma correta.
Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.
PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator
Colégio Estadual Conselheiro Macedo Soares. Dependência de Matemática. 3º ano do Ensino Médio. Combinatória, Probabilidade Estatística.
Colégio Estadual Conselheiro Macedo Soares Dependência de Matemática 3º ano do Ensino Médio Combinatória, Probabilidade Estatística Fábio Vinícius Professor de Matemática www.fabiovinicius.mat.br [email protected]
Tarefa nº_ 1.8. Probabilidades e Combinatória Análise Combinatória
Tarefa nº_ 1.8 MATEMÁTICA Probabilidades e Combinatória Análise Combinatória Nome: 12º Ano Data / / 1. A Câmara Municipal de uma cidade decidiu alterar o sistema de matrículas das motorizadas. Assim, cada
Matemática E Extensivo V. 5
Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA. ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_
TRABALHO DE RECUPERAÇÃO FINAL DE MATEMÁTICA ( Segundos Técnicos ) NOME: TURMA: Nº PROFESSOR: Daniel Verotti_ Análise Combinátoria, Probabilidade, Matrizes e Determinantes A resolução detalhada das questões
Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática
Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde
2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2
GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e
Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase
Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do
Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA
Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine
Trabalho de Recuperação Final - 3 Ano - Ensino Médio
Trabalho de Recuperação Final - 3 Ano - Ensino Médio 1. (Fuvest) Considere o experimento que consiste no lançamento de um dado perfeito (todas as seis faces têm probabilidades iguais). Com relação a esse
Aulas particulares. Conteúdo
Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo
Raciocínio Lógico. 06- A quantidade de anagramas que podem ser formados com as letras da palavra MINISTÉRIO é inferior a
Raciocínio Lógico 01- Se Carlos é surfista, então Julia não é tenista. Se Julia não é tenista, então Michelle anda de skate. Se Michelle anda de skate, então Lucas não é patinador. Ora, Lucas é patinador.
Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.
Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com
1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.
COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com
MATEMÁTICA Revisão II Módulo 2. Professor Marcelo Gonzalez Badin
MATEMÁTICA Revisão II Módulo 2 Professor Marcelo Gonzalez Badin 1.(Unicamp-2009) Em uma bandeja retangular, uma pessoa dispôs brigadeiros formando n colunas, cada qual com m brigadeiros, como mostra a
n! = n (n 1) (n 2) 1.
Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso - IFMT Campus Várzea Grande Aula - Análise Combinatória e Probabilidade Prof. Emerson Dutra E-mail: [email protected] Página
De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?
1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu
Interbits SuperPro Web
MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele
B) R$ 6, 50 C) R$ 7, 00 D) R$ 7, 50 E) R$ 8, 00
1 Matemática Q1. (OBMEP) Joãozinho escreveu os números 1, 2 e 3 como resultados de operações envolvendo exatamente quatro algarismos 4, como nos exemplos a seguir: 1 = (4 + 4) (4 + 4) 2 = 4 4 + 4 4 3 =
Erivaldo. Análise Combinatória, Probabilidade
Erivaldo Análise Combinatória, Probabilidade ACAFE 2013.01 Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. O "American Standard Code for Information Interchange"
Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias
Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.
PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No
Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.
1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira
