Progressão Aritmética - Questões Extras

Tamanho: px
Começar a partir da página:

Download "Progressão Aritmética - Questões Extras"

Transcrição

1 Progressão Aritmética - Questões Extras Exercícios 1. A quantidade de anagramas da palavra MERCANTE que não possui vogais juntas é a) b) c) d) e) No Boxe, um dos esportes olímpicos, um pugilista tem à sua disposição quatro golpes básicos: o jab, o direto, o cruzado e o gancho. Suponha que um pugilista, preparando-se para os Jogos Olímpicos do Rio, em 2016, queira criar uma sequência com 6 golpes, empregando necessariamente dois jabs, dois diretos, um cruzado e um gancho. Assim, o número máximo de sequências que ele poderá criar será de Lembre-se de que: Permutação com repetição k 1,k 2,k 3,... n! Pn k 1!k 2!k 3!... a) 180. b) 160. c) 140. d) 120. e) O número de candidatos inscritos para realização do último vestibular de verão, em um determinado curso, corresponde ao número de anagramas da palavra VESTIBULAR que começam por VE e terminam por AR. Esse número é igual a: a) 120. b) 240. c) 360. d) 540. e) Newton possui 7 livros distintos, sendo 3 de Álgebra, 2 de Cálculo e 2 de Geometria. O número de maneiras diferentes que Newton pode organizar esses livros em uma estante, de forma que os livros de um mesmo assunto permaneçam juntos, é a) 24 b) 36 c) 56 d) 72 e) Na figura a seguir, as linhas horizontais e verticais representam ruas e os quadrados representam quarteirões. A quantidade de trajetos de comprimento mínimo ligando A a B é: a) b) c) 256 d) 120 e) Um banco está testando um novo produto e disponibilizou a alguns dos seus clientes acesso via internet para esse produto, por meio de senhas compostas por cinco vogais distintas e dois números pares distintos, de 2 a 8, nessa ordem, ou seja, primeiro as vogais e depois os números. O número de clientes que podem acessar esse novo produto, via internet, é: a) 22. b) c) d) 180. e) No Brasil, os veículos de pequeno, médio e grande porte que se movimentam sobre quatro ou mais pneus são identificados com placas alfanuméricas que possuem sete dígitos, dos quais três são letras do alfabeto português e quatro são algarismos de 0 a 9. inclusive estes. Quantos desses veículos podem ser emplacados utilizando somente letras vogais e algarismos pares? a) b) c) d) Genius era um brinquedo muito popular na década de 1980 (...). O brinquedo buscava estimular a memorização de cores e sons. Com formato semelhante a um OVNI, possuía 4 botões de cores distintas que emitiam sons harmônicos e se iluminavam em sequência. Cabia aos jogadores repetir o processo sem errar. Origem: Wikipédia, a enciclopédia livre. (Adaptado).

2 d) 36 e) 60 Considerando uma fase do jogo em que 3 luzes irão acender de forma aleatória e em sequência, podendo cada cor acender mais de uma vez. O número máximo de formas que essa sequência de 3 luzes poderá acender é: a) 12. b) 24. c) 36. d) Um palíndromo ou capicua é um número, que se lê da mesma maneira nos dois sentidos, ou seja, da esquerda para a direita ou ao contrário, como 333, 1661 e Assinale a alternativa correspondente à quantidade de palíndromos que são números pares de cinco algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) Um auditório em forma de um salão circular dispõe de 6 portas, que podem ser utilizadas tanto como entrada ou para saída do salão. De quantos modos distintos uma pessoa que se encontra fora do auditório pode entrar e sair do mesmo, utilizando como porta de saída uma porta diferente da que utilizou para entrar? a) 6 b) 5 c) 12 d) 30 e) De acordo com o DETRAN de uma certa cidade, ainda estão disponíveis os prefixos de placa de automóveis com três letras, conforme modelo a seguir: M Se estiverem disponíveis para o 2º espaço as letras X, Y e Z, e para o 3º espaço as letras letras A, B, C, D, E, F, G e H, então o número de prefixos disponíveis para emplacamento é: a) 18 b) 24 c) Uma montadora de carros oferece a seus clientes as seguintes opções na montagem de um carro: 2 tipos de motores (1.8 ou 2.0), 2 tipos de câmbios (manual ou automático), 6 cores (branco, preto, vermelho, azul, cinza ou prata) e 3 tipos de acabamento (simples, intermediário ou sofisticado). De quantas maneiras distintas pode-se montar esse carro? a) 4 b) 13 c) 24 d) 36 e) A vendedora de roupas está arrumando os cabides da vitrine de uma loja. Ela deve pendurar 5 camisas, 3 bermudas e 2 casacos na vitrine, de modo que cada peça fique uma do lado da outra sem sobreposição. Quantas são as disposições possíveis nessa arrumação, de modo que as peças de um mesmo tipo fiquem sempre juntas, lado a lado na vitrine? a) 30 b) 120 c) d) e) Um fotógrafo foi contratado para tirar fotos de uma família composta por pai, mãe e quatro filhos. Organizou as pessoas lado a lado e colocou os filhos entre os pais. Mantida essa configuração, o número de formas em que poderão se posicionar para a foto é a) 4 b) 6 c) 24 d) 36 e) Numa lanchonete o lanche é composto por três partes: pão, molho e recheio. Se essa lanchonete oferece aos seus clientes duas opções de pão, três de molho e quatro de recheio, a quantidade de lanches distintos que ela pode oferecer é de a) 9 b) 12 c) 18 d) Dispondo de cinco cores distintas, uma pessoa pretende pintar as letras da palavra de acordo com os seguintes critérios:

3 - na palavra, letras que são equidistantes da letra T terão a mesma cor; - letras adjacentes serão pintadas de cores distintas, e - cada letra será pintada com uma única cor. O número de modos distintos de se realizar essa pintura é a) 120. b) 90. c) 80. d) 50. e) Preparando-se para a sua festa de aniversário de sessenta anos, uma senhora quer usar três anéis de cores diferentes nos dedos das mãos, um anel em cada dedo. De quantos modos diferentes pode colocá-los, se não vai por nenhum anel nos polegares? 18. Um vagão de metrô tem 10 bancos individuais, sendo 5 de frente e 5 de costas. De 10 passageiros, 4 preferem sentar de frente, 3 preferem sentar de costas e os demais não têm preferência. De quantos modos eles podem sentar, respeitadas as preferências? a) Um número inteiro maior que b) Um número inteiro entre 167 e c) Exatamente 166. d) Um número inteiro menor que 100. e) Exatamente Uma melodia é uma sequência de notas musicais. Para compor um trecho de três notas musicais sem repeti-las, um músico pode utilizar as sete notas que existem na escala musical. O número de melodias diferentes possíveis de serem escritas é: a) 3 b) 21 c) 35 d) 210 e) Maria deve criar uma senha de 4 dígitos para sua conta bancária. Nessa senha, somente os algarismos 1,2,3,4,5 podem ser usados e um mesmo algarismo pode aparecer mais de uma vez. Contudo, supersticiosa, Maria não quer que sua senha contenha o número 13, isto é, o algarismo 1 seguido imediatamente pelo algarismo 3. De quantas maneiras distintas Maria pode escolher sua senha? a) 551 b) 552 c) 553 d) 554 e) Um aparelho eletrônico é composto das peças A, B e C, cujos preços, em reais, nas lojas L1, L2 e L3 estão na tabela a seguir. A B C L L L3 150 x 900 Se a loja L3 não vende a peça B, então, o número de maneiras para montar esse aparelho com um custo máximo de R$ 1.930,00 é a) 10 b) 13 c) 16 d) Duzentos e cinquenta candidatos submeteram-se a uma prova com 5 questões de múltipla escolha, cada questão com 3 alternativas e uma única resposta correta. Admitindo-se que todos os candidatos assinalaram, para cada questão, uma única resposta, pode-se afirmar que pelo menos: a) Um candidato errou todas as respostas. b) Dois candidatos assinalaram exatamente as mesmas alternativas. c) Um candidato acertou todas as respostas. d) A metade dos candidatos acertou mais de 50% das respostas. e) A metade dos candidatos errou mais de 50% das respostas. 23. O número de permutações da palavra ECONOMIA que não começam nem terminam com a letra O é a) b) c) d) e) Um grupo de amigos, ao planejar suas férias coletivas, listou 12 cidades brasileiras que pretendem conhecer juntos, sendo que seis ficam no litoral e seis no interior do país. O critério estabelecido foi de alternar as férias, em cada ano, ora em cidades litorâneas, ora, em interioranas, definindo-se que, nos próximos 12 anos, será visitada uma cidade diferente por ano. Desse modo, a quantidade de maneiras possíveis para atender a esse critério é a) b) c) d) e)

4 25. De quantas maneiras podemos enfileirar 5 mulheres e 3 homens de tal modo que os 3 homens permaneçam juntos? a) 8! b) 6! c) 6!3! d) 7! e) 9! 26. No restaurante italiano Ingiusto, os garçons colocam os pedidos dos clientes à cozinha uns sobre os outros de modo que eles formam uma pilha de pedidos. Cada novo pedido que chega é colocado no topo da pilha. O pessoal da cozinha, quando se vê livre para pegar um novo pedido, pega sempre o pedido que está no topo da pilha. Em determinado dia, durante a primeira hora de funcionamento do restaurante, foram feitos e atendidos quatro pedidos de clientes. Suponha que eles tenham sido numerados e que foram colocados na pilha, na ordem 1, 2, 3, 4. Das sequências a seguir, aquela que pode representar a ordem em que esses pedidos foram pegos pelo pessoal da cozinha é a) 1, 3, 2, 4 b) 2, 4, 1, 3 c) 4, 2, 1, 3 d) 3, 4, 1, 2 e) 4, 1, 2, Em cada ingresso vendido para um show de música, é impresso o número da mesa onde o comprador deverá se sentar. Cada mesa possui seis lugares, dispostos conforme o esquema a seguir. O lugar da mesa em que cada comprador se sentará não vem especificado no ingresso, devendo os seis ocupantes entrar em acordo. Os ingressos para uma dessas mesas foram adquiridos por um casal de namorados e quatro membros de uma mesma família. Eles acordaram que os namorados poderiam sentarse um ao lado do outro. Nessas condições, o número de maneiras distintas em que as seis pessoas poderão ocupar os lugares da mesa é a) 96. b) 120. c) 192. d) 384. e) Um profissional de design de interiores precisa planejar as cores que serão utilizadas em quatro paredes de uma casa, para isso possui seis cores diferentes de tinta. O número de maneiras diferentes que esse profissional poderá utilizar as seis cores nas paredes, sabendo-se que somente utilizará uma cor em cada parede, é: a) 24 b) 30 c) 120 d) 360 e) Por questão de segurança os bancos instalaram ao lado da maçaneta da porta, que dá acesso à área por trás dos caixas, um teclado como o da figura abaixo. Para entrar nessa área, cada funcionário tem a sua própria senha. Suponha que esta senha seja composta por quatro dígitos distintos. Quantas senhas poderão ser criadas se forem usados apenas os números primos que aparecem no teclado? a) 6 b) 24 c) 80 d) 120 e) Uma empresa escolherá um chefe para cada uma de suas repartições A e B. Cada chefe deve ser escolhido entre os funcionários das respectivas repartições e não devem ser ambos do mesmo sexo. Abaixo é apresentado o quadro de funcionários das repartições A e B. FUNCIONÁRIOS REPARTIÇÕES A Mulheres 4 7 Homens 6 3 De quantas maneiras é possível ocupar esses dois cargos? a) 12. b) 24. c) 42. d) 54. e) 72. B

5 Gabarito: Resposta da questão 1: Considere o diagrama, no qual cada espaço em branco pode ser ocupado por no máximo uma vogal. _M_R _ C _N_ T _ Para que não haja vogais juntas, deve-se escolher 3 dos 6 espaços disponíveis para inserir as vogais E, E e A. Isso pode ser feito de 6 6! 20 maneiras. Definidos os espaços 3 3! 3! que serão ocupados pelas vogais, ainda (2) 3! podemos permutá-las de P3 3 modos. 2! Ademais, também é possível permutar as consoantes de P5 5! 120 maneiras. Portanto, pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 2: Utilizando a permutação simples com repetição de elementos, pode-se escrever: 2;2 6! ! 2;2 P6 P ! 2! 1! 1! 2! 2 1 Resposta da questão 3: Permutando as letras S, T, I, B, U, L, temos, uma permutação simples: VE AR P6 6! Resposta da questão 4: Tem-se P3 3! maneiras de dispor os três blocos de livros, P3 3! modos de organizar os livros de Álgebra, P2 2! maneiras de dispor os livros de Cálculo e P2 2! modos de dispor os livros de Geometria. Em consequência, pelo Princípio Multiplicativo, a resposta é 3! 3! 2! 2! 144. Resposta da questão 5: α, β, θ,... n! 5,3 8! Pn P8 56 α! β! θ!... 5! 3! Resposta da questão 6: Considerando as vogais: a, e, i, o e u; existem P5 5! modos de dispor as vogais, 4 modos de escolher o primeiro algarismo par e 3 modos de escolher o segundo algarismo par. Portanto, pelo Princípio Multiplicativo, segue que a resposta é 5! Resposta da questão 7: Considerando como vogais apenas as letras a, e, i, o e u, há 5 possibilidades para cada letra e 5 possibilidades para cada algarismo. Em consequência, pelo Princípio Multiplicativo, 7 segue que a resposta é Observação: O item não considera o acordo ortográfico vigente. Resposta da questão 8: Pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 9: Desde que o algarismo das unidades deve ser par e diferente de zero, temos 4 maneiras de escolher esse algarismo. Portanto, como existem 10 possibilidades para o algarismo das dezenas e 10 maneiras de escolher o algarismo das centenas, pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 10: Princípio Fundamental da Contagem entrar sair Resposta da questão 11: Com base no enunciado, pode-se deduzir: M 3 possibili dades 8 possibili dades Logo, o nϊmero total de possibilidades de prefixos serα de

6 Resposta da questão 12: O resultado será o produto do número de opções para cada item Resposta da questão 13: Supondo que as peças de um mesmo grupo (camisas, bermudas e casacos) sejam distinguíveis, há P5 5! 120 maneiras de arrumar as camisas, P3 3! 6 modos de arrumar as bermudas e P2 2! maneiras de arrumar os casacos. Além disso, ainda podemos arrumar os 3 grupos de P3 3! 6 modos. Portanto, pelo Princípio Multiplicativo, segue que o resultado pedido é Resposta da questão 14: Há 2 possibilidades para o posicionamento dos pais e P4 4! 24 modos de posicionar os filhos. Desse modo, pelo Princípio Multiplicativo, segue que o resultado é Resposta da questão 15: Pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 16: Existem 5 maneiras de escolher a cor da letra T, 4 modos de escolher a cor das letras A e E, e 4 maneiras de escolher a cor das letras F e C. Por conseguinte, pelo Princípio Multiplicativo, a resposta é Resposta da questão 17: = 336 Resposta da questão 18: = Resposta da questão 19: Resposta da questão 20: Todas as senhas possíveis = 625 senhas com o 1 seguido pelo 3 = 74 Senhas possíveis = = 551 Resposta da questão 21: Fazendo = 18, encontramos 18 possibilidades para a montagem do aparelho. Em apenas duas situações a montagem fica mais cara que 1930 (L2, L1, L1 e L3, L1, L1). Fazendo 18 2, temos 16 possibilidades. Resposta da questão 22: Resposta da questão 23: Resposta da questão 24: Temos duas sequências possíveis (I = interior e L = litoral) I L I L I L I L I L I L ou L I L I L I L I L I L I Em números, temos: = = Resposta da questão 25: Considerando os 3 homens como sendo uma única pessoa, teríamos a permutação de 6 pessoas. Além disso, ainda podemos permutar os 3 homens entre si. Portanto, o resultado pedido é dado por P6 P3 6! 3! Resposta da questão 26: A sequência 2, 4,1, 3 não pode ocorrer, pois após o pedido 4 ser retirado, o próximo pedido seria o 3.

7 A sequência 4, 2,1, 3 não pode ocorrer, pelo mesmo motivo da sequência 2, 4,1, 3. A sequência 3, 4,1, 2 não pode ocorrer, já que o próximo pedido a ser retirado após o 4 seria o 2. A sequência 4,1, 2, 3 não pode ocorrer, pelo mesmo motivo das sequências 2, 4,1, 3 e 4, 2,1, 3. Portanto, a única sequência correta é 1, 3, 2, 4. Resposta da questão 27: Existem 2 maneiras de escolher um dos lados da mesa. Escolhido o lado, os três lugares que o casal e um dos membros da família irão ocupar podem ser definidos de P2 2! 2 maneiras. O casal ainda pode trocar de lugar de P2 2! 2 modos, e a família pode ocupar os 4 lugares de P4 4! 24 maneiras. Portanto, pelo PFC, segue que o resultado pedido é dado por Resposta da questão 28: Existem 6 modos de escolher a cor da primeira parede, 5 para escolher a cor da segunda, 4 de escolher a cor da terceira e 3 de escolher a cor da quarta. Portanto, pelo PFC, existem maneiras de pintar as paredes de modo que cada uma tenha uma cor distinta. Resposta da questão 29: Números primos do teclado: 2, 3, 5 e 7. Número de senhas: = 24. Resposta da questão 30: Existem 4 maneiras de escolher uma mulher da repartição A, e 3 maneiras de escolher um homem da repartição B. Logo, pelo PFC, existem modos de escolher uma mulher da repartição A e um homem da repartição B. Por outro lado, existem 6 maneiras de escolher um homem da repartição A, e 7 maneiras de escolher uma mulher da repartição B. Assim, existem modos de escolher um homem da repartição A e uma mulher da repartição B. Por conseguinte, é possível ocupar os dois cargos de maneiras.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3. Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d

Leia mais

Considere a figura, em que estão indicadas as possíveis localizações do cliente.

Considere a figura, em que estão indicadas as possíveis localizações do cliente. 36. [C] Considere a figura, em que estão indicadas as possíveis localizações do cliente. A resposta é 12. 37. [C] Como cada tarefa pode ser distribuída de três modos distintos, podemos concluir, pelo Princípio

Leia mais

Análise Combinatória 2

Análise Combinatória 2 1. Um estudante possui dez figurinhas, cada uma com o escudo de um único time de futebol, distribuídas de acordo com a tabela: Para presentear um colega, o estudante deseja formar um conjunto com cinco

Leia mais

1. As chapas dos automóveis no Brasil são formadas por 3 letras e 4 algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas?

1. As chapas dos automóveis no Brasil são formadas por 3 letras e 4 algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas? 1. As chapas dos automóveis no Brasil são formadas por 3 letras e algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas? 2. De quantos modos cinco pessoas podem sentar-se num carro

Leia mais

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) 1. (Famerp 2018) Lucas possui 6 livros diferentes e Milton possui 8 revistas diferentes. Os dois pretendem fazer uma troca

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial.

Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. Lista de exercícios Prof: Maurício Baffi 06/2017 Ensino Médio - 3º ano Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. 1. (G1 - ifsul 2017) Em uma consulta à comunidade acadêmica sobre

Leia mais

PRINCÍPIO FUNDAMENTAL DA CONTAGEM COMO CAI NO ENEM! 1. (Enem 2015) Numa cidade, cinco escolas de samba (I, II, III, IV e V) participaram do desfile de Carnaval. Quatro quesitos são julgados, cada um por

Leia mais

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

RACIOCÍNIO LÓGICO MATEMÁTICO

RACIOCÍNIO LÓGICO MATEMÁTICO RACIOCÍNIO LÓGICO MATEMÁTICO PROFº MARCELO JARDIM WWW.CONCURSOVIRTUAL.COM.BR 1 PRINCÍPIO FUNDAMENTAL DA CONTAGEM PRINCÍPIO MULTIPLICATIVO Formação de senhas, códigos, placas de automóveis e telefones.

Leia mais

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016 Resposta da questão 1: Resposta da questão : Resposta da questão 3: Resposta da questão : Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é: 1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e

Leia mais

Análise e probabilidade Curso férias

Análise e probabilidade Curso férias . (Ucs 206) Um supermercado está selecionando, entre 5 candidatos que se apresentaram, 3 funcionários para desempenhar a função de caixa. De quantas maneiras diferentes pode ser feita essa escolha? a)

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA

COLÉGIO EQUIPE DE JUIZ DE FORA 1. (UPF-RS) O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. (UFF-RJ) Com as letras da palavra prova, podem ser escritos x anagramas que começam

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Professor Zé Moreira QUESTÕES PROPOSTAS

Professor Zé Moreira QUESTÕES PROPOSTAS QUESTÕES PROPOSTAS 01 - Uma dama tem 3 saias e 4 blusas. De quantas maneiras poderá sair usando sala e blusa sem repetir o mesmo conjunto? 02 - Quantos números de 3 algarismos distintos podemos formar

Leia mais

Princípios e Permutação

Princípios e Permutação Revisão 04 Princípios e Permutação 01. Um "Shopping Center" possui 4 portas de entrada para o andar térreo, 5 escadas rolantes ligando o térreo ao primeiro pavimento e 3 elevadores que conduzem do primeiro

Leia mais

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar

Leia mais

Mat. Gabriel Miranda Monitor: Gabriella Teles

Mat. Gabriel Miranda Monitor: Gabriella Teles Professor: Luanna Ramos Gabriel Miranda Monitor: Gabriella Teles Permutação circular e combinação completa 19 jul RESUMO Permutação Circular Permutação circular é um tipo de permutação composta por n elementos

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

PERMUTAÇÃO BÁSICA. b) 120. c) 15. d) 14.

PERMUTAÇÃO BÁSICA. b) 120. c) 15. d) 14. 1. (Unicamp 2015) O número mínimo de pessoas que deve haver em um grupo para que possamos garantir que nele há pelo menos três pessoas nascidas no mesmo dia da semana é igual a a) 21. b) 20. c) 15. d)

Leia mais

Análise Combinatória - permutação

Análise Combinatória - permutação 1. (Imed 2016) O número de candidatos inscritos para realização do último vestibular de verão, em um determinado curso, corresponde ao número de anagramas da palavra VESTIBULAR que começam por VE e terminam

Leia mais

Lista - Matemática. w: e: Princípio Multiplicativo. Princípio Multiplicativo e permutações.

Lista - Matemática. w:  e: Princípio Multiplicativo. Princípio Multiplicativo e permutações. p: João Alvaro w: www.matemaniacos.com.br e: [email protected] Princípio Multiplicativo e permutações. 1. Dispondo das letras A, B e C e dos algarismos 1, 2, 3, 4 e 5, quantas placas de automóveis

Leia mais

Análise Combinatória

Análise Combinatória Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

CRONOGRAMA DE RECUPERAÇÃO TEORIA E EXEMPLOS SOBRE ANÁLISE COMBINATÓRIA

CRONOGRAMA DE RECUPERAÇÃO TEORIA E EXEMPLOS SOBRE ANÁLISE COMBINATÓRIA CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 2º E.M. DISCIPLINA: Matemática 1 Caderno Número(s) da(s) aula(s) 07 37 e 38 Assuntos - Análise Combinatória: Princípios básicos de contagem e Princípio Fundamental da Contagem.

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

Exercícios sobre Métodos de Contagem

Exercícios sobre Métodos de Contagem Exercícios sobre Métodos de Contagem 1) Um grupo de 4 alunos (Alice, Bernardo, Carolina e Daniel) tem que escolher um líder e um vice-líder para um debate. (a) Faça uma lista de todas as possíveis escolhas

Leia mais

Análise Combinatória AULA 1. Métodos Simples de Contagem

Análise Combinatória AULA 1. Métodos Simples de Contagem Análise Combinatória AULA 1 Métodos Simples de Contagem Tales Augusto de Almeida 1. Introdução A primeira ideia que surge no imaginário de qualquer estudante quando ele ouve a palavra contagem seria exatamente

Leia mais

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue:

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue: ANÁLISE COMBINATÓRIA Prof. Aurimenes A análise combinatória é a parte da matemática que estuda os problemas de contagem, isto é, podemos calcular a quantidade de subconjuntos de um dado conjunto finito,

Leia mais

CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO

CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial

Leia mais

Mat. e Luanna Ramos Monitor: Roberta Teixeira

Mat. e Luanna Ramos Monitor: Roberta Teixeira 1 Professor: Gabriel Miranda e Luanna Ramos Monitor: Roberta Teixeira 2 Princípio Fundamental da Contagem 05 jul RESUMO Antes de começarmos a estudar combinações, é fundamental sabermos o que é um fatorial.

Leia mais

ESTUDO DA ANÁLISE COMBINATÓRIA

ESTUDO DA ANÁLISE COMBINATÓRIA ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan

Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan Matemática Princípio da Contagem Os primeiros passos da humanidade na matemática estavam ligados a necessidade de contagem de objetos de

Leia mais

Exercícios de Aperfeiçoamento. [Análise Combinatória]

Exercícios de Aperfeiçoamento. [Análise Combinatória] Exercícios de Aperfeiçoamento [Análise Combinatória] 1) Do cardápio de uma festa constavam dez diferentes tipos de salgadinhos, dois quais só quatro seriam servidos quentes. O garçom encarregado de arrumar

Leia mais

(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição?

(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição? MAT Lista 3 Data da lista: 01/04/2019 Preceptores: Gabriele Braz Cursos: Administração, Ciências Econômicas e Tec. Biotecnologia Coordenadora: Luciene 1. Um homem vai a um restaurante disposto a comer

Leia mais

Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial

Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Matemática Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Seja n um número natural tal que n > 1. Definimos n fatorial e representamos por n!, da seguinte forma: Propriedade fundamental

Leia mais

Análise Combinatória - ENEM

Análise Combinatória - ENEM Prof Rômulo Garcia https://wwwfacebookcom/matematicaenem Análise Combinatória - ENEM 1)Quantos são os gabaritos possíveis de um teste de 10 questões de múltipla escolha, com 5 opções por questão? Podemos

Leia mais

ESTUDO DA ANÁLISE COMBINATÓRIA

ESTUDO DA ANÁLISE COMBINATÓRIA ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 26/02/2016 Disciplina: Matemática Permutações e Arranjos Período: 1 o Bimestre Série/Turma: 3 a série EM Professor: Wysner Max Valor: Aluno(a): 01 - Na palavra

Leia mais

2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº

2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº 2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº.. Sala de estudos Análise Combinatória Segundo Trimestre de 2017 Prof: Maurício Baffi Felippelli

Leia mais

Análise Combinatória Intermediário

Análise Combinatória Intermediário Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos

Leia mais

MTM A Extra 0 Exercícios

MTM A Extra 0 Exercícios MTM A Extra 0 Exercícios UNIFESP Duzentos e cinquenta candidatos submeteram-se a uma prova com 5 questões de múltipla escolha, cada questão com 3 alternativas e uma única resposta correta. Admitindo-se

Leia mais

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C

Solução: a) Observamos que temos as seguintes linhas entre as cidades: A B C Exercício 1 Há 3 linhas de ônibus entre as cidades A e B e 2 linhas de ônibus entre B e C. De quantas maneiras uma pessoa pode viajar: (a) indo de A até C, passando por B? (b) indo e voltando entre A e

Leia mais

n! ( n 1)! 2!.( n 1)! n n ( n 1)!( n 1)! ! 102! 100! 20! 6! c) 20! 6! 20! 5! e) 20! 6! Gabarito: B

n! ( n 1)! 2!.( n 1)! n n ( n 1)!( n 1)! ! 102! 100! 20! 6! c) 20! 6! 20! 5! e) 20! 6! Gabarito: B Tarefas 14, 15 e 16 Professor Luiz Exercícios de sala 01. Simplifique: n! a) ( n 1)! ( n 3)! 5 n! ( n 1)! b) n! 03. (PUC-RS) Se a) 13 b) 11 c) 9 d) 8 e) 6 Gabarito: C ( n 1)! 1, então n é igual a: ( n

Leia mais

10. ANÁLISE COMBINATÓRIA

10. ANÁLISE COMBINATÓRIA 10. ANÁLISE COMBINATÓRIA 1) Observe a figura: Nessa figura, está representada uma bandeira que deve ser pintada com duas cores diferentes, de modo que a faixa do meio tenha a cor diferente das outras faixas.

Leia mais

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS 1 Números inteiros, racionais e reais. 1.1 Problemas de contagem. 2 Sistema legal de medidas. 3 Razões e proporções; divisão proporcional. 3.1 Regras de três simples

Leia mais

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir.

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir. Contagem 5: resolução de exercícios Desde a primeira aula de contagem estamos estudando o princípio multiplicativo e o princípio aditivo. Também estudamos o conceito de permutação e nas últimas aulas foram

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;

Leia mais

Erivaldo. Análise Combinatória, Probabilidade

Erivaldo. Análise Combinatória, Probabilidade Erivaldo Análise Combinatória, Probabilidade ACAFE 2013.01 Em computação, chama-se um dígito binário (0 ou 1) de bit, que vem do inglês Binary Digit. O "American Standard Code for Information Interchange"

Leia mais

RESPOSTA Princípio Fundamental da contagem

RESPOSTA Princípio Fundamental da contagem RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES e a t M Arranjo Combinação e Permutação PÁGINA 33 01 O número de interruptores será igual ao número de combinações de 6 elementos (lâmpadas) tomados de 3 em 3.

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno 8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete

Leia mais

Análise Combinatória. Parte I. Página 1

Análise Combinatória. Parte I.  Página 1 Parte I Análise Combinatória 1. (Ufmg 2013) Permutando-se os algarismos do número 123456, formam-se números de seis algarismos. Supondo-se que todos os números formados com esses seis algarismos tenham

Leia mais

CAIXA ECONÔMICA FEDERAL

CAIXA ECONÔMICA FEDERAL ESTATISTICA (exercícios) 1.) As alturas dos jogadores de basquete da Seleção Brasileira são 1,98 m; 2,04 m; 2,06 m; 2,02 m e 2,05 m. A média de altura dessa seleção, em m, é de: a.) 2,01 b.) 2,02 c.) 2,03

Leia mais

Roteiro de Estudos OBMEP NA ESCOLA Grupo N2 2º Ciclo

Roteiro de Estudos OBMEP NA ESCOLA Grupo N2 2º Ciclo Roteiro de Estudos OBMEP NA ESCOLA Grupo N2 2º Ciclo - Assuntos a serem abordados: Encontro 1: Princípios aditivo e multiplicativo: identificar, modelar e resolver situaçõesproblema. Resolução de exercícios

Leia mais

Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega

Nome Nº Ano/Série Ensino Turma. Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Nome Nº Ano/Série Ensino Turma 3 o Médio Disciplina Professores Natureza Código/ Tipo Trimestre / Ano Data de Entrega Matemática 1 Tema: Júnior Lista de Exercícios Análise Combinatória 3º / 2012 09/nov/2012

Leia mais

As permutações. Nesta aula você estudará um tipo muito comum. Nossa aula

As permutações. Nesta aula você estudará um tipo muito comum. Nossa aula A UA UL LA As permutações Introdução Nesta aula você estudará um tipo muito comum de problemas de contagem, que está relacionado com as várias formas de organizar ou arrumar os elementos de um conjunto.

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica

MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi, (x

Leia mais

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 2ª SÉRIE ESCOLAR - ENSINO MÉDIO Nome: Turma: nº: Professor : Chiquinho Data: 23/07/2014 ATIVIDADE PONTUADA VALOR: 5,0 pontos... 1) Os 63 novos contratados

Leia mais

Matemática E Extensivo V. 3

Matemática E Extensivo V. 3 Matemática E Extensivo V. Exercícios 01) 10 anagramas. POEMA 5 letras 5! 10. 0) 60 anagramas. Vogais: e, i, o omeçando com e : e _ 10 omeçando com i : i _ 10 omeçando com o : o _ 10 Logo 10 60. 4! 4 (permutação

Leia mais

algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) 800

algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) 800 Primeira Parte 1. (Ueg) Um aluno terá que escrever a palavra PAZ utilizando sua caneta de quatro cores distintas, de tal forma que nenhuma letra dessa palavra tenha a mesma cor. O número de maneiras que

Leia mais

MATEMÁTICA I ANÁLISE COMBINATÓRIA 23! 48! 47! 24! 14! 13! 13! 18! 10! 100! 5! 3! 99! 98! =48. 48! 25 =98 b) ( ) 7! 6! n 1! =12. MÊS: FEVEREIRO NOME:

MATEMÁTICA I ANÁLISE COMBINATÓRIA 23! 48! 47! 24! 14! 13! 13! 18! 10! 100! 5! 3! 99! 98! =48. 48! 25 =98 b) ( ) 7! 6! n 1! =12. MÊS: FEVEREIRO NOME: NOME: MÊS: FEVEREIRO SÉRIE: 3 a TURMA: ENSINO: MÉDIO ANÁLISE COMBINATÓRIA 01) Simplifique: 20! a) b) 18! 14! 13! 13! c) 23! 48! 47! 24! 02) Simplificando a fração 101! 102! 100!, obtém-se: (A) 101103 (D)

Leia mais

Lista de exercícios 02. Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 02. Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 02 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Capítulo 0 Conhecimentos Numéricos Análise Combinatória Parte I Princípios de Contagem E) Esta quantidade será calculada escolhendo as posições para colocar as consoantes.

Leia mais

Encontro 11: Resolução de exercícios da OBMEP

Encontro 11: Resolução de exercícios da OBMEP Encontro 11: Resolução de exercícios da OBMEP Exercício 1: Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em

Leia mais

Contagem. Próxima Aula: Prova

Contagem. Próxima Aula: Prova Contagem Próxima Aula: Prova Conteúdo Correção dos Exercícios Exercício 1 Em época de eleição para o grêmio estudantil do colégio, tiveram 12 candidatos aos cargos de presidente, vice-presidente e secretário.

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Álgebra ( ) 4 ( ) 25.

Álgebra ( ) 4 ( ) 25. Análise combinatória. Dê o valor de: a) 7! b) 6! c) 8! d) 5! - 3! e)! -! f) (5-3)! g) (3-3)! h)! ( 5)! i) 6!. Simplifique: 8! 8! 7! a) b) c) 6!!! 7! 5! 8! d) e) f)!3!!! 3!5! 3. Simplifique as expressões:

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM 1. UEL-PR Tome um quadrado de lado 20 cm (figura 1) e retire sua metade (figura 2). Retire depois um terço do resto (figura 3). Continue o mesmo procedimento, retirando um quarto do que restou, depois

Leia mais

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:

Leia mais

Matemática 4 Módulo 9

Matemática 4 Módulo 9 Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n

Leia mais

Física do Calor - 22ª Aula. Prof. Alvaro Vannucci

Física do Calor - 22ª Aula. Prof. Alvaro Vannucci Física do Calor - 22ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair com suas

Leia mais

Raciocínio Lógico Matemático Prof. Marcelo Jardim

Raciocínio Lógico Matemático Prof. Marcelo Jardim Raciocínio Lógico Matemático Prof. Marcelo Jardim www.concursovirtual.com.br 1 01. Para um determinado número natural com quatro algarismos, o algarismo das unidades é par e maior que cinco; o algarismo

Leia mais

Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep.

Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep. Contagem 4: resolução de exercícios da obmep No ciclo 1 estudamos o princípio aditivo e o princípio multiplicativo. No ciclo 2 estudamos o conceito de permutação e resolvemos alguns exercícios de contagem.

Leia mais

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma: Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra

Leia mais

Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas.

Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas. Estudante: Nº. Matemática 2 Ano do Ensino Médio Professor: Diego Andrades Lista 1 Análise Combinatória 1. Simplifique as expressões algébricas. ( x 1)! x! a) ( n 1)! b) ( k 2)! k! c) ( n 1)! ( n 2)! d)

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 3º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 3º ANO PROF.: ARI 01.: (Sta.Casa) Existem 4 entradas de rodagem e 3 estradas de ferro entre as cidades A e B. Quantos são os diferentes percursos para fazer a viagem de ida e volta entre A e B, utilizando rodovia e trem,

Leia mais

Tarefa nº_ 1.8. Probabilidades e Combinatória Análise Combinatória

Tarefa nº_ 1.8. Probabilidades e Combinatória Análise Combinatória Tarefa nº_ 1.8 MATEMÁTICA Probabilidades e Combinatória Análise Combinatória Nome: 12º Ano Data / / 1. A Câmara Municipal de uma cidade decidiu alterar o sistema de matrículas das motorizadas. Assim, cada

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Cálculo combinatório: Problemas de Contagem Propostas de resolução Exercícios de exames e testes intermédios 1. Considerando uma única fica horizontal, existem 4

Leia mais

Módulo de Métodos Sofisticados de Contagens. Permutação Circular. Segundo ano

Módulo de Métodos Sofisticados de Contagens. Permutação Circular. Segundo ano Módulo de Métodos Sofisticados de Contagens Permutação Circular Segundo ano 1 Exercícios Introdutórios Exercício 1. Dois colares de pérolas serão considerados iguais se um deles puder ser obtido através

Leia mais

PROBABILIDADE. Aula 3 Arranjo, Permutação e Análise Combinatória. Fernando Arbache

PROBABILIDADE. Aula 3 Arranjo, Permutação e Análise Combinatória. Fernando Arbache PROBABILIDADE Aula 3 Arranjo, Permutação e Análise Combinatória Fernando Arbache Princípio fundamental da contagem Exemplo: Uma menina quer sair com o namorado. Ela quer saber de quantas maneiras diferentes

Leia mais

Pré Universitário Uni-Anhanguera. Disciplina: Matemática Data de entrega: 06/05/ Resolva a equação. 2. A expressão é igual a:

Pré Universitário Uni-Anhanguera. Disciplina: Matemática Data de entrega: 06/05/ Resolva a equação. 2. A expressão é igual a: Lista de Exercícios - 03 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: 2º ano (Ensino Médio) Disciplina: Matemática Data de entrega: 06/05/2014 Observação: A lista deverá apresentar

Leia mais

Combinatória II Continuação

Combinatória II Continuação 12 Combinatória II Continuação Sumário 12.1 Introdução....................... 2 12.2 Permutações e Combinações............. 2 1 Unidade 12 Introdução 12.1 Introdução Nesta unidade, são estudadas as permutações

Leia mais

( ) ( ) Questões tipo exame. O número pedido é: Questões tipo exame Pág Os algarismos 1 e 2 podem ocupar 5 A. posições diferentes.

( ) ( ) Questões tipo exame. O número pedido é: Questões tipo exame Pág Os algarismos 1 e 2 podem ocupar 5 A. posições diferentes. Questões tipo exame Pág. 6.. Os algarismos e podem ocupar A posições diferentes. Os restantes lugares são ocupados por três algarismos escolhidos de entre oito, portanto, existem A maneiras diferentes

Leia mais

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}?

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}? Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0,, 3, 5,, 7, 8, 9}? ) Quantos pares ordenados com elementos distintos podemos formar com os

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: ANÁLISE COMBINATÓRIA 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: ANÁLISE COMBINATÓRIA 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: ANÁLISE COMBINATÓRIA 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (CESCEA) Um automóvel é oferecido pelo

Leia mais

Análise Combinatória princípio fundamental da contagem

Análise Combinatória princípio fundamental da contagem 1. (Uece 2016) No Brasil, os veículos de pequeno, médio e grande porte que se movimentam sobre quatro ou mais pneus são identificados com placas alfanuméricas que possuem sete dígitos, dos quais três são

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Arranjo Qual é o custo da fabricação das notas da Segunda Família do Real? Cédula

Arranjo Qual é o custo da fabricação das notas da Segunda Família do Real? Cédula Arranjo 016 1. (Ueg 016) Um aluno terá que escrever a palavra PAZ utilizando sua caneta de quatro cores distintas, de tal forma que nenhuma letra dessa palavra tenha a mesma cor. O número de maneiras que

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 15 ARRANJO E COMBINAÇÃO

MATEMÁTICA - 3 o ANO MÓDULO 15 ARRANJO E COMBINAÇÃO MATEMÁTICA - 3 o ANO MÓDULO 15 ARRANJO E COMBINAÇÃO x = 2 y = 1 z = 3 2 + 1 + 3 = 6 Como pode cair no enem (ENEM) O designer português Miguel Neiva criou um sistema de símbolos que permite que pessoas

Leia mais

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem

Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Questão 01 - (PUC SP/2018) A secretária de um médico precisa agendar quatro pacientes, A, B, C e D, para um mesmo dia. Os pacientes A e B não podem ser agendados no período da manhã e o paciente C não

Leia mais

Centro Estadual de Educação Supletiva de Votorantim

Centro Estadual de Educação Supletiva de Votorantim Centro Estadual de Educação Supletiva de Votorantim ANÁLISE COMBINATÓRIA O PRINCÍPIO MULTIPLICATIVO A palavra Matemática, para um adulto ou uma criança, está diretamente relacionada com atividades e técnicas

Leia mais

UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA

UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA ANÁLISE COMBINATÓRIA 1. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto,

Leia mais

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 21/04/2017 Disciplina: Matemática Lista 6 Análise Combinatória

COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 21/04/2017 Disciplina: Matemática Lista 6 Análise Combinatória COLÉGIO RESSURREIÇÃO NOSSA SENHORA Data: 21/04/2017 Disciplina: Matemática Lista 6 Análise Combinatória Período: 2 o Bimestre Série/Turma: 3 a série EM Professor: Wysner Max Valor: Aluno(a): 01 Considerando

Leia mais