Tamanho: px
Começar a partir da página:

Download ""

Transcrição

1 PRINCÍPIO FUNDAMENTAL DA CONTAGEM COMO CAI NO ENEM! 1. (Enem 2015) Numa cidade, cinco escolas de samba (I, II, III, IV e V) participaram do desfile de Carnaval. Quatro quesitos são julgados, cada um por dois jurados, que podem atribuir somente uma dentre as notas, 7, 8, 9 ou 10. A campeã será a escola que obtiver mais pontuação na soma de todas as notas emitidas. Em caso de empate, a campeã será a que alcançar a maior soma das notas atribuídas pelos jurados no quesito Enredo e Harmonia. A tabela mostra as notas do desfile desse ano no momento em que faltava somente a divulgação das notas do jurado B no quesito Bateria. Quesitos 1. Fantasia e 2. Evolução e 3. Enredo e. Bateria Alegoria Conjunto Harmonia Total Jurado A B A B A B A B Escola I Escola II Escola III Escola IV Escola V Quantas configurações distintas das notas a serem atribuídas pelo jurado B no quesito Bateria tornariam campeã a Escola II? a) 21 b) 90 c) 750 d) 1250 e) (Enem PPL 201) Um procedimento padrão para aumentar a capacidade do número de senhas de banco é acrescentar mais caracteres a essa senha. Essa prática, além de aumentar as possibilidades de senha, gera um aumento na segurança. Deseja-se colocar dois novos caracteres na senha de um banco, um no início e outro no final. Decidiu-se que esses novos caracteres devem ser vogais e o sistema conseguirá diferenciar maiúsculas de minúsculas. Com essa prática, o número de senhas possíveis ficará multiplicado por a) 100 b) 90 c) 80 d) 25 e) (Enem 2013) Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à contacorrente pela internet. Entretanto, um especialista em sistemas de segurança eletrônica recomendou à direção do banco recadastrar seus usuários, solicitando, para cada um deles, a criação de uma nova senha com seis dígitos, permitindo agora o uso das 2 letras do alfabeto, além dos algarismos de 0 a 9. Nesse novo sistema, cada letra maiúscula era considerada distinta de sua versão minúscula. Além disso, era proibido o uso de outros tipos de caracteres. Uma forma de avaliar uma alteração no sistema de senhas é a verificação do coeficiente de melhora, que é a razão do novo número de possibilidades de senhas em relação ao antigo. 2 a) 10 b) 2! 10! 2!! c) 10! 5! d) 2! 10! e) (Enem 2013) Um artesão de joias tem a sua disposição pedras brasileiras de três cores: vermelhas, azuis e verdes. Ele pretende produzir joias constituídas por uma liga metálica, a partir de um molde no formato de um losango não quadrado com pedras nos seus vértices, de modo que dois vértices consecutivos tenham sempre pedras de cores diferentes. A figura ilustra uma joia, produzida por esse artesão, cujos vértices A, B, C e D correspondem às posições ocupadas pelas pedras. Com base nas informações fornecidas, quantas joias diferentes, nesse formato, o artesão poderá obter? a) b) 12 c) 18 d) 2 e) 3 O coeficiente de melhora da alteração recomendada é

2 5. (Enem 2012) O diretor de uma escola convidou os 280 alunos de terceiro ano a participarem de uma brincadeira. Suponha que existem 5 objetos e personagens numa casa de 9 cômodos; um dos personagens esconde um dos objetos em um dos cômodos da casa. O objetivo da brincadeira é adivinhar qual objeto foi escondido por qual personagem e em qual cômodo da casa o objeto foi escondido. Todos os alunos decidiram participar. A cada vez um aluno é sorteado e dá a sua resposta. As respostas devem ser sempre distintas das anteriores, e um mesmo aluno não pode ser sorteado mais de uma vez. Se a resposta do aluno estiver correta, ele é declarado vencedor e a brincadeira é encerrada. O diretor sabe que algum aluno acertará a resposta porque há a) 10 alunos a mais do que possíveis respostas distintas. b) 20 alunos a mais do que possíveis respostas distintas. c) 119 alunos a mais do que possíveis respostas distintas. d) 20 alunos a mais do que possíveis respostas distintas. e) 270 alunos a mais do que possíveis respostas distintas. OUTRAS UNIVERSIDADES esse carro? a) b) 13 c) 2 d) 3 e) 72. (ifba 201) De acordo com o DETRAN de uma certa cidade, ainda estão disponíveis os prefixos de placa de automóveis com três letras, conforme modelo a seguir: M Se estiverem disponíveis para o 2º espaço as letras X, Y e Z, e para o 3º espaço as letras letras A, B, C, D, E, F, G e H, então o número de prefixos disponíveis para emplacamento é: a) 18 b) 2 c) 28 d) 3 e) 0 1. (Uepa 201) Um jovem descobriu que o aplicativo de seu celular edita fotos, possibilitando diversas formas de composição, dentre elas, aplicar texturas, aplicar molduras e mudar a cor da foto. Considerando que esse aplicativo dispõe de 5 modelos de texturas, tipos de molduras e possibilidades de mudar a cor da foto, o número de maneiras que esse jovem pode fazer uma composição com fotos distintas, utilizando apenas os recursos citados, para publicálas nas redes sociais, conforme ilustração abaixo, é: 5. (Uerj 201) Com o objetivo de melhorar o tráfego de veículos, a prefeitura de uma grande cidade propôs a construção de quatro terminais de ônibus. Para estabelecer conexão entre os terminais, foram estipuladas as seguintes quantidades de linhas de ônibus: - do terminal A para o B, linhas distintas; - do terminal B para o C, 3 linhas distintas; - do terminal A para o D, 5 linhas distintas; - do terminal D para o C, 2 linhas distintas. Não há linhas diretas entre os terminais A e C. a) b) 120. c) d) 120. e) (Uepa 2012) Um profissional de design de interiores precisa planejar as cores que serão utilizadas em quatro paredes de uma casa, para isso possui seis cores diferentes de tinta. O número de maneiras diferentes que esse profissional poderá utilizar as seis cores nas paredes, sabendo-se que somente utilizará uma cor em cada parede, é: a) 2 b) 30 c) 120 d) 30 e) (Ueg 201) Uma montadora de carros oferece a seus clientes as seguintes opções na montagem de um carro: 2 tipos de motores (1.8 ou 2.0), 2 tipos de câmbios (manual ou automático), cores (branco, preto, vermelho, azul, cinza ou prata) e 3 tipos de acabamento (simples, intermediário ou sofisticado). De quantas maneiras distintas pode-se montar Supondo que um passageiro utilize exatamente duas linhas de ônibus para ir do terminal A para o terminal C, calcule a quantidade possível de trajetos distintos que ele poderá fazer.. (Uemg 201) Genius era um brinquedo muito popular na década de 1980 (...). O brinquedo buscava estimular a memorização de cores e sons. Com formato semelhante a um OVNI, possuía botões de cores distintas que emitiam sons harmônicos e se iluminavam em sequência. Cabia aos jogadores repetir o processo sem errar. Origem: Wikipédia, a enciclopédia livre. (Adaptado). Considerando uma fase do jogo em que 3 luzes irão acender de forma aleatória e em sequência, podendo cada cor acender mais de uma vez.

3 O número máximo de formas que essa sequência de 3 luzes poderá acender é: a) 12. b) 2. c) 3. d). 7. (ifpe 201) Um auditório em forma de um salão circular dispõe de portas, que podem ser utilizadas tanto como entrada ou para saída do salão. De quantos modos distintos uma pessoa que se encontra fora do auditório pode entrar e sair do mesmo, utilizando como porta de saída uma porta diferente da que utilizou para entrar? a) b) 5 c) 12 d) 30 e) 3 8. (Upe-ssa 2 201) Um palíndromo ou capicua é um número, que se lê da mesma maneira nos dois sentidos, ou seja, da esquerda para a direita ou ao contrário, como 333, 11 e Assinale a alternativa correspondente à quantidade de palíndromos que são números pares de cinco algarismos do nosso sistema de numeração. a) 300 b) 00 c) 500 d) 00 e) 800 O número de modos distintos de se realizar essa pintura é a) 120. b) 90. c) 80. d) 50. e) (Unicamp 2015) O número mínimo de pessoas que deve haver em um grupo para que possamos garantir que nele há pelo menos três pessoas nascidas no mesmo dia da semana é igual a a) 21. b) 20. c) 15. d) 1. TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 1 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa o zero e a grossa o 1. A conversão do código em algarismos do número correspondente a cada produto deve ser feita de acordo com esta tabela: Código Algarismo Código Algarismo Observe um exemplo de código e de seu número correspondente: 9. (Ueg 2015) Numa lanchonete o lanche é composto por três partes: pão, molho e recheio. Se essa lanchonete oferece aos seus clientes duas opções de pão, três de molho e quatro de recheio, a quantidade de lanches distintos que ela pode oferecer é de a) 9 b) 12 c) 18 d) (Ueg 2015) Érika resolve passear com a cachorrinha Kika e, antes de sair do apartamento, escolhe colocar uma roupa e uma coleira na cachorrinha. Se Kika tem 7 roupas e 3 coleiras, todas distintas, de quantas maneiras Érika pode escolher uma roupa e uma coleira para passear com a Kika? a) 10 b) 21 c) 35 d) (Fatec 2015) Dispondo de cinco cores distintas, uma pessoa pretende pintar as letras da palavra FATEC de acordo com os seguintes critérios: - na palavra, letras que são equidistantes da letra T terão a mesma cor; - letras adjacentes serão pintadas de cores distintas, e - cada letra será pintada com uma única cor. 13. (Uerj 2015) Considere o código abaixo, que identifica determinado produto. Esse código corresponde ao seguinte número: a) 835 b) 572 c) 85 d) (Uema 201) Uma professora de educação infantil de uma escola, durante a recreação de seus alunos, organizaos em círculos para brincar. Considere a seguinte forma de organização dos alunos pela professora: são três meninas e três meninos e cada menina ficará ao lado de um menino, de modo alternado. As possibilidades de organização dos seus alunos são a). b). c) 9. d) 12. e) 1.

4 15. (Upf 201) Alice não se recorda da senha que definiu no computador. Sabe apenas que é constituída por quatro letras seguidas, com pelo menos uma consoante. Se considerarmos o alfabeto como constituído por 23 letras, bem como que não há diferença para o uso de maiúsculas e minúsculas, quantos códigos dessa forma é possível compor? a) 23 3 b) c) d) 23 5 e) (Uneb 201) Considere que em um laboratório foram verificadas, por um técnico, duas amostras de alimentos que constam na tabela e verificado, por ele, que o ph dessas substâncias era, respectivamente, 3,2 e,2. Nessas condições, de posse dessa tabela, pode-se afirmar que o número de maneiras distintas que esse técnico tem para tentar identificar, de maneira correta, quais foram os dois alimentos examinados é igual a a) 9 b) 10 c) 12 d) 1 e) (Ufrn 2013) O quadro de avisos de uma escola de ensino médio foi dividido em quatro partes, como mostra a figura a seguir. 1. (Uece 201) Paulo possui 709 livros e identificou cada um destes livros com um código formado por três letras do nosso alfabeto, seguindo a ordem alfabética assim definida: AAA, AAB,..., AAZ, ABA, ABB,..., ABZ, ACA,... Então, o primeiro livro foi identificado com AAA, o segundo com AAB,... Nestas condições, considerando o alfabeto com 2 letras, o código associado ao último livro foi a) BAG. b) BAU. c) BBC. d) BBG. TEXTO PARA A PRÓXIMA QUESTÃO: DANOS DE ALIMENTOS ÁCIDOS O esmalte dos dentes dissolve-se prontamente em contato com substâncias cujo ph (medida da acidez) seja menor do que 5,5. Uma vez dissolvido, o esmalte não é reposto, e as partes mais moles e internas do dente logo apodrecem. A acidez de vários alimentos e bebidas comuns é surpreendentemente alta; as substâncias listadas a seguir, por exemplo, podem causar danos aos seus dentes com contato prolongado. No retângulo à esquerda, são colocados os avisos da diretoria, e, nos outros três retângulos, serão colocados, respectivamente, de cima para baixo, os avisos dos 1º, 2º e 3º anos do ensino médio. A escola resolveu que retângulos adjacentes (vizinhos) fossem pintados, no quadro, com cores diferentes. Para isso, disponibilizou cinco cores e solicitou aos servidores e alunos sugestões para a disposição das cores no quadro. Determine o número máximo de sugestões diferentes que podem ser apresentadas pelos servidores e alunos. 19. (Uerj 2013) Na ilustração abaixo, as 52 cartas de um baralho estão agrupadas em linhas com 13 cartas de mesmo naipe e colunas com cartas de mesmo valor. (BREWER. 2013, p. ). COMIDA/BEBIDA PH SUCO DE LIMÃO/LIMA 1,8 2, CAFÉ PRETO 2, 3,2 VINAGRE 2, 3, REFRIGERANTES DE COLA 2,7 SUCO DE LARANJA 2,8,0 MAÇÃ 2,9 3,5 UVA 3,3,5 TOMATE 3,7,7 MAIONESE/MOLHO DE SALADA 3,8,0 CHÁ PRETO,0,2 Denomina-se quadra a reunião de quatro cartas de mesmo valor. Observe, em um conjunto de cinco cartas, um exemplo de quadra:

5 O número total de conjuntos distintos de cinco cartas desse baralho que contêm uma quadra é igual a: a) 2 b) 7 c) 715 d) (ifpe 2012) Por questão de segurança os bancos instalaram ao lado da maçaneta da porta, que dá acesso à área por trás dos caixas, um teclado como o da figura abaixo. Para entrar nessa área, cada funcionário tem a sua própria senha. Suponha que esta senha seja composta por quatro dígitos distintos. Quantas senhas poderão ser criadas se forem usados apenas os números primos que aparecem no teclado? a) b) 2 c) 80 d) 120 e) 720

6 COMO CAI NO ENEM Resposta da questão 1: Observando a diferença entre a pontuação total da Escola II e a das outras escolas, tem-se que a Escola II será campeã quaisquer que sejam as notas das Escolas I, III e V. Logo, em relação a essas escolas, há 5 notas favoráveis para cada uma. Por outro lado, como a Escola II vence a Escola IV em caso de empate, e tendo a Escola IV uma vantagem de dois pontos em relação à Escola II, a última será campeã nos seguintes casos: 1. para a Escola IV e 8, 9 ou 10 para a Escola II; 2. 7 para a Escola IV e 9 ou 10 para a Escola II; 3. 8 para a Escola IV e 10 para a Escola II. Em consequência, a resposta é Resposta da questão 2: Supondo que serão utilizadas apenas as vogais a, e, i, o e u, segue-se, pelo Princípio Multiplicativo, que a resposta é Observação: Considerando o acordo ortográfico de 2009, a questão não teria resposta. Resposta da questão 3: Sabendo que cada letra maiúscula difere da sua correspondente minúscula, há possibilidades para cada dígito da senha. Logo, pelo Princípio Fundamental da Contagem, segue-se que existem 2 senhas possíveis de seis dígitos. Analogamente, no sistema antigo existiam 10 senhas possíveis de seis dígitos. Em consequência, a razão pedida é Resposta da questão : Há 3 escolhas para a cor da pedra que ficará no vértice A. Além disso, podem ocorrer dois casos em relação às pedras que ficarão nos vértices B e D: (i) as cores das pedras em B e D são iguais; (ii) as cores das pedras em B e D são distintas. Portanto, as configurações possíveis são: (A, B, C, D) (3,1, 2,1) e (A, B, C, D) (3, 2,1,1), o que corresponde a joias distintas. Resposta da questão 5: Pelo PFC, existem respostas possíveis. Portanto, o diretor sabe que algum aluno acertará a resposta porque há alunos a mais do que o número de respostas possíveis. Resposta da questão 1: OUTRAS UNIVERSIDADES Supondo que ao modificar a ordem das fotos obtemos composições distintas, tem-se que o número de maneiras possíveis de fazer uma composição é dado por P (5 ) Resposta da questão 2: Existem modos de escolher a cor da primeira parede, 5 para escolher a cor da segunda, de escolher a cor da terceira e 3 de escolher a cor da quarta. Portanto, pelo PFC, existem maneiras de pintar as paredes de modo que cada uma tenha uma cor distinta. Resposta da questão 3: [E] O resultado será o produto do número de opções para cada item Resposta da questão : Com base no enunciado, pode-se deduzir: M 3 possibilidades 8 possibilidades Logo, o número total de possibilidades de prefixos será de Resposta da questão 5: Pelo Princípio Multiplicativo, existem 3 12 maneiras de ir de A para C, passando por B, e maneiras de ir de A para C, passando por D. Em consequência, pelo Princípio Aditivo, segue que a resposta é Resposta da questão : Pelo Princípio Multiplicativo, segue que a resposta é. Resposta da questão 7: Princípio Fundamental da Contagem 5 30 entrar sair

7 Resposta da questão 8: podem ser dispostos de P3 3! maneiras, segue, pelo Princípio Multiplicativo, que o resultado é Desde que o algarismo das unidades deve ser par e diferente de zero, temos maneiras de escolher esse algarismo. Portanto, como existem 10 possibilidades para o algarismo das dezenas e 10 maneiras de escolher o algarismo das centenas, pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 9: Pelo Princípio Multiplicativo, segue que a resposta é Resposta da questão 10: Para cada uma das 3 coleiras existem 7 roupas. Portanto, o número de maneiras diferentes de se passear com Kika é Resposta da questão 11: Existem 5 maneiras de escolher a cor da letra T, modos de escolher a cor das letras A e E, e maneiras de escolher a cor das letras F e C. Por conseguinte, pelo Princípio Multiplicativo, a resposta é Resposta da questão 12: Como a semana tem 7 dias, para garantir que há pelo menos três pessoas no mesmo dia da semana, é necessário que haja pelo menos pessoas no grupo. Resposta da questão 13: De acordo com as informações, temos: Resposta da questão 15: Pelo Princípio Multiplicativo, podemos formar códigos, sem qualquer restrição, utilizando as 23 letras do alfabeto. Por outro lado, o número de códigos em que figuram apenas vogais, também pelo Princípio Multiplicativo, é dado por Em consequência, o resultado pedido é igual a Resposta da questão 1: Quantidade de códigos que começam por A: Quantidade de códigos que começam por BA: O restante dos livros começa por BB. Faltam então, 7 livros para obtermos o código do último. ( ) Então, a última letra é G (sétima letra do alfabeto). O código associado ao último livro é BBG. Resposta da questão 17: Existem alimentos cujo ph pode ser 3,2 e 3 alimentos cujo ph pode ser,2, temos então 12 maneiras distintas que esse técnico tem para tentar identificar, de maneira correta, quais foram os dois alimentos examinados Resposta da questão 18: Temos 5 possibilidades para escolher a cor do retângulo vertical, para escolher a cor do primeiro retângulo horizontal, 3 para escolher a cor do segundo retângulo horizontal e 3 para escolher a cor do terceiro retângulo horizontal. Portanto, pelo PFC, existem, no máximo, sugestões diferentes que podem ser apresentadas pelos servidores e alunos. Resposta da questão 19: Temos 13 conjuntos de quatro valores iguais e para cada um destes conjuntos temos 8 (52 ) cartas distintas. Portanto, este código corresponde ao número 835. Resposta da questão 1: Há PC(3) 2! 2 modos de organizar as meninas em círculo. Definidas as posições das meninas, teremos três espaços para colocar os meninos. Portanto, como os meninos Logo, = 2. Resposta da questão 20: Números primos do teclado: 2, 3, 5 e 7. Número de senhas: = 2.

Mat. e Luanna Ramos Monitor: Roberta Teixeira

Mat. e Luanna Ramos Monitor: Roberta Teixeira 1 Professor: Gabriel Miranda e Luanna Ramos Monitor: Roberta Teixeira 2 Princípio Fundamental da Contagem 05 jul RESUMO Antes de começarmos a estudar combinações, é fundamental sabermos o que é um fatorial.

Leia mais

Questão 1. As letras do alfabeto, entre as 26 possíveis, bem como os dígitos, entre os 10 possíveis, podem se repetir em qualquer das opções.

Questão 1. As letras do alfabeto, entre as 26 possíveis, bem como os dígitos, entre os 10 possíveis, podem se repetir em qualquer das opções. SE18 - Matemática LMAT 5A2 - Contagem e Números fatoriais Questão 1 (Enem 2017) Uma empresa construirá sua página na internet e espera atrair um público de aproximadamente um milhão de clientes. Para acessar

Leia mais

Considere a figura, em que estão indicadas as possíveis localizações do cliente.

Considere a figura, em que estão indicadas as possíveis localizações do cliente. 36. [C] Considere a figura, em que estão indicadas as possíveis localizações do cliente. A resposta é 12. 37. [C] Como cada tarefa pode ser distribuída de três modos distintos, podemos concluir, pelo Princípio

Leia mais

1. As chapas dos automóveis no Brasil são formadas por 3 letras e 4 algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas?

1. As chapas dos automóveis no Brasil são formadas por 3 letras e 4 algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas? 1. As chapas dos automóveis no Brasil são formadas por 3 letras e algarismos. Usando o alfabeto de 26 letras, quantas chapas podem ser formadas? 2. De quantos modos cinco pessoas podem sentar-se num carro

Leia mais

Combinatória e Probabilidade

Combinatória e Probabilidade Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica. 15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 25 mai Princípio fundamental da contagem e Arranjos

Leia mais

Exercícios de Revisão

Exercícios de Revisão Exercícios de Revisão Lista de Exercícios. Um artesão de joias tem a sua disposição pedras brasileiras de três cores: vermelhas, azuis e verdes. Ele pretende produzir joias constituídas por uma liga metálica,

Leia mais

Progressão Aritmética - Questões Extras

Progressão Aritmética - Questões Extras Progressão Aritmética - Questões Extras Exercícios 1. A quantidade de anagramas da palavra MERCANTE que não possui vogais juntas é a) 40320. b) 38160. c) 37920. d) 7200. e) 3600. 2. No Boxe, um dos esportes

Leia mais

De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?

De quantas formas distintas a estratégia desse cliente poderá ser posta em prática? 1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 34 ANÁLISE COMBINATÓRIA: PRINCÍPIO FUNDAMENTAL DA CONTAGEM

MATEMÁTICA - 2 o ANO MÓDULO 34 ANÁLISE COMBINATÓRIA: PRINCÍPIO FUNDAMENTAL DA CONTAGEM MATEMÁTICA - 2 o ANO MÓDULO 34 ANÁLISE COMBINATÓRIA: PRINCÍPIO FUNDAMENTAL DA CONTAGEM Como pode cair no enem (ENEM) No Nordeste brasileiro, é comum encontrarmos peças de artesanato constituídas por garrafas

Leia mais

UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA

UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA ANÁLISE COMBINATÓRIA 1. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto,

Leia mais

Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial.

Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. Lista de exercícios Prof: Maurício Baffi 06/2017 Ensino Médio - 3º ano Conteúdos: Análise Combinatória, Conjuntos, Fatorial e Binomial. 1. (G1 - ifsul 2017) Em uma consulta à comunidade acadêmica sobre

Leia mais

Lista de Exercícios - Matemática - 3º ano - Prof. Mundico - Colégio HMS

Lista de Exercícios - Matemática - 3º ano - Prof. Mundico - Colégio HMS 1. (Enem 015) Uma família composta por sete pessoas adultas, após decidir o itinerário de sua viagem, consultou o site de uma empresa aérea e constatou que o voo para a data escolhida estava quase lotado.

Leia mais

62! 10! 62!4! 10!56! d) 62! 10! e) ! 5! 3! 8 8! 5! 3! 2 16! 8. Professor Diego

62! 10! 62!4! 10!56! d) 62! 10! e) ! 5! 3! 8 8! 5! 3! 2 16! 8. Professor Diego Professor Diego 01. (ENEM/01) O diretor de uma escola convidou os 80 alunos de terceiro ano a participarem de uma brincadeira. Suponha que existem 5 objetos e 6 personagens numa casa de 9 cômodos; um dos

Leia mais

PERMUTAÇÃO BÁSICA. b) 120. c) 15. d) 14.

PERMUTAÇÃO BÁSICA. b) 120. c) 15. d) 14. 1. (Unicamp 2015) O número mínimo de pessoas que deve haver em um grupo para que possamos garantir que nele há pelo menos três pessoas nascidas no mesmo dia da semana é igual a a) 21. b) 20. c) 15. d)

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem TEXTO PARA A PRÓXIMA QUESTÃO: Uma loja identifica seus produtos com um código que utiliza 16 barras, finas ou grossas. Nesse sistema de codificação, a barra fina representa

Leia mais

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.

Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3. Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d

Leia mais

LISTA DE QUESTÕES DO ENEM ANÁLISE COMBINATÓRIA PROF: Paulo Vinícius

LISTA DE QUESTÕES DO ENEM ANÁLISE COMBINATÓRIA PROF: Paulo Vinícius LISTA DE QUESTÕES DO ENEM ANÁLISE COMBINATÓRIA PROF: Paulo Vinícius 1. (Enem 017) Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.

Leia mais

Questão 1. Questão 2. Lista de Exercícios ENEM Área 1 - H02 Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios ENEM Área 1 - H02 Aluno: Série: Turma: Data: Lista de Exercícios ENEM Área 1 - H02 Aluno: Série: Turma: Data: Questão 1 Para cada indivíduo, a sua inscrição no Cadastro de Pessoas Físicas (CPF) é composto por um número de 9 algarismos e outro número

Leia mais

Matemática 2 Unidade I Álgebra Série 6 - Princípios básicos da contagem. Pelo princípio fundamental da contagem, temos: Resposta: A

Matemática 2 Unidade I Álgebra Série 6 - Princípios básicos da contagem. Pelo princípio fundamental da contagem, temos: Resposta: A 01 2 20 33 1 320 Resposta: A 1 02 4 3 2 24 Resposta: C 2 03 6 5 4 3 360 Resposta: E 3 04 a) 6 6 6 216 b) 6 5 4 120 c) Formar números de três algarismos com pelo menos dois algarismos iguais é equivalente

Leia mais

Pré-Cálculo - AV 1 (parte 2) 1º período de Eng. Civil. Prof. Dr. Luciano Soares Pedroso. Data: / /2014 valor: 10 pontos. Aluno (a)

Pré-Cálculo - AV 1 (parte 2) 1º período de Eng. Civil. Prof. Dr. Luciano Soares Pedroso. Data: / /2014 valor: 10 pontos. Aluno (a) Pré-Cálculo - AV (parte ) º período de Eng. Civil Prof. Dr. Luciano Soares Pedroso Data: / /04 valor: 0 pontos Aluno (a). Em 997 iniciou-se a ocupação de uma fazenda improdutiva no interior do país, dando

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 9 - ANALISE COMBINATÓRIA 1. (Pucrj 016) Uma escola quer fazer um sorteio com as crianças. Então, distribui cartelas que têm

Leia mais

Análise Combinatória princípio fundamental da contagem

Análise Combinatória princípio fundamental da contagem 1. (Uece 2016) No Brasil, os veículos de pequeno, médio e grande porte que se movimentam sobre quatro ou mais pneus são identificados com placas alfanuméricas que possuem sete dígitos, dos quais três são

Leia mais

2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº

2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº 2º trimestre SALA DE ESTUDOS DE MATEMÁTICA Ensino Médio 3º ano classes: A, B e C. Prof. Maurício Baffi Nome: nº.. Sala de estudos Análise Combinatória Segundo Trimestre de 2017 Prof: Maurício Baffi Felippelli

Leia mais

d) 62! 10! e) a) 626 A T I V I D A D E S

d) 62! 10! e) a) 626 A T I V I D A D E S SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2º TURMA(S):

Leia mais

Análise Combinatória - permutação

Análise Combinatória - permutação 1. (Imed 2016) O número de candidatos inscritos para realização do último vestibular de verão, em um determinado curso, corresponde ao número de anagramas da palavra VESTIBULAR que começam por VE e terminam

Leia mais

Encontro 11: Resolução de exercícios da OBMEP

Encontro 11: Resolução de exercícios da OBMEP Encontro 11: Resolução de exercícios da OBMEP Exercício 1: Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em

Leia mais

PROFª: ROSA G. S. DE GODOY

PROFª: ROSA G. S. DE GODOY ATIVIDADE DE MATEMÁTICA Nome: nº SÉRIE: 2ª E.M. Data: / / 207 PROFª: ROSA G. S. DE GODOY FICHA DE SISTEMATIZAÇÃO PARA A 2ª AVAL. DO 2º TRIMESTRE BOAS FÉRIAS E APROVEITE PARA ESTUDAR UM POUQUINHO!! BJS.Calcule

Leia mais

algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) 800

algarismos do nosso sistema de numeração. a) 300 b) 400 c) 500 d) 600 e) 800 Primeira Parte 1. (Ueg) Um aluno terá que escrever a palavra PAZ utilizando sua caneta de quatro cores distintas, de tal forma que nenhuma letra dessa palavra tenha a mesma cor. O número de maneiras que

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019

Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar

Leia mais

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno

8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno 8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete

Leia mais

Exercícios sobre Métodos de Contagem

Exercícios sobre Métodos de Contagem Exercícios sobre Métodos de Contagem 1) Um grupo de 4 alunos (Alice, Bernardo, Carolina e Daniel) tem que escolher um líder e um vice-líder para um debate. (a) Faça uma lista de todas as possíveis escolhas

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO

setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

Mat Top. Tópico: Análise Combinatória. Professores:

Mat Top. Tópico: Análise Combinatória. Professores: Nome: Mat Top Professores: Fred Kennedy Sérgio Data: Tópico: Análise Combinatória QUESTÃO 01 Considere todos os anagramas distintos da palavra ES- COLA e responda cada item a seguir. a) Quantos são, no

Leia mais

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda)

Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) Lista de Análise Combinatória Pré-vestibular Noturno Professor: Leandro (Pinda) 1. (Famerp 2018) Lucas possui 6 livros diferentes e Milton possui 8 revistas diferentes. Os dois pretendem fazer uma troca

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep.

Neste quarto ciclo vamos continuar exercitando a teoria estudada resolvendo outros exercícios de provas anteriores da obmep. Contagem 4: resolução de exercícios da obmep No ciclo 1 estudamos o princípio aditivo e o princípio multiplicativo. No ciclo 2 estudamos o conceito de permutação e resolvemos alguns exercícios de contagem.

Leia mais

Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:

Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos: Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos

Leia mais

n! ( n 1)! 2!.( n 1)! n n ( n 1)!( n 1)! ! 102! 100! 20! 6! c) 20! 6! 20! 5! e) 20! 6! Gabarito: B

n! ( n 1)! 2!.( n 1)! n n ( n 1)!( n 1)! ! 102! 100! 20! 6! c) 20! 6! 20! 5! e) 20! 6! Gabarito: B Tarefas 14, 15 e 16 Professor Luiz Exercícios de sala 01. Simplifique: n! a) ( n 1)! ( n 3)! 5 n! ( n 1)! b) n! 03. (PUC-RS) Se a) 13 b) 11 c) 9 d) 8 e) 6 Gabarito: C ( n 1)! 1, então n é igual a: ( n

Leia mais

CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO

CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial

Leia mais

Análise Combinatória AULA 1. Métodos Simples de Contagem

Análise Combinatória AULA 1. Métodos Simples de Contagem Análise Combinatória AULA 1 Métodos Simples de Contagem Tales Augusto de Almeida 1. Introdução A primeira ideia que surge no imaginário de qualquer estudante quando ele ouve a palavra contagem seria exatamente

Leia mais

CADERNO DE EXERCÍCIOS 3C

CADERNO DE EXERCÍCIOS 3C CADERNO DE EXERCÍCIOS 3C Ensino Médio Matemática Questão Conteúdo Habilidade da Matriz da EJA/FB 1 Princípio Multiplicativo H9 2 Equações exponenciais H18 1 1. (ENEM 2012) O diretor de uma escola convidou

Leia mais

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS

ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS ÁREA E PERÍMETRO EXERCÍCIOS DE CONCURSOS E0059 (EXATUS) PM-ES 2012 QUESTÃO 66 A área de um triângulo equilátero de arestas medindo 8 cm é igual a: RESOLUÇÃO E0565 (EXATUS) PM-ES 2012 QUESTÃO 92 92 Tifany

Leia mais

Nome: nº Professor(a): Série: 3ª EM. Turma: Data: / /2014. Bateria de Exercícios Matemática II

Nome: nº Professor(a): Série: 3ª EM. Turma: Data: / /2014. Bateria de Exercícios Matemática II Nome: nº Professor(a): Série: 3ª EM. Turma: Data: / /2014 Nota: Sem limite para crescer Bateria de Exercícios Matemática II 1º Trimestre 1. (Enem 2011) O número mensal de passageiros de uma determinada

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM

COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM 1. UEL-PR Tome um quadrado de lado 20 cm (figura 1) e retire sua metade (figura 2). Retire depois um terço do resto (figura 3). Continue o mesmo procedimento, retirando um quarto do que restou, depois

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DRLN MOUTINHO VOL. 01 RESOLUÇÕES Me ta PFC PÁGIN 22 01 LETR B 02 Do enunciado, temos: Há 3 possibilidades para a escolha do goleiro. O total de maneiras de escolher os outros três jogadores, após

Leia mais

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO

PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar

Leia mais

1. (OBMEP 2016 N2Q12 1ª

1. (OBMEP 2016 N2Q12 1ª Exercício 1. (OBMEP 2016 N2Q12 1ª fase) Cada livro da biblioteca municipal de Quixajuba recebe um código formado por três das 26 letras do alfabeto. Eles são colocados em estantes em ordem alfabética:

Leia mais

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.

Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número. Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De

Leia mais

Professor Zé Moreira QUESTÕES PROPOSTAS

Professor Zé Moreira QUESTÕES PROPOSTAS QUESTÕES PROPOSTAS 01 - Uma dama tem 3 saias e 4 blusas. De quantas maneiras poderá sair usando sala e blusa sem repetir o mesmo conjunto? 02 - Quantos números de 3 algarismos distintos podemos formar

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017

Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 Solução da prova da 1.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 2 QUESTÃO 1 Para obter o maior resultado possível, devemos fazer com que os termos que contribuem positivamente

Leia mais

Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial

Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Matemática Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Seja n um número natural tal que n > 1. Definimos n fatorial e representamos por n!, da seguinte forma: Propriedade fundamental

Leia mais

MATEMÁTICA. Prof. Matheus ANÁLISE COMBINATÓRIA

MATEMÁTICA. Prof. Matheus ANÁLISE COMBINATÓRIA MATEMÁTICA Prof. Matheus ANÁLISE COMBINATÓRIA 1. (Ueg 015) Érika resolve passear com a cachorrinha Kika e, antes de sair do apartamento, escolhe colocar uma roupa e uma coleira na cachorrinha. Se Kika

Leia mais

BANCO DE QUESTÕES TURMA PM-PE ANÁLISE COMBINATÓRIA

BANCO DE QUESTÕES TURMA PM-PE ANÁLISE COMBINATÓRIA 01. (FACULDADE ALBERT EINSTEIN 016) Em uma urna vazia foram colocadas fichas iguais, em cada uma das quais foi escrito apenas um dos anagramas da palavra HOSPITAL. A probabilidade de que, ao sortear-se

Leia mais

LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E.E. MESSIAS PEDREIRO 3º ANO E / F / G / H / I

LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E.E. MESSIAS PEDREIRO 3º ANO E / F / G / H / I LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E.E. MESSIAS PEDREIRO 3º ANO E / F / G / H / I Orientações para a realização do trabalho: 1) A lista de exercícios é individual. 2) Data de entrega: 31 de março

Leia mais

Princípio Fundamental da Contagem

Princípio Fundamental da Contagem Princípio Fundamental da Contagem 1. (Uem 2013) Seja A o seguinte conjunto de números naturais: A {1, 2, 4, 6, 8}. Assinale o que for correto. 01) Podem ser formados exatamente 24 números ímpares com 4

Leia mais

Raciocínio Lógico Matemático Prof. Marcelo Jardim

Raciocínio Lógico Matemático Prof. Marcelo Jardim Raciocínio Lógico Matemático Prof. Marcelo Jardim www.concursovirtual.com.br 1 01. Para um determinado número natural com quatro algarismos, o algarismo das unidades é par e maior que cinco; o algarismo

Leia mais

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo:

Combinação A forma de escrita. Assim sendo, podemos interpretar este exercício como sendo: Combinação 016 1. (Fgv 015) Em uma sala estão presentes n pessoas, com n 3. Pelo menos uma pessoa da sala não trocou aperto de mão com todos os presentes na sala, e os demais presentes trocaram apertos

Leia mais

Matemática e suas Tecnologias

Matemática e suas Tecnologias e suas Tecnologias Questões mais comuns no ENEM Função do 1º grau Função do 2º grau Progressão aritmética Progressão geométrica Estatística Razão e proporção Porcentagem Triângulos Análise combinatória

Leia mais

Solução da prova da 2.ª Fase

Solução da prova da 2.ª Fase Solução da prova da.ª Fase Nível 8.º e 9.º anos do Ensino Fundamental. a Fase de setembro de 08 QUESTÃO a) As páginas pares do álbum têm os números,,,..., 0 num total de 0 = 0 páginas e as páginas ímpares

Leia mais

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir.

Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir. Contagem 5: resolução de exercícios Desde a primeira aula de contagem estamos estudando o princípio multiplicativo e o princípio aditivo. Também estudamos o conceito de permutação e nas últimas aulas foram

Leia mais

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}?

Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0, 2, 3, 5, 6, 7, 8, 9}? Exercícios de Análise Combinatória 1) Quantos pares ordenados podemos formar com os elementos do conjunto A={0,, 3, 5,, 7, 8, 9}? ) Quantos pares ordenados com elementos distintos podemos formar com os

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) Quantos trajetos diferentes podem ser percorridos, para ir de A até E, usando-se apenas os caminhos e sentidos indicados na figura abaixo? 05) (FGV) Um inspetor visita 6 máquinas diferentes durante

Leia mais

Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Soluções do Exercícios Adicionais Paulo Cezar Pinto Carvalho 1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC b) O líder pode ser escolhido de modos; uma vez escolhido o líder,

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - 1 Matemática Questões Professores: Neydiwan PC 01-0 1-4 ª Série 1º Bimestre - N 08 / 04 / 016 LEIA ATENTAMENTE AS INSTRUÇÕES 1

Leia mais

Resposta: Resposta: = 5! modos de dispor as vogais, 4 modos

Resposta: Resposta: = 5! modos de dispor as vogais, 4 modos 1. (Faculdade Albert Einstein 016) Em uma urna vazia foram colocadas fichas iguais, em cada uma das quais foi escrito apenas um dos anagramas da palavra HOSPITAL. A probabilidade de que, ao sortear-se

Leia mais

Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano Módulo de Princípios Básicos de Contagem Princípio fundamental da contagem Segundo ano Princípio Fundamental de Contagem 1 Exercícios Introdutórios Exercício 1. Considere três cidades A, B e C, de forma

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 3 Bimestre Matemática Prof. Leandro Conteúdo: Capítulo 7: Fatorial de um número. Permutação simples e com repetições. Arranjo e combinação. Lista

Leia mais

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm.

Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental. = 7 cm. Logo, ela parou na marca de = 13 cm. Soluções Simulado OBMEP 2017 Nível 1 6º e 7º anos do Ensino Fundamental 1. ALTERNATIVA C Alvimar recebeu de troco 5,00 3,50 = 1,50 reais. Dividindo 1,50 por 0,25, obtemos o número de moedas de 25 centavos

Leia mais

ENEM 03 de Outubro de Simulado

ENEM 03 de Outubro de Simulado ENEM 03 de Outubro de 2014 Simulado 1. Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses

CONTAGEM. (a) uma semana (b) um mês (c) dois meses (d) quatro meses (e) seis meses CONTAGEM Exercício 1(OBMEP 2011) Podemos montar paisagens colocando lado a lado, em qualquer ordem, os cinco quadros da figura. Trocando a ordem dos quadros uma vez por dia, por quanto tempo, aproximadamente,

Leia mais

Simulado ENEM. SimulaCEM

Simulado ENEM. SimulaCEM Simulado ENEM SimulaCEM Questão 01) (ENEM) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:

Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma: Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra

Leia mais

Análise Combinatória

Análise Combinatória Pág 1 QUESTÃO 01 Análise Combinatória QUESTÕES ASSOCIADAS AOS TEMAS Considere que, para ter acesso à sua conta corrente via Internet, um correntista do BB deve cadastrar uma senha de 8 dígitos, que devem

Leia mais

RESPOSTA Princípio Fundamental da contagem

RESPOSTA Princípio Fundamental da contagem RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Capítulo 0 Conhecimentos Numéricos Análise Combinatória Parte I Princípios de Contagem E) Esta quantidade será calculada escolhendo as posições para colocar as consoantes.

Leia mais

21 Análise combinatória Banco de questões

21 Análise combinatória Banco de questões UNIDADE V I I análise combinatória, binômio de Newton e probabilidade CAPÍTULO 21 Análise combinatória Banco de questões 1 (Fuvest SP) Em uma classe de 9 alunos, todos se dão bem, com exceção de Andréia,

Leia mais

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 6 de junho de 2017 1 QUESTÃO 1 ALTERNATIVA A Observamos na primeira balança que o objeto tem o mesmo peso que a soma dos pesos de e. Consequentemente,

Leia mais

ANÁLISE COMBINATÓRIA. dentre as quais A e B estão presentes em 18. resposta é = Letra E

ANÁLISE COMBINATÓRIA. dentre as quais A e B estão presentes em 18. resposta é = Letra E ANÁLISE COMBINATÓRIA QUESTÃO 01 Sejam A e B os estudantes que não podem pertencer a um mesmo grupo. Vamos supor que queiramos calcular quantas são as possibilidades para formarmos exatamente um grupo.

Leia mais

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar? UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista

Leia mais

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016

RESOLUÇÃO SIMULADO 2ª SÉRIE B7 2º BIMESTRE 2016 Resposta da questão 1: Resposta da questão : Resposta da questão 3: Resposta da questão : Resposta da questão 5: Resposta da questão 6: Resposta da questão 7: Resposta da questão 8: Resposta da questão

Leia mais

Jogos e Brincadeiras I. 1. Brincadeiras

Jogos e Brincadeiras I. 1. Brincadeiras Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada

Leia mais

CURSO PRÉ VESTIBULAR UECEvest TD DE MATEMÁTICA/ENEM PROFESSOR: DANIEL EUFRAZIO/DATA 11/10/2014

CURSO PRÉ VESTIBULAR UECEvest TD DE MATEMÁTICA/ENEM PROFESSOR: DANIEL EUFRAZIO/DATA 11/10/2014 1. Um aluno registrou as notas bimestrais de algumas de suas disciplinas numa tabela. Ele observou que as entradas numéricas da tabela formavam uma matriz 4x4, e que poderia calcular as médias anuais dessas

Leia mais

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014

COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 2ª SÉRIE ESCOLAR - ENSINO MÉDIO Nome: Turma: nº: Professor : Chiquinho Data: 23/07/2014 ATIVIDADE PONTUADA VALOR: 5,0 pontos... 1) Os 63 novos contratados

Leia mais

Disciplina: MATEMÁTICA Data: 25 /09 /2018. Ensino Médio Ano/Série: 2º Turma: Valor: 10 Pts. Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO

Disciplina: MATEMÁTICA Data: 25 /09 /2018. Ensino Médio Ano/Série: 2º Turma: Valor: 10 Pts. Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO Disciplina: MATEMÁTICA Data: 25 /09 /2018 Ensino Médio Ano/Série: 2º Turma: Valor: 10 Pts Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO Etapa II Aluno(a): Nº: Nota: Professor(a): W. Leão Querido(a) aluno(a),

Leia mais

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 5 de junho de 2018

Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 5 de junho de 2018 Nível 6.º e 7.º anos do Ensino Fundamental 1. a Fase 5 de junho de 2018 1 QUESTÃO 1 A primeira mamadeira (na ilustração) marca 250 ml, enquanto a segunda marca 75 ml. Para saber quanto Zezé mamou, basta

Leia mais

OBMEP a Fase Soluções Nível 2. N2Q1 Solução

OBMEP a Fase Soluções Nível 2. N2Q1 Solução 1 N2Q1 Solução a) Com o número 92653 Mônica obteve a expressão 9 + 2 6 5 3. Efetuando primeiro a multiplicação e, em seguida, a divisão (ou então a divisão seguida da multiplicação), temos 9 + 2 6 5 3

Leia mais

RACIOCÍNIO LÓGICO MATEMÁTICO

RACIOCÍNIO LÓGICO MATEMÁTICO RACIOCÍNIO LÓGICO MATEMÁTICO PROFº MARCELO JARDIM WWW.CONCURSOVIRTUAL.COM.BR 1 PRINCÍPIO FUNDAMENTAL DA CONTAGEM PRINCÍPIO MULTIPLICATIVO Formação de senhas, códigos, placas de automóveis e telefones.

Leia mais

Prova da segunda fase - Nível 3

Prova da segunda fase - Nível 3 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Questão 1. Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.

Questão 1. Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura. SE18 - Matemática LMAT 5A3 - Permutações, combinações e arranjos Questão 1 (Enem 2017) Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.

Leia mais

MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?

MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto

Leia mais

10. ANÁLISE COMBINATÓRIA

10. ANÁLISE COMBINATÓRIA 10. ANÁLISE COMBINATÓRIA 1) Observe a figura: Nessa figura, está representada uma bandeira que deve ser pintada com duas cores diferentes, de modo que a faixa do meio tenha a cor diferente das outras faixas.

Leia mais

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase

Instruções para a realização da Prova Leia com muita atenção. Prova da segunda fase Nível 1 Instruções para a realização da Prova Leia com muita atenção Prova da segunda fase Caro Aluno, Parabéns pela sua participação na décima primeira edição da Olimpíada de Matemática de São José do

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0

Leia mais