Jogos e Brincadeiras I. 1. Brincadeiras
|
|
|
- Luna Belém Gil
- 8 Há anos
- Visualizações:
Transcrição
1 Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada Brasileira de Matemática. Nosso objetivo é demonstrar que alguns tipos de brincadeiras ajudam a desenvolver a capacidade de raciocínio lógico. Problema 1. (OBM 2006) Esmeralda inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, na segunda linha, fez a descrição dos algarismos digitados da seguinte maneira: ela apresentou as quantidades de cada um dos que apareceram, em ordem crescente de algarismo. Por exemplo, após digitar , ela digitou , pois em existe um algarismo 0, três algarismos 1, três algarismos 2, um algarismo 3, um algarismo 5 e dois algarismos 6. a) Ela começou uma nova folha com 1. Fez, então, sua descrição, ou seja, digitou 11 na segunda linha. Depois, descreveu 11, ou seja, digitou 21 na terceira linha, e assim continuou. O que ela digitou na 10 a linha da folha? b) Esmeralda gostou tanto de fazer isso que decidiu preencher várias folhas com essa brincadeira, começando com 01 na primeira linha da primeira folha. Quais são os dois primeiros algarismos da esquerda do que ela digitou na 2006 a linha? Solução. a) Para resolver a questão, basta escrevermos em ordem as listas obtidas por Esmeralda seguindo as regras do enunciado até obtermos a décima lista:
2 b) Escrevamos os números das novas listas iniciais: Veja que todos os números da lista começam em 10. Isto ocorre pois nunca irá aparecer um outro 0 na sequência. Portanto, a resposta do problema é 10. Problema 2. A partir do tabuleiro mostrado nas figuras abaixo e quatro peças, duas circulares cinzas e duas quadradas pretas, Esmeraldinho inventou o seguinte jogo: Inicialmente, as peças são colocadas no tabuleiro como mostra a figura 1. Figura 1 A meta do jogo é, após um certo número de movimentos, trocar as peças de posição, chegando na situação mostrada na figura 2. Figura 2 Cada movimento consiste em mover uma das quatro peças uma ou mais casas acima, abaixo, à esquerda ou à direita; todavia, tal peça não pode pular nenhuma peça que, eventualmente, esteja no caminho, ou ocupar uma casa onde já existe uma peça. Por exemplo, a peça marcada com A só pode se mover para alguma das casas destacadas em cinza. Os movimentos dos círculos e dos quadrados são alternados. O jogo começa com um movimento de um dos quadrados. 2
3 A Determine a menor quantidade total de movimentos necessários para terminar o jogo. Mostre, passo-a-passo, através de desenhos, como movimentar as peças com esta quantidade de movimentos e prove que não é possível terminar o jogo com menos movimentos. Solução. Veja que não existem duas peças diferentes (um quadrado e um círculo) que estão na mesma linha ou coluna do tabuleiro. Isso significa que cada peça deve utilizar ao menos dois movimento para ir de sua posição original para a final. Portanto, devemos utilizar pelo menos oito movimentos. O exemplo a seguir nos garante que bastam oito movimentos: Jogos de Simetria Quando falamos em jogos, pensamos em vários conhecidos como: xadrez, as damas e os jogos com baralho. Porém, não são desses jogos que abordaremos neste material. Imagine que exista algum tipo de jogo em que você pudesse ganhar sempre, independente de como seu adversário jogasse? Seria uma boa, não?! Pois esses jogos existem e são um dos 3
4 assuntos mais abordados em provas de olimpíada. Nesta aula vamos mostrar vários destes jogos e uma das principais estratégias vencedoras: a simetria. Problema 3. Pedro e Mônica jogam em um tabuleiro Cada um, em sua vez, pode pintar um dos quadrados (que não foram pintados anteriormente), ou dois quadrados consecutivos (se ambos estiverem brancos). Quem não puder mais jogar perde. Sabe-se que Pedro será o primeiro a jogar. Quem pode sempre garantir a vitória? Solução. Pedro sempre poderá ganhar se seguir a seguinte estratégia: (i) Inicialmente, Pedro deve pintar o quadrado do meio. (ii) Agora, depois que Mônica fizer sua jogada, Pedro deve jogar sempre simetricamente em relação ao centro do tabuleiro (i.e. sempre deixando o tabuleiro simétrico). Por exemplo, se Mônica jogar nas casas 9 e 10, Pedro deve jogar nas casas 2 e 3. (iii) Assim, Mônica nunca poderá ganhar, pois na sua jogada ela quebra a simetria e a configuração final do jogo todas as casas estarão pintadas, ou seja, a configuração é simétrica. O próximo exemplo é um dos problemas que apareceu na prova da OBM de Vamos apresentar uma solução diferente da solução proposta na Eureka! 22, usando simetria: Problema 4. Arnaldo e Bernardo disputam um jogo em um tabuleiro 2 n : 2 As peças do jogo são dominós 2 1. Inicialmente Arnaldo coloca um dominó cobrindo exatamente duas casas do tabuleiro, na horizontal ou na vertical. Os jogadores se revezam colocando uma peça no tabuleiro, na horizontal ou na vertical, sempre cobrindo exatamente duas casas do tabuleiro. Não é permitido colocar uma peça sobre outra já colocada anteriormente. Quem não conseguir colocar uma peça no tabuleiro perde. Qual dos dois jogadores tem uma estratégia vencedora, ou seja, uma estratégia que o leva à vitória quaisquer que sejam as jogadas de seu adversário, para: n 4
5 a) n = 2004? b) n = 2005? Solução. Quando n = 2005 o primeiro jogador garante a vitória. Ele pode fazer isto colocando um dominó na vertical no meio do tabuleiro e, em seguida, jogar simetricamente ao segundo jogador. Quando n = 2004 o tabuleiro possui um número par de colunas. Desse modo, o segundo ganha jogando simetricamente ao primeiro jogador. Como você deve ter visto, usar a simetria é realmente uma técnica muito eficiente. Porém, às vezes, usar apenas a simetria não é suficiente para resolver o problema. Observe o próximo exemplo retirado da olímpiada da Bielorússia de Problema 5. Tom e Jerry jogam o seguinte jogo. Eles colocam alternadamente pinos idênticos em casas vazias de um tabuleiro (um pino de cada vez). Tom é o primeiro a jogar. Vence quem, em sua jogada, formar um bloco de quatro pinos vizinhos. Dois pinos são vizinhos se estiverem em casas com um lado em comum. Determine quem possui a estratégia vencedora. Solução. Jerry deve jogar simetricamente em relação ao centro do tabuleiro. Assim que Tom formar três um bloco de três pinos vizinhos, Jerry deve abandonar a estratégia simétrica e completar o bloco de quatro pinos vizinhos. Problemas Propostos Problema 6. Sobre uma mesa existem duas pilhas (uma com 15 e outra com 16 pedras). Em um jogo cada jogador pode, em sua vez, retirar qualquer quantidade de pedras de apenas uma pilha. Quem não puder mais jogar perde. Quem possui a estratégia vencedora? Problema 7. Dois jogadores colocam alternadamente bispos (da mesma cor) em um tabuleiro 8 8, de forma que nenhum bispo ataque outro. Quem não puder mais jogar perde. Problema 8. Dois jogadores colocam alternadamente reis (da mesma cor) em um tabuleiro 9 9, de forma que nenhum rei ataque outro. Quem não puder mais jogar perde. Problema 9. São dados um tabuleiro de xadrez (8 8) e palitinhos do tamanho dos lados das casas do tabuleiro. Dois jogadores jogam alternadamente e, em cada rodada, um dos jogadores coloca um palitinho sobre um lado de uma das casas do tabuleiro, sendo proibido sobrepor os palitinhos. Vence o jogador que conseguir completar primeiro um quadrado 1 1 de palitinhos. Supondo que nenhum dos jogadores cometa erros, qual dos dois tem a estratégia vencedora? Problema 10. São dados vinte pontos ao redor de um círculo. Cada jogador em sua vez pode ligar dois desses pontos se essa novo segmento não cortar os feitos anteriormente. Quem não puder mais traçar nenhum segmento perde. 5
6 Problema 11. (Rússia 1997) Os números 1, 2, 3,..., 1000 são escritos no quadro. Dois jogadores apagam alternadamente um dos números da lista até que só restem dois números. Se a soma desses números for divisível por 3, o primeiro jogador vence, caso contrário vence o segundo. Quem tem a estratégia vencedora? Problema 12. Sobre uma mesa existem duas pilhas de moedas com 11 moedas cada. Em cada turno, um jogador pode retirar duas moedas de uma das pilhas ou retirar uma moeda de cada pilha. O jogador que não puder mais fazer movimentos perde. Bibliografia Recomendada Muitos dos exercícios propostos nesta aula foram retirados dos livros: 1. Mathematical Circles: Russian Experience (Mathematical World, Vol. 7). Dmitri Fomin, Sergey Genkin, Ilia V. Itenberg. 2. Leningrad Mathematical Olympiads (Contests in Mathematics Series ; Vol. 1). Dmitry Fomin, Alexey Kirichenko. Outra fonte de problemas são as páginas da Olimpiada Brasileira de Matemática ( e da Olimpiada Brasileira de Matemática de Escolas Públicas ( 6
7 Dicas e Soluções 6. O jogador 1 deve retirar uma pedra da pilha com 16. Em seguida, deve jogar simetricamente em relação ao jogador Divida o tabuleiro em duas partes, cada uma formada por 4 linhas. O jogador 1 deve jogar então simetricamente. 8. O primeiro jogador deve colocar um rei no centro, e depois jogar simetricamente em relação ao centro do tabuleiro. 9. O segundo jogador vence se usar simetria em relação ao centro do tabuleiro. No momento em que o primeiro jogador formar uma configuração com três palitos sobre os lados de um mesmo quadrado, o segundo deve completar o quadrado. 10. O primeiro jogador deve ligar dois vértices opostos (digamos 1 e 11) e em seguida jogar simetricamente em relação a este primeiro segmento. 11. Observe que a soma de dois elementos opostos sempre é 1002, que é um múltiplo de Construa um tabuleiro 11 11, onde a casa (i, j) represente quantidade de pedras em cada pilha. Observe que o movimento do jogo original é equivalente ao movimento do cavalo no tabuleiro. Termine o problema descobrindo as posições vencedoras e perdedoras através de indução retroativa. 7
JOGOS Bruno Holanda, Fortaleza CE
JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória
UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez
Polos Olímpicos de Treinamento. Aula 6. Curso de Combinatória - Nível 2. Jogos. 1. Simetria. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 6 Jogos Quando falamos em jogos, pensamos em vários conhecidos como: xadrez, as damas e os jogos com baralho. Porém,
Jogos e Brincadeiras II
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,
Exemplos e Contra-Exemplos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática
Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós?
Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir todas
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 6 Percebendo Padrões Uma das principais habilidades que deve ser desenvolvida pelos alunos que desejam ter um bom
Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas
Paridade. Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas deste capítulo.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 5 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
XXVI OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5ª e 6ª séries - Ensino Fundamental)
TERCEIRA FASE NÍVEL 1 (5ª e 6ª séries - Ensino Fundamental) PROBLEMA 1 Encontre todos os números naturais n de três algarismos que possuem todas as propriedades abaixo: n é ímpar; n é um quadrado perfeito;
Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019
Polo Olímpico de Treinamento Intensivo UFPR Curso de Combinatória, Nível 3 1 o semestre de 2019 Marcel Thadeu de Abreu e Souza Vitor Emanuel Gulisz Análise Combinatória: Introdução Vamos buscar contar
XXVIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)
TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Considere as seguintes seqüências: S 1 : 12345678, 81234567, 78123456,..., na qual o último algarismo do termo anterior (algarismo das unidades) torna-se
Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.
1ª Colocação 10 pontos. 2ª Colocação 08 pontos. 3ª Colocação 06 pontos
Regras: Jogo do Xadrez 1. Sorteio: Os confrontos serão definido através de sorteio e relacionados no chaveamento da competição; A ordem de disputa será de acordo com a ordem de retira no sorteio. PS: 2
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Resolução de Problemas Lista 01
Resolução de Problemas Lista 01 Relembramos algumas dicas discutidas no livro-texto para ajudar na resolução de um problema em Matemática. (D1) Ler bem o enunciado do problema e utilizar todas as informações
Combinatória: Dicas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 2010 São José do Rio Preto
Combinatória: icas para escrever uma boa solução. Prof. Bruno Holanda Semana Olímpica 00 São José do Rio Preto? Nível Uma dificuldade que é bastante frequente nos alunos do nível (ou em outros quaisquer
Raciocínio Lógico I. Solução. Primeiramente vamos listar todos os números de dois algarismos que são múltiplos de 7 ou 13.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 3 Raciocínio Lógico I O estudo da Lógica é essencial para os alunos que desejam participar de olimpíadas de matemática.
Semáforo Autor: Alan Parr. Avanço Autor: Dan Troyka, Material Um tabuleiro quadrado 7 por peças brancas e 14 peças negras.
Avanço Autor: Dan Troyka, 2000 Material Um tabuleiro quadrado 7 por 7. 14 peças brancas e 14 peças negras. Objectivo posição inicial Um jogador ganha se chegar com uma das suas peças à primeira linha do
Gatos & Cães Simon Norton, 1970s
Gatos & Cães Simon Norton, 1970s Um tabuleiro quadrado 8 por 8. 28 peças gato e 28 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona
PEGUE 10. Quantidade: 08 unidades
1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
Gatos & Cães Simon Norton, 1970s
Gatos & Cães Simon Norton, 970s Um tabuleiro quadrado 8 por 8. 8 peças gato e 8 peças cão (representadas respectivamente por peças negras e brancas). Ganha o jogador que realizar a última jogada. zona
Raciocínio Lógico II. Solução. Vamos assumir que todos os retângulos são distintos. Os retângulos de menor
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 4 Raciocínio Lógico II Nesta aula continuaremos o processo de desenvolvimento do raciocínio lógico. Inicialmente,
XADREZ REGRAS BÁSICAS INTRODUÇÃO O xadrez, diferentemente de muitos jogos, não depende de sorte. O desenvolver do jogo não depende do resultado de
XADREZ REGRAS BÁSICAS INTRODUÇÃO O xadrez, diferentemente de muitos jogos, não depende de sorte. O desenvolver do jogo não depende do resultado de dados ou das cartas que são tiradas do baralho. O resultado
Distribuição de Jogos por Ciclo
REGRAS DOS JOGOS Distribuição de Jogos por Ciclo 1º CEB 2º CEB 3º CEB Sec. Semáforo x Gatos & Cães x x Rastros x x x Produto x x x Avanço x x Flume x 2 Semáforo Autor: Alan Parr 8 peças verdes, 8 amarelas
LAAB: Ludicidade Africana e Afrobrasileira.
UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE PEDAGOGIA CAMPUS DE CASTANHAL LAAB: Ludicidade Africana e Afrobrasileira. Coordenadora: Débora Alfaia Bolsista: Gabriela Paixão Castanhal- PA 2012 Oficina de Jogos
livro das regras (provisório)
livro das regras (provisório) Avanço Autor: Dan Troyka, 2000 Um tabuleiro quadrado 7 por 7; 14 peças brancas e 14 peças negras. Um jogador ganha se chegar com uma das suas peças à primeira linha do adversário,
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL III (ENSINO MÉDIO)
COLETÂNEA DE PROBLEMAS PARA TREINAMENTO (*) NÍVEL III (ENSINO MÉDIO) PROBLEMA 1 Uma calculadora tem o número 1 na tela. Devemos efetuar 2001 operações, cada uma das quais consistindo em pressionar a tecla
REGRAS DOS JOGOS do CNJM15
REGRAS DOS JOGOS do CNJM15 Semáforo Autor: Alan Parr 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores. Ser o primeiro a conseguir uma linha de três peças da mesma cor na horizontal,
Tabuleiro. Movimento das peças (torre)
Tabuleiro Posição inicial ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ Uma linha é uma sequencia de oito casas dispostas de forma contigua horizontalmente. ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ¼¼¼¼ ÖÑÐÒ ÓÔÓÔÓÔÓÔ
JOGOS LIVRO REGRAS M AT E M Á T I CO S. 11.º Campeonato Nacional
Vila Real JOGOS M AT E M Á T I CO S.º Campeonato Nacional LIVRO DE REGRAS Semáforo Autor: Alan Parr Material Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.
Combinatória - Nível 2
Combinatória - Nível 2 POTI UFPR Princípio da Casa dos Pombos - 30/09/2017 Material complementar http://www.mat.ufpr.br/poti/ Princípio da Casa dos Pombos: se em n gaiolas são postos n + 1 pombos, então
Buscando um Invariante
Resolução de Problemas Lista 01 com dicas e discussão Faça mentalmente as seguintes multiplicações: 1. 27 37 2. 21 23 Invente e resolva um problema, usando como inspiração o problema anterior. Decida o
Semáforo. Um tabuleiro retangular 4 por 3. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores.
Semáforo Autor: Alan Parr Um tabuleiro retangular por. 8 peças verdes, 8 amarelas e 8 vermelhas partilhadas pelos jogadores. Ser o primeiro a conseguir uma linha de três peças da mesma cor na horizontal,
Grafos I. Figura 1: Mapa de Königsberg
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 0 Grafos I O que é um grafo? Se você nunca ouviu falar nisso antes, esta é certamente uma pergunta que você deve
12 = JL (DE UMA A TRÊS CASAS EM QUALQUER DIREÇÃO, INCLUSIVE R1 PARA OS PEÕES)
XADREZ DA SORTE MATERIAL UM TABULEIRO COMUM DE 64 CASAS. DOIS DADOS COMUNS. AS 32 PEÇAS DO JOGO DE XADREZ. PONTUAÇÃO DOS DADOS A PONTUAÇÃO PARA MOVIMENTAÇÃO É A SEGUINTE: 2 = R1 (RETORNA UMA CASA) 3 =
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
PROFESSORA: GEÓRGIA SOARES DISCIPLINA: EDUCAÇÃO FÍSICA CONTEÚDO: XADREZ AULA 2
PROFESSORA: GEÓRGIA SOARES DISCIPLINA: EDUCAÇÃO FÍSICA CONTEÚDO: XADREZ AULA 2 Questões 1. Como você conceituaria Jogo? 2. Quais as vantagens dos Jogos? 3. Classifique os tipos de Jogo. 4. Qual a diferença
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA PROFMAT
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO DEPARTAMENTO DE MATEMÁTICA PROGRAMA DE MESTRADO PROFISSIONAL EM MATEMÁTICA PROFMAT YGOR FRANZOTTI DE BARROS GOMES UMA PROPOSTA DE SEQUÊNCIA DIDÁTICA PARA JOGOS COMBINATÓRIOS
Aula 4 - Números Primos, MDC e MMC
Polos Olímpicos de Treinamento Intensivo (POTI) Curso de Teoria dos Números - Nível Aula 4 - Números Primos, MDC e MMC Prof. Samuel Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria
XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009
XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 PROVA DA SEGUNDA ETAPA NÍVEL I (Estudantes da 6 a e 7 a Séries) Problema 1 A expressão E, a seguir, é o produto de 20 números:
Belos Problemas: Indução e Princípio das Gavetas de Dirichlet
Belos Problemas: Indução e Princípio das Gavetas de Dirichlet Rogério Ricardo Steffenon 1 1 Universidade do Vale do Rio dos Sinos, Email: [email protected] Neste minicurso serão apresentados e
Manual básico de Go. MANUAL BÁSICO DE GO. Distribuição Gratuita.
MANUAL BÁSICO DE GO Distribuição Gratuita. Regras do GO: 1 As peças pretas começam a não ser que seja um jogo com handicap. 2 Os jogadores alternam suas jogadas, jogando-se uma peça por vez. 3 As peças
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética
Planejamento Acadêmico - Grupo 1 - PIC 2012 Encontro 2 - Módulo 1 - Aritmética 1. Divisão Euclidiana Exemplo 1: (Banco de Questões 2012, nível 1, problema 12) A figura abaixo representa o traçado de uma
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014
ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina:
O JOGO DE XADREZ. Vamos conhecer as peças que compõe o jogo: O Tabuleiro
O JOGO DE XADREZ O xadrez é um esporte intelectual, disputado entre duas pessoas que possuem forças iguais (peças) sobre um tabuleiro. Este jogo representa uma batalha em miniatura, onde cada lado comanda
Prog A B C A e B A e C B e C A,B e C Nenhum Pref
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 2 Lógica II Quando lemos um problema de matemática imediatamente podemos ver que ele está dividido em duas partes:
MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres.
Cordeiros e tigres MATERIAL: Tabuleiro e pinos (marcadores). São necessários 20 pinos para os cordeiros e 2 pinos para os tigres. 1. O jogo começa com o tabuleiro vazio. 2. Quem está com os tigres ocupa
NÍVEL 3 - Prova da 2ª fase - Soluções
NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x
Problemas Diversos de Invariantes e Semi-invariantes
Problemas Diversos de Invariantes e Semi-invariantes XXI Semana Olímpica Maceió, Janeiro 2018 Prof. George Lucas 1. Escrevemos os números inteiros de 1 a 10 (inclusive) no quadro. A cada passo, escolhemos
Polos Olímpicos de Treinamento. Aula 1. Curso de Teoria dos Números - Nível 2. Divisibilidade I. Samuel Barbosa Feitosa
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Samuel Barbosa Feitosa Aula 1 Divisibilidade I Teorema 1. (Algoritmo da Divisão) Para quaisquer inteiros positivos a e b, existe um
APÊNDICE C. Produto da Dissertação: Sequência de Atividades. Encontro 1 ( 2 períodos de 50 minutos)
1 APÊNDICE C Produto da Dissertação: Sequência de Atividades Encontro 1 ( 2 períodos de 50 minutos) Jogo trabalhado: PONG HAU K'I Regras do jogo: Cada jogador possui duas peças e o jogo começa com as peças
ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)
1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos
Aplicações das Técnicas Desenvolvidas. Soluções de Exercícios e Tópicos Relacionados a Combinatória. 2 a série E.M.
Aplicações das Técnicas Desenvolvidas Soluções de Exercícios e Tópicos Relacionados a Combinatória 2 a série E.M. Professores Tiago Miranda e Cleber Assis Aplicações das Técnicas Desenvolvidas Soluções
1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,
1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes
O peão Se um peão consegue chegar até a outra extremidade do tabuleiro(linha 8), ele é promovido. Um peão promovido é substituído, ainda na mesma jogada em que o movimento foi feito, por um cavalo, bispo,torreoudamadamesmacor.
Paridade. Katarine Emanuela Klitzke
Paridade Katarine Emanuela Klitzke 1 Introdução Estudaremos nesse breve material, um pouco sobre paridade. Esse assunto pode parecer bem fácil, afinal é uma das primeiras coisas que aprendemos em matemática,
Princípio da Casa dos Pombos
Capítulo 1 Princípio da Casa dos Pombos O Princípio da Casa dos Pombos é um dos métodos de demonstração mais utilizados em competições de matemática. Também é conhecido em alguns países (na Rússia, por
Invariantes BRUNO HOLANDA
Invariantes BRUNO HOLANDA Neste artigo vamos estudar o princípio da invariância. Ou seja, vamos resolver problemas que, dada uma transformação, existe uma propriedade associada que nunca muda. 1 Analisando
OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 01/02/2016
OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 01/02/2016 PROBLEMA PARA O NÍVEL I Zizi e Zezé disputam um jogo sobre uma mesa redonda, jogando alternadamente. Para
PROJETO CLUBE DE MATEMÁTICA
CLUBE DE MATEMÁTICA "O jogo é um tipo de atividade que alia raciocínio, estratégia e reflexão com desafio e competição de uma forma lúdica muito rica." EB1/PE da Vargem Ano letivo 2016/2017 Índice PROJETO
Módulo de Princípios Básicos de Contagem. Princípio fundamental da contagem. Segundo ano
Módulo de Princípios Básicos de Contagem Princípio fundamental da contagem Segundo ano Princípio Fundamental de Contagem 1 Exercícios Introdutórios Exercício 1. Considere três cidades A, B e C, de forma
JOGOS COM GEOPLANO QUADRANGULAR
JOGOS COM GEOPLANO QUADRANGULAR 1. CAMINHOS CAMINHOS NÚMERO DE JOGADORES: 1,2 ou mais. OBJETIVO: Formar um caminho cujo percurso passa por todos os pontos do geoplano desde o canto superior esquerdo até
Polos Olímpicos de Treinamento. Aula 3. Curso de Combinatória - Nível 2. Paridade. Prof. Bruno Holanda
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 3 Paridade Todo número é par ou ímpar. Óbvio, não? Pois é com essa simples afirmação que vamos resolver os problemas
Centro Universitário UNIVATES Pró-Reitoria de Pesquisa, Extensão e Pós-Graduação PROPEX Centro de Ciências Exatas e Tecnológicas Apoio: CNPq
Centro Universitário UNIVATES Pró-Reitoria de Pesquisa, Extensão e Pós-Graduação PROPEX Centro de Ciências Exatas e Tecnológicas Apoio: CNPq 4ª série/ 5º ano IDENTIFICAÇÃO: Nome(s) do(a)(s) aluno(a)(s):
SOLUÇÕES NÍVEL 1 2ª. FASE 2017
SOLUÇÕES NÍVEL 1 2ª. FASE 2017 N1Q1 Solução item a) Como a casa pintada está na linha 3, Ana sorteou o número 3 e, como ela também está na coluna 4, concluímos que Pedro sorteou o número 1, pois 4 3 =
Aulas 5 e 6 / 28 e 30 de março
Aulas 5 e / 8 e 30 de março 1 Notação de soma e produto Como expressar a seguinte soma de uma maneira mais concisa? 1 + + 3 3 + + 10? Note que as parcelas são semelhantes, e que a única coisa que varia
Congruências I. Por exemplo, 7 2 (mod 5), 9 3 (mod 6), 37 7 (mod 10) mas 5 3 (mod 4). Veja que a b (mod m) se, e somente se, m a b.
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível 2 Prof. Samuel Feitosa Aula 6 Congruências I Definição 1. Dizemos que os inteiros a e b são congrentes módulo m se eles deixam o mesmo
Números Primos, MDC e MMC. O próximo teorema nos diz que os primos são as peças fundamentais dos números inteiros:
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 4 Números Primos, MDC e MMC. Definição 1. Um inteiro p > 1 é chamado número primo se não possui um divisor d
O principal objetivo desta lição é ensinar as regras de movimentação dos cavalos.
1 V. (a) CAVALOS Objetivos: 1. Fixar e aplicar as regras de movimentação dos cavalos. 2. Resolver problemas elementares usando os cavalos. O principal objetivo desta lição é ensinar as regras de movimentação
Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de
Dominó Geométrico 7.1. Apresentação Este é um bom material para interagir a matemática de uma forma divertida e descontraída por meio de um jogo de dominó que pode ser desenvolvido por até no máximo quatro
_32109, _42109, _52109 e (o traço indica onde deve ser colocado o algarismo das centenas de milhar)
Questão 1 Como o algarismo das unidades é 1, para que o número seja aditivado, a soma dos algarismos das casas das dezenas, centenas e unidades de milhar deve ser igual a 1. Existe só um número com quatro
Canguru Brasil 2014 Nível E - Soluções
Canguru Brasil 2014 Nível E - Soluções 3 pontos 1. Qual dos desenhos abaixo é a parte central da figura ao lado? 1. Alternativa D A estrela tem 9 pontas. A parte central deve mostrar isso. 2. Gina quer
Exercícios sobre Métodos de Contagem
Exercícios sobre Métodos de Contagem 1) Um grupo de 4 alunos (Alice, Bernardo, Carolina e Daniel) tem que escolher um líder e um vice-líder para um debate. (a) Faça uma lista de todas as possíveis escolhas
XXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)
XXIII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA 1 As peças de um jogo chamado Tangram são construídas cortando-se um quadrado em sete partes, como mostra o
OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1
Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;
01) Qual é o valor da soma ? Esta soma é par ou é ímpar?
LISTA 01 PARIDADE PROF: Isabela Ribeiro Brosco 18/06/2016 Aluno(a): 01) Qual é o valor da soma 1 + 2 + 3 +... + 2014 + 2015 + 2016? Esta soma é par ou é ímpar? 02) Qual é a soma dos múltiplos de 3 entre
Programa Olímpico de Treinamento. Aula 19. Curso de Combinatória - Nível 2. Miscelânea II. Prof. Bruno Holanda
Programa Olímpico de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 19 Miscelânea II Como prometido, em nesta última aula do treinamento em combinatória para alunos do nível, iremos
Objetivo do jogo. À procura de tesouros, grupos de aventureiros vasculham o lendário templo em Luxor.
Um jogo de Rüdiger Dorn para 2-4 jogadores a partir de 8 anos Objetivo do jogo À procura de tesouros, grupos de aventureiros vasculham o lendário templo em Luxor. Os aventureiros disputam a chegada à câmara
Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2. Aula 1 - Divisibilidade I
Polos Olímpicos de Treinamento (POT) Curso de Teoria dos Números - Nível 2 Aula 1 - Divisibilidade I Samuel Barbosa Feitosa Arquivo Original 1 1 Documento:...gaia/educacional/matematica/teoria numeros2/aula01-divisibilidadei.pdf.
XXIX OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries)
TERCEIRA FASE NÍVEL 1 (5 a. e 6 a. Séries) PROBLEMA 1 Parte das casas de um quadriculado com o mesmo número de linhas (fileiras horizontais) e colunas (fileiras verticais) é pintada de preto, obedecendo
É possível levar um sapo ao lago?
É possível levar um sapo ao lago? Resumo da atividade Nesta atividade o professor proporá aos alunos um jogo de tabuleiro, sem contar para os alunos que o objetivo do jogo é impossível de se alcançar.
1. Se x e y são números reais positivos, qual dos números a seguir é o maior?
XXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase Nível 3 - A duração da prova é de 3 horas. - Não é permitido o uso de calculadoras nem consulta a notas ou livros. - Você pode solicitar papel para
DANÔMIO. Objetivos Aprimorar o conhecimento da multiplicação de monômios.
DANÔMIO Objetivos Aprimorar o conhecimento da multiplicação de monômios. Materiais Dado feito de papel com um monômio em cada face, 6 tabelas que apresentam todas combinações de produtos dos monômios de
2
Go Ludus História OGoé um jogo tradicional do Oriente. Surgiu na China há mais de 00 anos e foi introduzido no Japão em 00 d.c., sendo muito popular nos dois países. É um jogo de influência, com regras
Espera, espera, tive uma idéia e uma idéia não se deixa fugir.
Nível 1 5ª e 6ª séries (6º e 7º anos) do Ensino Fundamental 2ª FSE 24 de outubro de 2009 Cole aqui a etiqueta com os dados do aluno. Parabéns pelo seu desempenho na 1ª Fase da OBMEP. É com grande satisfação
30 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE PRIMEIRA FASE. PROVA DO NÍVEL I - 6 o e 7 o ANOS - ENSINO FUNDAMENTAL.
3 a OLIMPÍADA DE MATEMÁTICA DO RIO GRANDE DO NORTE 29- PRIMEIRA FASE. PROVA DO NÍVEL I - 6 o e 7 o ANOS - ENSINO FUNDAMENTAL. Para cada questão, assinale uma alternativa como a resposta correta. NOME DO(A)
Jogos de tabuleiro por todos os lados
Jogos Jogos de tabuleiro por todos os lados Amplie o acervo e inclua esses importantes recursos didáticos na rotina de alunos e professores Daniele Pechi Qual foi a última vez que você viu os alunos jogando
Equações Diofantinas II
Polos Olímpicos de Treinamento Curso de Teoria dos Números - Nível Prof. Samuel Feitosa Aula 1 Equações Diofantinas II Continuaremos nosso estudo das equações diofantinas abordando agora algumas equações
O Semáforo. O jogo Semáforo foi inventado pelo matemático Alan Parr, em 1998.
O Semáforo O jogo Semáforo foi inventado pelo matemático Alan Parr, em 1998. SEMÁFORO PARA INVISUAIS ESTRATÉGIAS E SITUAÇÕES DE JOGO Uma das estratégias passa por jogar numa casa do centro do tabuleiro,
Torneio de Xadrez. Escola Básica Adriano Correia de Oliveira. Centro de Recursos Biblioteca Escolar
Torneio de Xadrez Escola Básica Adriano Correia de Oliveira Centro de Recursos Biblioteca Escolar Atividade do PAA do CRBE 2015/2016 Professor Frederico Oliveira Fonte: WEB Divertida e amiga, porque te
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte. Prova do Nível I Em 25/09/2010
XXI Olimpíada de Matemática do Estado do Rio Grande do Norte Prova do Nível I Em 25/09/2010 Problema 1 Um professor de Matemática definiu a seguinte operação entre dois números naturais: Ele exemplificou
A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA
A UTILIZAÇÃO DE JOGOS DE ESTRATÉGIA VIA COMPUTADOR NA INTRODUÇÃO DE CONCEITOS MATEMÁTICOS EM SALA DE AULA JOSINALVA ESTACIO MENEZES UFRPE [email protected] TEMA: SOFTWARE E HARDWARE Aplicativos
JOGOS AFRICANOS BORBOLETA DE MOÇAMBIQUE
JOGOS AFRICANOS BORBOLETA DE MOÇAMBIQUE O jogo é chamado Borboleta em Moçambique, provavelmente por causa da forma do tabuleiro. Na Índia e em Blangadesh, as crianças chamam o mesmo jogo de Lau Kata Kati.
JOGOS COM PENTAMINÓS PENTAMINÓS
JOGOS COM PENTAMINÓS 1. PENTAMINÓS PENTAMINÓS NÚMERO DE JOGADORES: 2 OBJETIVO: Colocar todas as peças no tabuleiro. MATERIAIS: 12 peças de cores diferentes e um tabuleiro quadrado, 8 x 8, com 64 casas.
