Análise Combinatória
|
|
|
- Kátia Sequeira Bento
- 9 Há anos
- Visualizações:
Transcrição
1 Pág 1 QUESTÃO 01 Análise Combinatória QUESTÕES ASSOCIADAS AOS TEMAS Considere que, para ter acesso à sua conta corrente via Internet, um correntista do BB deve cadastrar uma senha de 8 dígitos, que devem ser escolhidos entre os algarismos de 0 a 9. Se o correntista decidir que todos os algarismos de sua senha serão diferentes, então o número de escolhas distintas que ele terá para essa senha é igual a 8!. QUESTÃO 02 Cada um dos círculos da figura deverá ser pintado com uma cor, escolhida dentre quatro disponíveis. Sabendo que dois círculos consecutivos nunca serão pintados com a mesma cor, então o número de formas de se pintar os círculos é: a) 3 7! b) 4 7 c) d) 7 4 e) 7! 4! QUESTÃO 03 Dica de segurança: saiba mais sobre o código de acesso O código de acesso consiste em uma seqüência de três letras distintas do alfabeto, gerada automaticamente pelo sistema e informada ao cliente. Para efetuar transações a partir de um terminal de autoatendimento, esse código de acesso é exigido do cliente pessoa física, conforme explicado a seguir. É apresentada ao cliente uma tela em que as 24 primeiras letras do alfabeto estão agrupadas em 6 conjuntos disjuntos de 4 letras cada. Para entrar com a primeira letra do seu código de acesso, o cliente deve selecionar na tela apresentada o único conjunto de letras que a contém. Após essa escolha, um novo agrupamento das 24 primeiras letras do alfabeto em 6 novos conjuntos é mostrado ao cliente, que deve então selecionar o único conjunto que inclui a segunda letra do seu código. Esse processo é repetido para a entrada da terceira letra do código de acesso do cliente. A figura abaixo ilustra um exemplo de uma tela com um possível agrupamento das 24 primeiras letras do alfabeto em 6 conjuntos. Considerando que o BB tenha 15,6 milhões de clientes pessoa física e que todos possuam um código de acesso como descrito acima, conclui-se que mais de clientes do BB possuem o mesmo código de acesso. QUESTÃO 04
2 Pág 2 Um clube resolve fazer uma Semana de Cinema. Para isso, os organizadores escolhem sete filmes, que serão exibidos um por dia. Porém, ao elaborar a programação, eles decidem que três desses filmes, que são de ficção científica, devem ser exibidos em dias consecutivos. Nesse caso, o número de maneiras diferentes de se fazer a programação dessa semana é: a) 144 b) 576 c) 720 d) QUESTÃO 05 Sete modelos, entre elas Ana, Beatriz, Carla e Denise, vão participar de um desfile de modas. A promotora do desfile determinou que as modelos não desfilarão sozinhas, mas sempre em filas formadas por exatamente quatro das modelos. Além disso, a última de cada fila só poderá ser ou Ana, ou Beatriz, ou Carla ou Denise. Finalmente, Denise não poderá ser a primeira da fila. Assim, o número de diferentes filas que podem ser formadas é igual a: a) 420 b) 480 c) 360 d) 240 e) 60 QUESTÃO 06 Um determinado modelo de teclado possui 36 teclas brancas. É também conhecido como modelo de 5 oitavas (cada oitava representa as teclas brancas DÓ, RÉ, MI, FÁ, SOL, LÁ, SI, DÓ, nesta ordem). A mesma tecla correspondente à nota DÓ, que é o fim de uma oitava, também, é o início da outra. Neste teclado, a tecla correspondente à nota mais grave, localizada no canto esquerdo, e a tecla correspondente à nota mais aguda, localizada no canto direito, são teclas correspondentes à nota DÓ, conforme mostra a figura. As teclas da esquerda emitem sons mais graves e, da esquerda para a direita, as notas vão se tornando menos graves, uma a uma. Três teclas são pressionadas, uma de cada vez, sem que haja repetição. O número de sons que podem ser obtidos, gerados pela seqüência DÓ DÓ SOL é igual a: a) 210 b) 180 c) 150 d) 120 e) 5!. 2 QUESTÃO 07 Considere que, em um edifício residencial, haja uma caixa de correspondência para cada um de seus 79 apartamentos e em cada uma delas tenha sido instalada uma fechadura eletrônica com código de 2 dígitos distintos, formados com os algarismos de 0 a 9. Então, de todos os códigos assim formados, 11 deles não precisaram ser utilizados.
3 Pág 3 QUESTÃO 08 Admita todas as placas de veículos que possam ser geradas no Brasil, com base nos padrões usuais e na ilustração mostrada. Então, o maior número de placas que podem ser formadas com vogais idênticas e algarismos ímpares distintos é menor do que 650. A placa do carro nasce e morre com ele, ela é a sua identidade. Quando o motorista muda ou o carro é vendido para alguém de outro estado, a combinação de letras continua com o veículo, o que muda é a tarjeta com o nome do estado/uf. Cada estado tem uma série inicial e outra final. Sabendo de onde o carro vem, será mais fácil verificar sua procedência e descobrir possíveis impedimentos que o automóvel possa ter. Veja as séries das placas de cada estado. O maior número de veículos que se pode emplacar no Amapá é inferior a QUESTÃO 09
4 Pág 4 Considerando-se que um anagrama da palavra ANATEL seja uma permutação das letras dessa palavra, tendo ou não significado na linguagem comum, que n1 seja a quantidade de anagramas distintos que é possível formar com essa palavra e n2 seja a quantidade de anagramas distintos dessa palavra que começam por vogal, então n1 n QUESTÃO 10 Considere a seguinte situação hipotética : para oferecer a seus empregados cursos de inglês e espanhol, uma empresa contratou 4 professores americanos e 3 espanhóis. Nessa situação, sabendo que cada funcionário fará exatamente um curso de cada língua estrangeira, um determinado empregado disporá de exatamente 7 duplas distintas de professores para escolher aqueles com os quais fará os seus cursos. QUESTÃO 11 No Brasil, atualmente, as placas de automóveis são formadas por 3 caracteres alfabéticos maiúsculos e 4 caracteres numéricos, conforme indica a ilustração. Com base nos dados acima, julgue o item a seguir. Admitindo que, nos veículos emplacados na região sul do Brasil, as placas tivessem as posições de letras representadas pela seqüência das primeiras letras do respectivo estado em que o veículo foi emplacado, o número máximo de placas diferentes que poderiam ser obtidas na região sul do Brasil seria superior a QUESTÃO 12 Em uma mostra competitiva de filmes, dois curta-metragens, nomeados como F 1 e F 2, foram finalistas. Um júri de 4 pessoas foi designado para decidir o vencedor, sendo que cada jurado tinha o direito a um único voto, e esse voto tinha de, necessariamente, ser para um dos filmes ( ou seja, não era admitido voto nulo ou em branco). Para ser considerado vencedor, o filme teria de obter mais da metade dos votos dos jurados. Logo, se o primeiro jurado votar no filme F 1, então, entre todas as possibilidades de votação, haveria 4 em que F 1 seria o filme vencedor. QUESTÃO 13 Em uma fábrica de bijuterias são produzidos colares enfeitados com cinco contas de mesmo tamanho dispostas lado a lado, como mostra a figura. As contas estão disponíveis em 8 cores diferentes. De quantos modos distintos é possível escolher as cinco contas para compor um colar, se a primeira e a última contas devem ser da mesma cor, a segunda e a penúltima contas devem ser da mesma cor e duas contas consecutivas devem ser de cores diferentes? (A) 612 (B) 556 (C) 448 (D) 392 (E) 336 QUESTÃO 14 Uma agência de turismo está fazendo uma pesquisa entre seus clientes para montar um pacote de viagens à Europa e pede aos interessados que preencham um formulário com as seguintes informações e sem repetição: - a ordem de preferência entre as 3 companhias aéreas com que trabalha a agência; - a 1ª e a 2ª opções dentre 4 possíveis datas de partida apresentadas pela agência;
5 Pág 5 - os nomes de 4 cidades diferentes a serem visitadas, que devem ser escolhidas de uma lista de 10 fornecida pela agência (sem ordem de preferência). Supondo que nenhum campo seja deixados em branco, o número de maneiras diferentes pode o formulário ser corretamente preenchido é menor que QUESTÃO 15 Uma lanchonete faz vitaminas com um, duas, três, quatro ou cinco frutas diferentes, a saber: laranja, mamão, banana, morango e maçã. As vitaminas podem ser feitas com um só tipo de fruta ou misturando-se os tipos de fruta de acordo com o gosto do freguês. Desse modo, quantas opções de vitaminas a lanchonete oferece? a) 10 b) 25 c) 31 d) 35 e) 120 QUESTÃO 16 A foto mostra uma bicicleta transportando dez pessoas. Admita que, para aliviar o trabalho do garoto que pedala, você resolva retirar três daquelas pessoas. Naturalmente, o menino que pedala não poderá sair da bicicleta. Essa extração, então, poderá ser feita, no máximo, de: a) 84 maneiras diferentes b) 90 maneiras diferentes c) 91 maneiras diferentes d) 120 maneiras diferentes e) 132 maneiras diferentes QUESTÃO 17 Sabe-se que no BB há 9 vice-presidências e 22 diretorias. Nessa situação, a quantidade de comissões que é possível formar, constituídas por 3 vicepresidentes e 3 diretores, é superior a QUESTÃO 18 Doze pessoas serão distribuídas em 4 comissões, de tal forma que o número de pessoas de uma delas é sempre igual ao número de pessoas das demais. Sabe-se que o líder de cada comissão já foi definido. É maior do que 350 o número total de maneiras distintas de se fazer a distribuição das pessoas. QUESTÃO 19 Quer-se formar um grupo de dança com 9 bailarinas, de modo que 5 delas tenham menos de 23 anos, que uma delas tenha exatamente 23 anos, e que as demais tenham idade superior a 23 anos. Apresentaram-se para a seleção quinze candidatas, com idades de 15 a 29 anos, sendo a idade, em anos, de cada candidata, diferente das demais. O número de diferentes grupos de dança que podem ser selecionados a partir desse conjunto de candidatas é igual a: b) 1220 c) 870 d) 760 e) 1120 a) 120
6 Pág 6 QUESTÃO 20 É inferior a 7500 o número de maneiras pelas 9 cópias de filmes podem ser distribuídas entre quatro salas de projeção, de modo que a menor sala receba três cópias dos filmes e cada uma das outras salas receba duas cópias dos filmes. QUESTÃO 21 O número de anagramas da palavra BRASIL que começam pela letra R e têm a letra L na penúltima posição é igual a : a) 120 b) 60 c) 48 d) 24 e) 12 QUESTÃO 22 conhecemos. Um grupo integrado por 8 brasileiros e 1 japonês chegou à um hotel na Amazônia, para desfrutar da imensidão da selva e da beleza proporcionada pelos rios, igarapés, por do sol, comidas típicas e outras novidades que o norte do Brasil disponibiliza, mas que poucos de nós Dentre os brasileiros recém chegados, apenas Ilídio falava japonês, de forma que, por razões naturais, tornou-se o intérprete do grupo. O hotel em que estavam programou um passeio de barco, para grupos de exatas 5 pessoas; ficou óbvio para todos, que, se o japonês fosse, Ilídio também deveria ir. Quantos grupos distintos, no máximo, o hotel pode organizar? a) 56 b) 81 c) 91 d) 102 e) 125 QUESTÃO 23 O prédio mostrado tem apenas três apartamentos por andar (três colunas). Deseja-se alugar seis apartamentos desse prédio, sendo apenas um por andar e apenas dois em cada coluna. O maior número de contratos de aluguel distintos que se pode firmar é menor do que 100. QUESTÃO 24 Na formação de uma Comissão Parlamentar de Inquérito (CPI), cada partido indica um certo número de membros, de acordo com o tamanho de sua representação no Congresso Nacional. Faltam apenas dois partidos para indicar seus membros. O partido A tem 40 deputados e deve indicar 3 membros, enquanto o partido B tem 15 deputados e deve indicar 1 membro.
7 Pág 7 Assinale a alternativa que apresenta o número de possibilidades diferentes para a composição dos membros desses dois partidos nessa CPI. a) 55 b) (40-3). (15-1) c) [40!/(37!. 3!)]. 15 d) e) 40!. 37!. 15! QUESTÃO 25 Um farmacêutico dispõe de 4 tipos de vitaminas e 3 tipos de sais minerais e deseja combinar 3 desses nutrientes para obter um composto químico. O número de compostos que poderão ser preparados usando-se, no máximo, 2 tipos de sais minerais é: a) 32 b) 28 c) 34 d) 26 e) 30
Análise Combinatória 1 3 o ano Blaidi/Walter ago/09. Nome: Nº: Turma:
Matemática Análise Combinatória 1 3 o ano Blaidi/Walter ago/09 Nome: Nº: Turma: 1. (U. F. Viçosa MG) Para controlar o estoque de um produto, uma empresa usa etiquetas formadas por uma parte literal e outra
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM. 1. O número de anagramas da palavra verão que começam e terminam por consoante é:
1. O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. Com as letras da palavra prova, podem ser escritos x anagramas que começam por vogal e
Série 2ºano. Disciplina: MATEMÁTICA Professores: Geth, Júnio, Sergio
Polícia Militar do Estado de Goiás CPMG Hugo de Carvalho Ramos Ano Letivo - 2016 Série 2ºano ATIVIDADES TURMA (S) I J K L M Turno NOTURNO Valor da Lista Disciplina: MATEMÁTICA Professores: Geth, Júnio,
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.
15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 25 mai Permutação simples e anagramas 01. Resumo
Raciocínio Lógico Matemático e Analítico
Raciocínio Lógico Matemático e Analítico Professor Cláudio Serra Aula 2 Análise Combinatória www.masterjuris.com.br TÓPICOS INTRODUTÓRIOS E CONCEITUAIS 1 - Fatorial Seja n um número inteiro não negativo.
UECEVest - TD DE ESPECÍFICA DE MATEMÁTICA
ANÁLISE COMBINATÓRIA 1. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto,
CONTEÚDOS DO PRIMEIRO PERÍODO EXERCÍCIOS DE RECUPERAÇÃO DO PRIMEIRO PERÍODO
Aluno(: Nº Comp. Curricular: Estatística Data: 16/04/2012 1º Período Ensino Médio Comércio Exterior Turma: 5 3MC1/ 2 Professor: José Manuel Análise Combinatória: CONTEÚDOS DO PRIMEIRO PERÍODO 1) Fatorial
NDMAT Núcleo de Desenvolvimentos Matemáticos
01) Quantos trajetos diferentes podem ser percorridos, para ir de A até E, usando-se apenas os caminhos e sentidos indicados na figura abaixo? 05) (FGV) Um inspetor visita 6 máquinas diferentes durante
MATEMÁTICA - 3 o ANO MÓDULO 15 ARRANJO E COMBINAÇÃO
MATEMÁTICA - 3 o ANO MÓDULO 15 ARRANJO E COMBINAÇÃO x = 2 y = 1 z = 3 2 + 1 + 3 = 6 Como pode cair no enem (ENEM) O designer português Miguel Neiva criou um sistema de símbolos que permite que pessoas
Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática
Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 9 - ANALISE COMBINATÓRIA 1. (Pucrj 016) Uma escola quer fazer um sorteio com as crianças. Então, distribui cartelas que têm
COLÉGIO EQUIPE DE JUIZ DE FORA
1. (UPF-RS) O número de anagramas da palavra verão que começam e terminam por consoante é: a) 120 b) 60 c) 12 d) 24 e) 6 2. (UFF-RJ) Com as letras da palavra prova, podem ser escritos x anagramas que começam
COLÉGIO EQUIPE DE JUIZ DE FORA MATEMÁTICA - 3º ANO EM
1. UEL-PR Tome um quadrado de lado 20 cm (figura 1) e retire sua metade (figura 2). Retire depois um terço do resto (figura 3). Continue o mesmo procedimento, retirando um quarto do que restou, depois
Considere a figura, em que estão indicadas as possíveis localizações do cliente.
36. [C] Considere a figura, em que estão indicadas as possíveis localizações do cliente. A resposta é 12. 37. [C] Como cada tarefa pode ser distribuída de três modos distintos, podemos concluir, pelo Princípio
Professor Zé Moreira QUESTÕES PROPOSTAS
QUESTÕES PROPOSTAS 01 - Uma dama tem 3 saias e 4 blusas. De quantas maneiras poderá sair usando sala e blusa sem repetir o mesmo conjunto? 02 - Quantos números de 3 algarismos distintos podemos formar
RACIOCÍNIO LÓGICO MATEMÁTICO
RACIOCÍNIO LÓGICO MATEMÁTICO PROFº MARCELO JARDIM WWW.CONCURSOVIRTUAL.COM.BR 1 PRINCÍPIO FUNDAMENTAL DA CONTAGEM PRINCÍPIO MULTIPLICATIVO Formação de senhas, códigos, placas de automóveis e telefones.
Superintensivo 2014 Matemática Kmara. PA e PG.
Superintensivo 2014 Matemática Kmara PA e PG. Questões de estibulares: USC/98 Possuo 6 camisas (uma é vermelha) e 5 calças (uma é preta). O número de grupos de 4 camisas e 3 calças que poderei formar,
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan Análise Combinatória Permutação Simples Análise Combinatória É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em
Pré Universitário Uni-Anhanguera. Disciplina: Matemática Data de entrega: 06/05/ Resolva a equação. 2. A expressão é igual a:
Lista de Exercícios - 03 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: 2º ano (Ensino Médio) Disciplina: Matemática Data de entrega: 06/05/2014 Observação: A lista deverá apresentar
LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 3º ANO PROF.: ARI
01.: (Sta.Casa) Existem 4 entradas de rodagem e 3 estradas de ferro entre as cidades A e B. Quantos são os diferentes percursos para fazer a viagem de ida e volta entre A e B, utilizando rodovia e trem,
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: ANÁLISE COMBINATÓRIA 3 a SÉRIE ENSINO MÉDIO
EXERCÍCIOS DE REVISÃO MATEMÁTICA CONTEÚDO: ANÁLISE COMBINATÓRIA 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (CESCEA) Um automóvel é oferecido pelo
COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014
COLÉGIO PLÍNIO L EITE MATEMÁTICA 2º Período/2014 2ª SÉRIE ESCOLAR - ENSINO MÉDIO Nome: Turma: nº: Professor : Chiquinho Data: 23/07/2014 ATIVIDADE PONTUADA VALOR: 5,0 pontos... 1) Os 63 novos contratados
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan IDENTIFICAÇÃO PERMUTAÇÃO SIMPLES É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em questões que envolvem anagramas
10. ANÁLISE COMBINATÓRIA
10. ANÁLISE COMBINATÓRIA 1) Observe a figura: Nessa figura, está representada uma bandeira que deve ser pintada com duas cores diferentes, de modo que a faixa do meio tenha a cor diferente das outras faixas.
Prof. Dr. Lucas Santana da Cunha de abril de 2018 Londrina
Análise Combinatória Prof. Dr. Lucas Santana da Cunha email: [email protected] http://www.uel.br/pessoal/lscunha/ 18 de abril de 2018 Londrina 1 / 11 Análise Combinatória A Análise Combinatória é a parte
Projeto Jovem Nota 10 Análise Combinatória Lista 1 Professor Marco Costa
1 TEXTO PARA A PRÓXIMA QUESTÃO Projeto Jovem Nota 10 (Unirio 2002) Um grupo de 8 rapazes, dentre os quais 2 eram irmãos, decidiu acampar e levou duas barracas diferentes: uma com capacidade máxima de 3
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno
8º ANO; LISTA 2. Princípio fundamental da contagem AV 2 4º Bim. Escola adventista de Planaltina Professor: Celmo Xavier Aluno ANÁLISE COMBINATÓRIA Introdução Consideremos o seguinte problema: Uma lanchonete
Análise Combinatória Intermediário
Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER
ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24
ANÁLISE COMBINATÓRIA. Questões extra
ANÁLISE COMBINATÓRIA Questões extra O cardápio do almoço do turno integral, em uma determinada escola, oferece dois tipos de salada, dois tipos de carnes e três tipos de pratos quentes, planejado de forma
01. Quantos números com 3 algarismos podem ser formandos usando-se os algarismos 2, 3, 4, 5, 6, 7?
Colégio Santa Maria 3º ano médio 2012. Lista de exercícios Análise Combinatória (Arranjos simples, permutações e combinações simples P.F.C). Professor: Flávio Verdugo Ferreira. 01. Quantos números com
Matemática 2 Ano do Ensino Médio. Lista 1 Análise Combinatória. 1. Simplifique as expressões algébricas.
Estudante: Nº. Matemática 2 Ano do Ensino Médio Professor: Diego Andrades Lista 1 Análise Combinatória 1. Simplifique as expressões algébricas. ( x 1)! x! a) ( n 1)! b) ( k 2)! k! c) ( n 1)! ( n 2)! d)
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
PRINCÍPIO FUNDAMENTAL DA CONTAGEM OU PRINCÍPIO MULTIPLICATIVO
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
Interbits SuperPro Web
Ita analise combinatoria 1. (Ita 2016) Pintam-se N cubos iguais utilizando-se 6 cores diferentes, uma para cada face. Considerando que cada cubo pode ser perfeitamente distinguido dos demais, o maior valor
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.
15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 26 mai Combinação 01. Resumo 02. Exercícios de Aula
n! ( n 1)! 2!.( n 1)! n n ( n 1)!( n 1)! ! 102! 100! 20! 6! c) 20! 6! 20! 5! e) 20! 6! Gabarito: B
Tarefas 14, 15 e 16 Professor Luiz Exercícios de sala 01. Simplifique: n! a) ( n 1)! ( n 3)! 5 n! ( n 1)! b) n! 03. (PUC-RS) Se a) 13 b) 11 c) 9 d) 8 e) 6 Gabarito: C ( n 1)! 1, então n é igual a: ( n
Análise Combinatória
Análise Combinatória PFC Princípio Fundamental da Contagem O princípio fundamental da contagem está diretamente ligado às situações que envolvem as possibilidades de um determinado evento ocorrer, por
Questão 1. Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.
SE18 - Matemática LMAT 5A3 - Permutações, combinações e arranjos Questão 1 (Enem 2017) Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.
Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial
Matemática Professor Luiz Henrique - Tarefa 06_07_08 e 09 RESUMO TEÓRICO - Fatorial Seja n um número natural tal que n > 1. Definimos n fatorial e representamos por n!, da seguinte forma: Propriedade fundamental
Mat. e Luanna Ramos Monitor: Roberta Teixeira
1 Professor: Gabriel Miranda e Luanna Ramos Monitor: Roberta Teixeira 2 Princípio Fundamental da Contagem 05 jul RESUMO Antes de começarmos a estudar combinações, é fundamental sabermos o que é um fatorial.
Paulo chegou a uma lanchonete e encontrou as seguintes opções de bebidas disponíveis:
Analise Combinatória 1 1.1 Princípio Aditivo Exemplo 1.1 Paulo chegou a uma lanchonete e encontrou as seguintes opções de bebidas disponíveis: 4 opções de refrigerante: R 1, R 2, R 3 e R 4 ; 3 opções de
Análise Combinatória 2
1. Um estudante possui dez figurinhas, cada uma com o escudo de um único time de futebol, distribuídas de acordo com a tabela: Para presentear um colega, o estudante deseja formar um conjunto com cinco
PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue:
ANÁLISE COMBINATÓRIA Prof. Aurimenes A análise combinatória é a parte da matemática que estuda os problemas de contagem, isto é, podemos calcular a quantidade de subconjuntos de um dado conjunto finito,
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO
COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO N.º2 DE MATEMÁTICA Data: Outubro de 2009 Turmas: 12ºA e 12ºB TÉCNICAS DE CONTAGEM: Arranjos com repetição ; Arranjos sem repetição;
Disciplina: MATEMÁTICA Data: 25 /09 /2018. Ensino Médio Ano/Série: 2º Turma: Valor: 10 Pts. Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO
Disciplina: MATEMÁTICA Data: 25 /09 /2018 Ensino Médio Ano/Série: 2º Turma: Valor: 10 Pts Assunto: ESTUDO DIRIGIDO PARA A RECUPERAÇÃO Etapa II Aluno(a): Nº: Nota: Professor(a): W. Leão Querido(a) aluno(a),
TUTORIAL EXTRATOR DE DADOS CHEGADAS DE TURISTAS NÃO RESIDENTES AO BRASIL
Ministério do Turismo Secretaria Executiva Diretoria de Estudos Econômicos e Pesquisas TUTORIAL EXTRATOR DE DADOS CHEGADAS DE TURISTAS NÃO RESIDENTES AO BRASIL SUMÁRIO 1- ACESSO AO EXTRATOR 2- ABERTURA
MATEMÁTICA - 2 o ANO MÓDULO 34 ANÁLISE COMBINATÓRIA: PRINCÍPIO FUNDAMENTAL DA CONTAGEM
MATEMÁTICA - 2 o ANO MÓDULO 34 ANÁLISE COMBINATÓRIA: PRINCÍPIO FUNDAMENTAL DA CONTAGEM Como pode cair no enem (ENEM) No Nordeste brasileiro, é comum encontrarmos peças de artesanato constituídas por garrafas
(a) Se a escolha for feita com reposição? (b) Se a escolha for feita sem reposição?
MAT Lista 3 Data da lista: 01/04/2019 Preceptores: Gabriele Braz Cursos: Administração, Ciências Econômicas e Tec. Biotecnologia Coordenadora: Luciene 1. Um homem vai a um restaurante disposto a comer
MATEMÁTICA I ANÁLISE COMBINATÓRIA 23! 48! 47! 24! 14! 13! 13! 18! 10! 100! 5! 3! 99! 98! =48. 48! 25 =98 b) ( ) 7! 6! n 1! =12. MÊS: FEVEREIRO NOME:
NOME: MÊS: FEVEREIRO SÉRIE: 3 a TURMA: ENSINO: MÉDIO ANÁLISE COMBINATÓRIA 01) Simplifique: 20! a) b) 18! 14! 13! 13! c) 23! 48! 47! 24! 02) Simplificando a fração 101! 102! 100!, obtém-se: (A) 101103 (D)
O número de formas distintas de se acomodar a família nesse voo é calculado por
1. (Fgv 2017) Somando todos os números de três algarismos distintos que podem ser formados com os dígitos 1, 2, 3 e 4, o resultado será igual a a) 2.400. b) 2.444. c) 6.000. d) 6.600. e) 6.660. 2. (Enem
Contagem II. Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em casos
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 5 Contagem II Neste material vamos aprender novas técnicas relacionadas a problemas de contagem. 1. Separando em
Questões Comentadas. Em cada um dos itens subsequentes, é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada.
288 Em cada um dos itens subsequentes, é apresentada uma situação hipotética, seguida de uma assertiva a ser julgada. 718. (Cespe) Uma concessionária oferece aos clientes as seguintes opções para a aquisição
Resposta da questão 2: [B] O número de maneiras que esse aluno pode escrever essa palavra é igual ao arranjo de 4, 3 a 3.
Resposta da questão 1: [A],5h = 9.000 s Se d é número de algarismos da senha ímpar, podemos escrever que o número n de senhas será dado por: d1 n= 10 5 ou n= 9000 1,8 = 5000 Portanto, d1 10 5 = 5000 d
EXERCÍCIOS DE RECUPERAÇÃO PARALELA 3º BIMESTRE
EXERCÍCIOS DE RECUPERAÇÃO PARALELA 3º BIMESTRE NOME Nº SÉRIE: 3º EM DATA / / BIMESTRE 3º PROFESSOR: Adriana Massucci DISCIPLINA: Matemática 1 ORIENTAÇÕES: - As resoluções devem ser feitas em folha separada
Contagem. Próxima Aula: Prova
Contagem Próxima Aula: Prova Conteúdo Correção dos Exercícios Exercício 1 Em época de eleição para o grêmio estudantil do colégio, tiveram 12 candidatos aos cargos de presidente, vice-presidente e secretário.
Mais Permutações e Combinações (grupo 2)
Capítulo 4 Mais Permutações e Combinações (grupo 2) Como vimos anteriormente, é possível resolver um grande número de problemas interessantes de contagem sem utilizar fórmulas, apenas empregando apropriadamente
RESPOSTA Princípio Fundamental da contagem
RESPOSTA Princípio Fundamental da contagem Monitores: Juliana e Alexandre Exercício 1 Para resolver esse exercício, devemos levar em consideração os algarismos {0, 2, 3, 5, 6, 7, 8 e 9}. Para que esse
MATEMÁTICA ANÁLISE DE DADOS (ANÁLISE COMBINATÓRIA) EXERCÍCIOS
MATEMÁTICA ANÁLISE DE DADOS (ANÁLISE COMBINATÓRIA) EXERCÍCIOS Análise Combinatória (exercícios) Professor: Dêner Rocha ANAGRAMAS (Exercícios de Aquecimento!) 1. Considere a palavra VESTIBULAR. Nenhuma
Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho
Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina
Análise Combinatória. Matemática Discreta. Prof Marcelo Maraschin de Souza
Análise Combinatória Matemática Discreta Prof Marcelo Maraschin de Souza Introdução Combinatória é o ramo da matemática que trata de contagem. Esses problema são importantes quando temos recursos finitos,
Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci
Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair
2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?
UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista
Princípios e Permutação
Revisão 04 Princípios e Permutação 01. Um "Shopping Center" possui 4 portas de entrada para o andar térreo, 5 escadas rolantes ligando o térreo ao primeiro pavimento e 3 elevadores que conduzem do primeiro
Análise Combinatória
Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.
Matemática E Extensivo V. 3
Matemática E Extensivo V. Exercícios 01) 10 anagramas. POEMA 5 letras 5! 10. 0) 60 anagramas. Vogais: e, i, o omeçando com e : e _ 10 omeçando com i : i _ 10 omeçando com o : o _ 10 Logo 10 60. 4! 4 (permutação
ANÁLISE COMBINATÓRIA
ANÁLISE COMBINATÓRIA Lucas Santana da Cunha [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 17 de maio de 2017 Introdução A Análise Combinatória é a parte da Matemática
Análise Combinatória - ENEM
Prof Rômulo Garcia https://wwwfacebookcom/matematicaenem Análise Combinatória - ENEM 1)Quantos são os gabaritos possíveis de um teste de 10 questões de múltipla escolha, com 5 opções por questão? Podemos
ESTUDO DA ANÁLISE COMBINATÓRIA
ESTUDO DA ANÁLISE COMBINATÓRIA A resolução de problemas é a parte principal da Análise Combinatória, que estuda a maneira de formar agrupamentos com um determinado número de elementos dados, e de determinar
setor 1102 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 2 REVISÃO
setor 1102 1102008 Aula 20 PRINCÍPIOS BÁSICOS DA CONTAGEM 1 PRINCÍPIOS BÁSICOS DA CONTAGEM Seja, por exemplo, uma lanchonete que vende três tipos de refrigerantes e dois tipos de cerveja. Pergunta-se:
CRONOGRAMA DE RECUPERAÇÃO TEORIA E EXEMPLOS SOBRE ANÁLISE COMBINATÓRIA
CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 2º E.M. DISCIPLINA: Matemática 1 Caderno Número(s) da(s) aula(s) 07 37 e 38 Assuntos - Análise Combinatória: Princípios básicos de contagem e Princípio Fundamental da Contagem.
CONTEÚDO PROGRAMÁTICO
CONTEÚDO PROGRAMÁTICO ÍNDICE RLM...2 Psicotécnico e Proposições...2 Matemática...5 Analise Combinátoria, Probablidade e Proporcionalidade...5 1 Psicotécnico e Proposições AlfaCon Concursos Públicos RLM
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem. Permutação simples e fatorial de um número.
Matemática 2C16//26 Princípio da multiplicação ou princípio fundamental da contagem 1. Existem 2 vias de locomoção de uma cidade A para uma cidade B e 3 vias de locomoção da cidade B a uma cidade C. De
Lista de Exercícios Extra Prof. Dudan
Escrivão e Agente de Polícia Lista de Exercícios Extra Prof. Dudan Raciocínio Lógico 1. (35137) CESPE 2013 Maria tem dez anos de idade e já se decidiu: quer ser ou advogada ou bióloga ou veterinária,
Contagem I. Figura 1: Abrindo uma Porta.
Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?
POLÍCIA FEDERAL raciocínio lógico REVISÃO - AULA 01 Prof. Dudan
POLÍCIA FEDERAL raciocínio lógico REVISÃO - AULA 01 Prof. Dudan www.acasadoconcurseiro.com.br Raciocínio Lógico AULA 01 CONJUNTOS NUMÉRICOS DIAGRAMA DOS CONJUNTOS Transformação de dizima periódica em
MATEMÁTICA - 2 o ANO MÓDULO 38 ANÁLISE COMBINATÓRIA: COMBINAÇÕES SIMPLES
MATEMÁTICA - 2 o ANO MÓDULO 38 ANÁLISE COMBINATÓRIA: COMBINAÇÕES SIMPLES C = n, p p! n! ( n p )! Como pode cair no enem (UERJ) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro,
Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.
15 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Combinatória 25 mai Princípio fundamental da contagem e Arranjos
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área. Colégio Providência Avaliação por Área 2ª SÉRIE ENSINO MÉDIO
Colégio Providência Avaliação por Área Matemática e suas tecnologias 3ª ETAPA Data: 26/11/2015 2ª SÉRIE ENSINO MÉDIO Colégio Providência Avaliação por Área Matemática e suas tecnologias 3ª ETAPA Data:
PROBABILIDADE. Aula 3 Arranjo, Permutação e Análise Combinatória. Fernando Arbache
PROBABILIDADE Aula 3 Arranjo, Permutação e Análise Combinatória Fernando Arbache Princípio fundamental da contagem Exemplo: Uma menina quer sair com o namorado. Ela quer saber de quantas maneiras diferentes
Matemática ANÁLISE COMBINATÓRIA. Professor Dudan
Matemática ANÁLISE COMBINATÓRIA Professor Dudan Análise Combinatória Análise Combinatória Permutação Simples É caracterizada por envolver todos os elementos, nunca deixando nenhum de fora.muito comum em
COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA
Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto
Centro Educacional ETIP
Centro Educacional ETIP Trabalho Trimestral de Matemática 2 Trimestre/2014 Data: 08/08/2014 Professor: Nota: Valor : [0,0 2,0] Nome do (a) aluno (a): Nº Turma: 3 M CONTEÚDO Análise Combinatória, Princípio
Elaine Cristina e Aline Heloisa
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES ANO 2018 PROFESSOR (a) DISCIPLINA Valor: Elaine Cristina e Aline Heloisa Matemática 30 pontos ALUNO (a) SÉRIE 2º ANO ENSINO MÉDIO
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática
ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO
a) Em quantas ordem quatro pessoas podem senta num sofá de 4 lugares?
ANÁLISE COMBINATÓRIA 1. PRINCIPIO FUNDAMENTAL DA CONTAGEM A análise combinatória é um ramo da matemática que tem por objetivo resolver problemas que consistem, basicamente em escolher e agrupar os elementos
Análise Combinatória. (1) Princípios de Contagem: Se A e B são dois conjuntos disjuntos, com p e q elementos, respectivamente, então
CIN AULA 01 Análise Combinatória ALICAÇÃO 1: Alice não se recorda da senha que definiu no computador. Sabe apenas que é constituída por quatro letras seguidas, com pelo menos uma consoante. xemplo Introdutório:
Então ao todo ela pode se vestir de 3+3=6 modos diferentes. Veja estas possibilidades na figura a seguir.
Contagem 5: resolução de exercícios Desde a primeira aula de contagem estamos estudando o princípio multiplicativo e o princípio aditivo. Também estudamos o conceito de permutação e nas últimas aulas foram
LISTA DE QUESTÕES DO ENEM ANÁLISE COMBINATÓRIA PROF: Paulo Vinícius
LISTA DE QUESTÕES DO ENEM ANÁLISE COMBINATÓRIA PROF: Paulo Vinícius 1. (Enem 017) Um brinquedo infantil caminhão-cegonha é formado por uma carreta e dez carrinhos nela transportados, conforme a figura.
Carnes: filé de peixe, filé de frango, carne de porco e bife de carne bovina.
ANÁLISE COMBINATÓRIA CONTEÚDOS Princípio multiplicativo Permutações simples Arranjos simples Combinações simples Permutações com elementos repetidos AMPLIANDO SEUS CONHECIMENTOS Princípio multiplicativo
SUPER 30 PROFESSOR HAMILTON VINÍCIUS. Competência de área 1 Construir significados para os números naturais, inteiros, racionais e reais.
Competência de área 1 Construir significados para os números naturais, inteiros, racionais e reais. 1 H3 - Resolver situação-problema envolvendo conhecimentos numéricos. Quais principais conteúdos abordados
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014
AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº4 - Probabilidades - 12º ano Exames de 2011 a 2014 1. Seja o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem
Questão 01 - (PUC SP/2018) A secretária de um médico precisa agendar quatro pacientes, A, B, C e D, para um mesmo dia. Os pacientes A e B não podem ser agendados no período da manhã e o paciente C não
Permutação; Fatorial; Resolução de exercícios de contagem. Assuntos:
Assuntos: Permutação; Fatorial; Resolução de exercícios de contagem. Prof. Hudson Sathler Delfino Exercícios Ciclo 5 N1 1º ENCONTRO. Exercício 1. (a) Quantos são os anagramas da palavra BOLA? (b)e quantos
Raciocínio Lógico Matemático Prof. Marcelo Jardim
Raciocínio Lógico Matemático Prof. Marcelo Jardim www.concursovirtual.com.br 1 01. Para um determinado número natural com quatro algarismos, o algarismo das unidades é par e maior que cinco; o algarismo
Tarefa nº_ 1.8. Probabilidades e Combinatória Análise Combinatória
Tarefa nº_ 1.8 MATEMÁTICA Probabilidades e Combinatória Análise Combinatória Nome: 12º Ano Data / / 1. A Câmara Municipal de uma cidade decidiu alterar o sistema de matrículas das motorizadas. Assim, cada
