CURVAS HORIZONTAIS COM TRANSIÇÃO
|
|
|
- Gabriel Stachinski Sanches
- 9 Há anos
- Visualizações:
Transcrição
1 CURVAS HORIZONTAIS COM TRANSIÇÃO
2 Introdução Trecho reto para uma curva circular: Variação instantânea do raio infinito para o raio finito da curva circular Surgimento brusco de uma força centrífuga Desconforto e insegurança Curva de transição: Variação gradativa do raio de valor até R Curvas horizontais com transição 2
3 Introdução Curva de transição Proporciona um crescimento gradual da aceleração centrífuga que surge na passagem do trecho reto para o trecho curvo Constitui uma adequada extensão para efetuar o giro da pista até a posição superelevada em curva Faz a transição gradual da trajetória do veículo em planta Conduz a um traçado fluente e visualmente satisfatório Curvas horizontais com transição 3
4 Introdução Curvas horizontais com transição 4
5 Tipos de curvas de transição Parábola cúbica Curvas horizontais com transição 5
6 Tipos de curvas de transição Lemniscata de Bernouille Curvas horizontais com transição 6
7 Tipos de curvas de transição Clotóide ou espiral de Cornu Curvas horizontais com transição 7
8 Propriedades da clotóide Equação: R. L = K R: raio L: comprimento K: constante (parâmetro da clotóide) Curvas horizontais com transição 8
9 Concordância da curva de transição Curvas horizontais com transição 9
10 Concordância da curva de transição Centro conservado Tangentes conservadas Raio alterado Centro conservado Tangentes alteradas Raio conservado Centro alterado Tangentes conservadas Raio conservado Curvas horizontais com transição 10
11 Elementos de uma curva horizontal com transição O : centro do trecho circular afastado PI: ponto de interseção das tangentes A: ponto genérico da transição X s : abscissa dos pontos SC e CS Y s : ordenada dos pontos SC e CS TT: tangente total Curvas horizontais com transição 11
12 Elementos de uma curva horizontal com transição k (ou Q): abscissa do centro O p: afastamento da curva circular X: abscissa de um ponto genérico A Y: ordenada de um ponto genérico A θ s : ângulo de transição Φ (ou θ c ): ângulo central do trecho circular Curvas horizontais com transição 12
13 Elementos de uma curva horizontal com transição AC: ângulo central Δ: deflexão das tangentes D c (ou L c ): desenvolvimento do trecho circular R c : raio da curva circular L s : comprimento do trecho de transição E: distância do PI à curva circular Curvas horizontais com transição 13
14 Pontos notáveis TS: tangente-espiral SC: espiral-circular CS: circular-espiral ST: espiral-tangente Curvas horizontais com transição 14
15 Cálculo dos elementos da espiral dl = R. dθ dθ = dl R = dl K/L = L. dl K dθ = L. dl K θ = L2 2. K L2 θ = 2. R c. L s Curvas horizontais com transição 15
16 Cálculo dos elementos da espiral cosθ = dx dl dx = dl. cosθ Desenvolvendo cosθ em série de potências e integrando : X = L. 1 θ θ4 216 Curvas horizontais com transição 16
17 Cálculo dos elementos da espiral senθ = dy dl dy = dl. senθ Desenvolvendo senθ em série de potências e integrando : Y = L. θ 3 θ Curvas horizontais com transição 17
18 Cálculo dos elementos da espiral Para o comprimento de transição: L = L s θ = θ s X = X s Y = Y s θ s = L s 2. R c X s = L s. 1 θ s θ 4 s 216 Y s = L s. θ s 3 3 θ s 42 + [radianos] Curvas horizontais com transição 18
19 Cálculo dos elementos da espiral Elementos adicionais: k = X s R c. senθ s p = Y s R c. (1 cosθ s ) TT = k + R c + p. tg 2 E = R c + p cos 2 R c Curvas horizontais com transição 19
20 Trecho circular Ângulo central: AC = θ c + 2. θ s θ c = AC 2. θ s Comprimento do trecho circular: π L c = R c. θ c L c = R c. θ c. 180 [rad] [graus] Desenvolvimento total da concordância: D = L c + 2. L s Curvas horizontais com transição 20
21 Estaca dos pontos notáveis Estaca TS = Estaca PI TT Estaca SC = Estaca TS + L s Estaca CS = Estaca SC + L c Estaca ST = Estaca CS + L s Curvas horizontais com transição 21
22 Escolha do comprimento de transição (L s ) Comprimento máximo Comprimento mínimo Comprimento desejável Critério dinâmico Critério de segurança Critério estético Curvas horizontais com transição 22
23 Escolha do comprimento de transição (L s ) Critério dinâmico (L s conforto) Estabelece uma taxa máxima de variação da aceleração centrífuga por unidade de tempo J Trecho em tangente: a c = 0 Trecho circular: a c = v 2 R c J = a c t = v 2 R c L s v = v3 R c. L s L s = v3 R c. J Curvas horizontais com transição 23
24 Escolha do comprimento de transição (L s ) Critério dinâmico (L s conforto) Condição mais desfavorável: J = J max V = V p L smin = v p 3 R c. J max Experiência internacional: J max = 0, 6 m/s 3 [km/h] Curvas horizontais com transição 24
25 Escolha do comprimento de transição (L s ) Critério segurança (tempo) Estabelece o tempo mínimo de 2 segundos para o giro do volante e, consequentemente, para o percurso da transição L s v. t Para t = 2 s e v = v p em km/h [km/h] Curvas horizontais com transição 25
26 Escolha do comprimento de transição (L s ) Critério estético (proposto pela AASHTO) para V p 80km/h: [%] Largura da faixa [km/h] para V p > 80km/h: [%] Largura da faixa [km/h] Curvas horizontais com transição 26
27 Superelevação (e) AASHTO: e = e max. 2. R min R R min 2 R 2 Curvas horizontais com transição 27
28 Largura da faixa de tráfego (l f ) Faixa de tráfego Largura (m): Classe de projeto Região plana Região ondulada Região montanhosa 0 3,75 3,75 3,60 I 3,60 3,60 3,60 II 3,60 3,60 3,50 III 3,60 3,50 3,30 IV 3,50-3,30 3,50-3,30 3,30-3,00 Curvas horizontais com transição 28
29 Escolha do comprimento de transição (L s ) Comprimento máximo Para L smax L c = 0 Em AC = θ c + 2. θ s θ smax = AC Sendo θ s = L s 2.R c θ smax = L smax 2.R c 2 AC 2 = L s max 2. R c [graus] [rad] Curvas horizontais com transição 29
30 Escolha do comprimento de transição (L s ) Comprimento desejável Procurar adotar, quando possível, L s = 2. L smín (obtido pelo critério dinâmico) [km/h] Curvas horizontais com transição 30
31 Escolha do comprimento de transição (L s ) L smin < L sadotado < L smax #Dica1: obter a média entre Ls min e Ls max para o primeiro chute de Ls adotado #Dica2: adotar L s igual a um número inteiro de estacas #Dica3: adotar L s L c Curvas horizontais com transição 31
32 Exercício Tendo-se uma curva horizontal com transição cujos dados são fornecidos abaixo, calcular os elementos geométricos e determinar as estacas notáveis. Rc = 650 m AC = 62º Região ondulada, classe I Estaca do PI = [ ,80 m] Superelevação = 5,5% Largura da faixa de rolamento = 3,60 m Curvas horizontais com transição 32
Projeto Geométrico Horizontal
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1 Projeto Geométrico Horizontal Aula 4 Recife, 2016 Elementos Planimétricos de uma Estrada Curvas de Concordância Horizontal
PROJETO DE ESTRADAS Pr P of o. D r D. An A d n e d r e so s n o n Man a zo n l zo i
PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli CONCEITOS: Quando o alinhamento muda instantaneamente da tangente para uma curva circular, o motorista não pode manter o veículo no centro da faixa, no início
FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 4- CURVAS HORIZONTAIS DE TRANSIÇÃO
4- CURVAS HORIZONTAIS DE TRANSIÇÃO 4.1 INTRODUÇÃO Quando um veículo passa pelo ponto PC ponto de começo da curva circular horizontal ou PT ponto de término da curva circular horizontal, dependendo do comprimento
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1. Projeto Geométrico das Estradas. Aula 5.
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1 Projeto Geométrico das Estradas Aula 5 Recife, 2014 Elementos Geométricos das Estradas de Rodagem Planimétricos (Projeto
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA Introdução Um bom projeto de uma estrada procura evitar: Curvas fechadas e frequentes Greide muito quebrado Declividades fortes Visibilidade deficiente Elementos
CURVAS HORIZONTAIS COM TRANSIÇÃO
CURVAS HORIZONTAIS COM TRANSIÇÃO INTRODUÇÃO A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problemas nos pontos de concordância. A descontinuidade
A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância.
4.1.2 Curvas Horizontais com Transição A definição do traçado de uma estrada por meio de linhas retas concordando diretamente com curvas circulares cria problema nos pontos de concordância. Assim, é necessário
Estrada de Rodagem Superlargura e superelevação
Porf. odrigo de Alvarenga osa 3/03/01 Estrada de odagem e superelevação Prof. r. odrigo de Alvarenga osa [email protected] (7) 9941-3300 1 Um veículo tipo pode ser considerado como um retângulo
PROJETO GEOMÉTRICO DE RODOVIAS
PROJETO GEOMÉTRICO DE RODOVIAS Curso: 7º Período - Engenharia de Agrimensura e Cartográfica Prof. Paulo Augusto F. Borges CURVAS HORIZONTAIS CIRCULARES 1. Introdução O traçado de uma rodovia é constituído
Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS
Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS GEOMETRIA DE VIAS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) CURVAS HORIZONTAIS Estudo sobre Concordância Horizontal: O traçado em
Noções de Topografia Para Projetos Rodoviarios
Página 1 de 5 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia
Noções de Topografia Para Projetos Rodoviarios
Página 1 de 8 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia
Estrada de Rodagem Curvas Concordância Horizontal Curvas de Transição
Porf. odrigo de Alvarenga osa 3/03/01 Estrada de odagem Curvas Concordância Horizontal Curvas de Transição Prof. Dr. odrigo de Alvarenga osa [email protected] (7) 9941-3300 1 Curva de transição
FATEC Faculdade de Tecnologia de São Paulo Movimento de Terra e Pavimentação ETE II Estudo de traçado de Estradas - II
1 COORDEADAS, AZIMUTES E ÂGULOS DE DEFLEXÃO estas notas de aula pretende-se apresentar as formas de cálculos de obtenção dos valores de azimutes de trechos de tangentes de rodovias e também os cálculos
PROJETO DE ESTRADAS Pr P of o. D r D. An A d n e d r e so s n o n Man a zo n l zo i
PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli SUPERELEVAÇÃO & SUPERLARGURA CONCEITOS: Criar condições que permitam aos usuários o desenvolvimento e a manutenção de velocidades de percurso próximas à velocidade
AULA 07 ESTRADAS I 18/09/2010 CONCORDÂNCIA COM TRANSIÇÃO CONCORDÂNCIA COM TRANSIÇÃO CONCORDÂNCIA COM TRANSIÇÃO
AULA 07 ESTRADAS I PROF. Msc. ROBISON NEGRI Quando um veículo passa de um alinhamento reto para um trecho curvo, surge uma força centrífuga atuando sobre o mesmo, que tende a desviá-lo da trajetória que
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
Características Técnicas para Projeto
Características Técnicas para Projeto Projeto Geométrico É a fase do projeto de estradas que estuda as diversas características geométricas do traçado, principalmente em função da leis de movimento, características
Notas de aulas de Estradas (parte 8)
1 Notas de aulas de Estradas (parte 8) Hélio Marcos Fernandes Viana Tema: Superelevação Conteúdo da parte 8 1 Introdução Cálculo da superelevação 3 Distribuição da superelevação 1 Introdução A superelevação
-ESTRUTURA VIÁRIA TT048 CURVAS HORIZONTAIS DE TRANSIÇÃO
INFRAINFRA -ESTRUTURA VIÁRIA TT048 CURVAS HORIZONTAIS DE TRANSIÇÃO Prof.Djalma Prof.Djalma Pereira Prof. Eduardo Ratton Profa. Profa.Gilza Fernandes Blasi Profa. Profa. Márcia de Andrade Pereira CURVAS
Notas de aulas de Estradas (parte 7)
1 Notas de aulas de Estradas (parte 7) Hélio Marcos Fernandes Viana Tema: urvas horizontais de transição onteúdo da parte 7 1 Introdução 2 urvas de transição: características, funções e tipos 3 Elementos
Projeto Geométrico UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL. SNP38D58 Superestrutura Ferroviária
UNIVERSIDADE DO ESTADO DE MATO GROSSO CURSO DE ENGENHARIA CIVIL SNP38D58 Superestrutura Ferroviária Projeto Geométrico Prof.: Flavio A. Crispim (FACET/SNP-UNEMAT) SINOP - MT 2014 Elementos de projeto Velocidade
PROJETO E CONSTRUÇÃO DE ESTRADAS
27 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO GEOMÉTRICO DE VIAS 4 SEÇÃO TRANSVERSAL 4.1 ELEMENTOS BÁSICOS DIMENSÕES Perpendicularmente ao eixo, a estrada pode ser constiutída pelos seguintes elementos:
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico. 5 SL-SE-Curva de transição
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico 5 SL-SE-Curva de transição Prof. Me.
João Fortini Albano 24
João Fortini Albano 24 4 - FUNÇÕES, CLASSIFICAÇÃ FUNCINAL, CLASSE E NRAS ARA RDVIAS Função de uma via: é o tipo de serviço que a via proporciona aos usuários. É o desempenho da via para a finalidade do
PROJETO E CONSTRUÇÃO DE ESTRADAS
11 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO EOMÉTRICO DE VIAS 2 - CURVAS HORIZONTAIS SIMPLES 2.1 - INTRODUÇÃO O traçado em planta de uma estrada deve ser composto de trechos retos concordados com curvas
-ESTRUTURA VIÁRIA TT048. SUPERELEVAÇÃO e SUPERLARGURA EXERCÍCIOS
INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO e SUPERLARGURA EXERCÍCIOS Prof. Eduardo Ratton Profa. Profa. Márcia de Andrade Pereira Prof. Wilson Kuster Filho EXERCÍCIO 5.7.1 - Calcular e representar
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
a, em que a e b são inteiros tais que a é divisor de 3
Matemática 0. Considere a expressão x x 3 5x x 6. Pede-se: A) encontrar o valor numérico da expressão para x. B) obter todas as raízes complexas do polinômio p(x) x x 3 5x x 6. Questão 0 Comentários: A
PTR 2378 Projeto de infra-estrutura de vias de transportes terrestres
PTR 2378 Projeto de infra-estrutura de vias de transportes terrestres 1º semestre/2007 Aula 7 Alinhamento Horizontal - II Taxas Máxima e Mínima de Superelevação Taxa máxima admissível de superelevação
Aula 18 SUPERELEVAÇÃO E SUPERLARGURA
Aula 18 Disciplina: Topografia Prof. Daniel Silva Costa SUPERELEVAÇÃO E SUPERLARGURA COMENTÁRIOS Ao se definir a velocidade diretriz para o projeto geométrico de uma rodovia, procura se estabelecer, ao
Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase
Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico. 5 SL-SE-Curva de transição
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico 5 SL-SE-Curva de transição Prof. Me.
3 Modelo Cinemático do Veículo
3 Modelo Cinemático do Veículo Nesse capítulo se faz uma breve apresentação do modelo cinemático do veículo, descrito em (Speranza,Spinola, 2005) e em seguida projeta-se a malha de controle onde são feitos
Prova Escrita de MATEMÁTICA A - 12o Ano 2015 - Época especial
Prova Escrita de MATEMÁTICA A - 1o Ano 015 - Época especial Proposta de resolução GRUPO I 1. Como P A B = P A + P B P A B, substituindo os valores conhecidos, podemos calcular P A: 0,7 = P A + 0,4 0, 0,7
De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla.
8 Mudança de variável em integrais riplas 38 De modo análogo as integrais duplas, podemos introduzir novas variáveis de integração na integral tripla. I f ( dxddz Introduzindo novas variáveis de integração
Perfil Longitudinal. A sua definição deve ter em conta:
Perfil Longitudinal A sua definição deve ter em conta: Rasante Topografia Traçado em planta Distâncias de visibilidade Segurança Drenagem Integração no meio ambiente Custos de construção Custos de exploração
a) Sabendo disso, preencher o diagrama de Superelevação adotando o método de BARNETT (α 1 =0,25% e α 2 =0,50%), deixando os cálculos no pautado.
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estradas 1 1 a QUESTÃO - Sabendo que a superelevação plena de uma curva do projeto rodoviário da BR262/ES será calculada com o Pivô
MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre
1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades
Assunto: Estudo do ponto
Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3
SUPERELEVAÇÃO E SUPERLARGURA
SUPERELEVAÇÃO E SUPERLARGURA Quando um veículo trafega em um trecho reto, com velocidade constante, a resultante das forças que atuam sobre ele é nula (movimento retilíneo uniforme). Ao chegar a uma curva,
Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase
Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA DISTÂNCIA DE VISIBILIDADE
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA DISTÂNCIA DE VISIBILIDADE Distância de visibilidade Garantir segurança e conforto aos motoristas Controle do veículo a tempo seguro no caso de uma eventualidade
-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO
INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO Profa. Daniane Franciesca Vicentini Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Márcia de Andrade Pereira DEFINIÇÕES CORPO ESTRADAL: forma assumida
Lados de um triângulo retângulo. MA092 Geometria plana e analítica. Mudando o ângulo. Trabalhando no plano Cartesiano
Lados de um triângulo retângulo MA092 Geometria plana e analítica. Catetos de um triângulo retângulo em função da hipotenusa e do ângulo θ: sen(θ) = y z y = z sen(θ) Francisco A. M. Gomes cos(θ) = x z
Movimento uniformemente variado. Capítulo 4 (MUV)
Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade
MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial
ESCOLA SECUNDÁRIA/3 RAINHA SANTA ISABEL- ESTREMOZ MATEMÁTICA B 10ºANO ANO LETIVO 2015/2016 Módulo Inicial Revisões de conceitos do 3º ciclo Efetuar cálculos com números reais utilizando valores exatos
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo
Introdução ao Projeto de Aeronaves Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Tópicos Abordados Diagrama v-n de Manobra. Desempenho em Curva. Envelope de Vôo e Teto Absoluto Teórico.
2.1 - Triângulo Equilátero: é todo triângulo que apresenta os três lados com a mesma medida. Nesse caso dizemos que os três lados são congruentes.
Matemática Básica 09 Trigonometria 1. Introdução A palavra Trigonometria tem por significado do grego trigonon- triângulo e metron medida, associada diretamente ao estudo dos ângulos e lados dos triângulos,
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
Tópicos de Física Moderna Engenharia Informática
EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.
O ENSINO DE CONCORDÂNCIA HORIZONTAL PARA RODOVIAS RURAIS COM O AUXÍLIO COMPUTACIONAL
O ENSINO DE CONCORDÂNCIA HORIZONTAL PARA RODOVIAS RURAIS COM O AUXÍLIO COMPUTACIONAL João Guilherme Mota de Sousa [email protected] Universidade Federal do Pará, Faculdade de Engenharia Civil. Campus Universitário
PRINCIPAIS ETAPAS DE UM PROJETO DE ENGENHARIA DE ESTRADAS
PRINCIPAIS ETAPAS DE UM PROJETO DE ENGENHARIA DE ESTRADAS Introdução Projeto geométrico de uma estrada: processo de correlacionar os seus elementos físicos com as características de operação, frenagem,
FÍSICA POLÍCIA RODOVIÁRIA FEDERAL
FÍSICA POLÍCIA RODOVIÁRIA FEDERAL Conteúdo Programático 1. Conceitos Básicos de Trigonometria 2. Introdução à Cinemática Escalar 3. Movimento Uniforme (MU) 4. Movimento Uniformemente Variado (MUV) 5. Movimento
TRIGONOMETRIA CICLO TRIGONOMÉTRICO
TRIGONOMETRIA CICLO TRIGONOMÉTRICO Arcos de circunferência A e B dividem a circunferência em duas partes. Cada uma dessas partes é um arco de circunferência (ou apenas arco). A e B são denominados extremidades
1.1 UFPR 2014. Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 04 de Novembro de 2014
Sumário 1 Questões de Vestibular 1 1.1 UFPR 2014.................................... 1 1.1.1 Questão 1................................. 1 1.1.2 Questão 2................................. 2 1.1.3 Questão
As operações de adição, subtração e multiplicação são feitas de maneira natural, considerando-se o número complexo como um binômio.
NÚMEROS COMPLEXOS Prof Eduardo Nagel. DEFINIÇÃO No conjunto dos números reais R, temos que a = a. a é sempre um número não negativo para todo a. Ou seja, não é possível extrair a rai quadrada de um número
para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.
MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas
CURVAS HORIZONTAIS CIRCULARES
CURVAS HORIZONTAIS CIRCULARES Introdução β1, β2, β3 são azimutes dos alinhamentos θ1, θ2 são ângulos de deflexão AA, DD, GG são tangentes (trechos retos entre curvas de concordância) Curvas horizontais
Cálculo I (2015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.2015. Para o Aluno. Tópicos do Pré-Cálculo
Cálculo I (015/1) IM UFRJ Lista 1: Pré-Cálculo Prof. Milton Lopes e Prof. Marco Cabral Versão 17.03.015 Para o Aluno O sucesso (ou insucesso) no Cálculo depende do conhecimento de tópicos do ensino médio
Prof. Rodrigo de Alvarenga Rosa 23/03/2012
Prof. Rodrigo d Alvarnga Rosa /0/0 A poligonal a sguir é o ixo projtado d uma rodovia qu foi dsnvolvida m rlvo plano, na class I do DNIT, considrando vículo tipo CO largura d faixa igual a,60m. Calcul
Geometria Diferencial de Curvas Espaciais
Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de
AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA
AVALIAÇÃO DIAGNÓSTICA DE MATEMÁTICA Nome: nº Série: 3º ano Turma: Professora: Data: / / 1) A figura abaixo representa a planificação de um sólido geométrico. O sólido planificado é A) uma pirâmide de base
Capítulo TRABALHO E ENERGIA
Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes
MATEMÁTICA. Comparando as duas modalidades de pagamento quanto ao custo para o cliente, é correto afirmar que
MATEMÁTICA 49 Um estacionamento para automóveis oferece duas modalidades de pagamento pelos seus serviços: a primeira, em que o cliente paga R$ 5, por dia de utilização, e a segunda, em que ele adquire
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)
EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância
TRIGONOMETRIA III) essa medida é denominada de tangente de α e indicada
MTEMÁTIC TRIGONOMETRI. TRIÂNGULO RETÂNGULO.. Definição Define-se como triângulo retângulo a qualquer triângulo que possua um de seus ângulos internos reto (medida de 90º). Representação e Elementos Catetos:
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA
MATEMÁTICA - 3 o ANO MÓDULO 24 CIRCUNFERÊNCIA r (a, b) P R C P R C P R C Como pode cair no enem (UFRRJ) Em um circo, no qual o picadeiro tem no plano cartesiano a forma de um círculo de equação igual a
1º ANO 20 FÍSICA 1º Bimestral 28/03/12
Nome do aluno Turma Nº Questões Disciplina Trimestre Trabalho Data 1º ANO 20 FÍSICA 1º Bimestral 28/03/12 1. (Faap-1996) A velocidade de um avião é de 360km/h. Qual das seguintes alternativas expressa
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais
Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01
Precisão do fuso de esferas
Precisão do ângulo de avanço A precisão do fuso de esferas no ângulo de avanço é controlado de acordo com os padrões JIS (JIS B 1192-1997). As classes de precisão C0 a C5 são defi nidas na linearidade
A. Equações não lineares
A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)
Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. Bom estudo e Boa Sorte!
TEXTO DE EVISÃO 15 Movimento Circular Caro (a) Aluno (a): Este texto apresenta uma revisão sobre movimento circular uniforme MCU. om estudo e oa Sorte! 1 - Movimento Circular: Descrição do Movimento Circular
O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT)
O Método do Lugar das Raízes Parte 2 Controle de Sistemas I Renato Dourado Maia (FACIT) 1 O procedimento para se obter o traçado do gráfico do Lugar das Raízes é realizado por meio de um procedimento ordenado
b) 1, 0. d) 2, 0. Página 1 de 10
Retas: Paralelas, Perpendiculares, Inequações de retas, Sistema de inequações de retas, Distância entre ponto e reta e Distância entre duas retas paralelas. 1. (Insper 014) No plano cartesiano da figura,
CURVAS HORIZONTAIS CIRCULARES: DETERMINAÇÃO DO Rmin
00794 Pavimentos de Estradas I CURVAS HORIZONTAIS CIRCULARES: DETERMINAÇÃO DO Rmin Prof. Carlos Eduardo Troccoli Pastana [email protected] (14) 34-444 AULA TEÓRICA 1 Adaptado das Notas de Aula do
Dependência 1ª série 2016. Conteúdo programático. 1- Cinemática. Cronograma de Avaliação
Dependência 1ª série 2016 Conteúdo programático 1- Cinemática 1.1 Movimento Uniforme 1.2 - Movimento Uniformemente Variado 1.3 Cinemática Vetorial 2 Dinâmica 2.1 Princípios Fundamentais da dinâmica 2.2
1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:
Nome: nº Professor(a): Série: 1ª EM Data: / /2013 Turmas: 3101 / 3102 / 3103 Sem limite para crescer Bateria de Exercícios de Matemática II 1 Determine os valores de x e y, sabendo que os triângulos ABC
1) Cálculo do tempo de subida do objeto: V y. = V 0y. + γt s 0 = 4 10t s. t s. = 0,4s. 2) Cálculo do tempo total de vôo : t total.
46 e FÍSICA No interior de um ônibus que trafega em uma estrada retilínea e horizontal, com velocidade constante de 90 km/h, um passageiro sentado lança verticalmente para cima um pequeno objeto com velocidade
-ESTRUTURA VIÁRIA TT048 ASSUNTO 02 CURVAS HORIZONTAIS CIRCULARES
INFRAINFRA -ESTRUTURA VIÁRIA TT048 ASSUNTO 02 CURVAS HORIZONTAIS CIRCULARES Prof. Djalma Pereira Prof.Eduardo Prof.Eduardo Ratton Profa. Profa. Gilza Fernandes Blasi Profa. Profa. Márcia de Andrade Pereira
Disciplina: FÍSICA I Curso: MATEMÁTICA PROF. ZENAR PEDRO SCHEIN Sala: ATIVIDADES PARA O DIA 29/2/2015
1 Disciplina: FÍSICA I Curso: MATEMÁTICA PROF. ZENAR PEDRO SCHEIN Sala: ATIVIDADES PARA O DIA 9//015 OBS.: TODOS OS TEXTOS E EXERCÍCIOS ORGANIZADOS EM FÍSICA I SÃO COMPILADOS DA BIBLIOGRAFIA BÁSICA OU
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico Prof. Me. Arnaldo Taveira Chioveto Os
CÁLCULO DA DIRECTRIZ
CÁCUO DA DIRECTRIZ I - Elementos de defnção da polgonal de apoo: - Coordenadas dos vértces da polgonal (M, P ); - Dstânca entre vértces da polgonal ( d); - Rumos dos alnhamentos (ângulo que fazem com a
Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa
Introdução ao Projeto de Aeronaves Aula 9 Análise Aerodinâmica da Asa Tópicos Abordados Asas de Envergadura Finita. Forma Geométrica e Localização da Asa na Fuselagem. Alongamento e Relação de Afilamento.
Vestibular Nacional Unicamp 1998. 2 ª Fase - 13 de Janeiro de 1998. Física
Vestibular Nacional Unicamp 1998 2 ª Fase - 13 de Janeiro de 1998 Física 1 FÍSICA Atenção: Escreva a resolução COMPLETA de cada questão nos espaços reservados para as mesmas. Adote a aceleração da gravidade
1 - RECORDANDO 2 - CENTRO NA ORIGEM 3 - EQUAÇÃO GERAL DA CIRCUNFERÊNCIA. Exercício Resolvido 2: Exercício Resolvido 1: Frente I
Matemática Frente I CAPÍTULO 22 EQUAÇÕES DA CIRCUNFERÊNCIA 1 - RECORDANDO Até agora, o nosso foco principal foi as retas: calculamos as equações geral e reduzida de uma reta, a interseção entre duas retas,
a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 )
1 - Dois blocos, A e B, ambos de massa m, estão ligados por um fio leve e flexível, que passa por uma polia de massa desprezível, que gira sem atrito. O bloco A está apoiado sobre um carrinho de massa
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência
Boa Prova! arcsen(x 2 +2x) Determine:
Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologia - CCT Unidade Acadêmica de Matemática e Estatística - UAME - Tarde Prova Estágio Data: 5 de setembro de 006. Professor(a):
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico. 3 Estudos de traçado
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico 3 Estudos de traçado Prof. Me. Arnaldo
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
-----------------------------------------------------------------------------------------------------------
CINEMÁTICA DO MOVIMENTO CIRCULAR www.nilsong.com.br I) RESUMO DE FÓRMULS DO MOVIMENTO CIRCULAR ( circular uniforme e uniformente variado) -----------------------------------------------------------------------------------------------
PROJETO E CONSTRUÇÃO DE ESTRADAS
45 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO GEOMÉTRICO DE VIAS 7 PERFIL LONGITUDINAL 7.1 - INTRODUÇÃO O perfil de uma estrada deve ser escolhido de forma que permita, aos veículos que a percorrem, uma
Lista de Exercícios 02: Reta, Plano, Cônicas e Quádricas
Universidade Federal de Campina Grande - UFCG Centro de Ciências e Tecnologias Agroalimentar - CCTA Unidade Acadêmica de Ciências e Tecnologia Ambiental - UACTA Disciplina: Geometria Analítica e Álgebra
Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 1 Professor Marco Costa
1 1. (Fgv 2005) No plano cartesiano, considere o feixe de paralelas 2x + y = c em que c Æ R. a) Qual a reta do feixe com maior coeficiente linear que intercepta a região determinada pelas inequações: ýx
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA)
XXVII CPRA LISTA DE EXERCÍCIOS FÍSICA (CINEMÁTICA) 1) Na Figura 1, uma esfera lisa pode ser lançada por três escorregadores polidos. Ordene os escorregadores de acordo com o trabalho que a força gravitacional
Coordenadas Polares. Prof. Márcio Nascimento. [email protected]
Coordenadas Polares Prof. Márcio Nascimento [email protected] Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática
FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()
FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.
