Aula 18 SUPERELEVAÇÃO E SUPERLARGURA
|
|
|
- Cláudio Ferrão Osório
- 9 Há anos
- Visualizações:
Transcrição
1 Aula 18 Disciplina: Topografia Prof. Daniel Silva Costa SUPERELEVAÇÃO E SUPERLARGURA COMENTÁRIOS Ao se definir a velocidade diretriz para o projeto geométrico de uma rodovia, procura se estabelecer, ao longo do traçado em projeto, condições tais que permitam aos usuários o desenvolvimento e a manutenção de velocidades de percurso próximas à velocidade de referência, em condições de conforto e segurança. No projeto em planta, o eixo é constituído por trechos em tangente e em curva, que apresentam condições de operação naturalmente diferentes. Quando percorre um trecho em tangente (desconsiderando se por ora as condições em perfil), um usuário experimenta uma certa sensação de liberdade (ou facilidade) para efetuar pequenas manobras de ajuste lateral no seu curso, não estando sujeito, em princípio, a esforços laterais30 devidos à geometria da rodovia. Ao percorrer um trecho em curva, no entanto, as condições operacionais se alteram, devido principalmente ao surgimento de esforços laterais, que passam a atuar sobre o veículo, e devido à sensação de maior confinamento que um trecho em curva impõe ao usuário que a percorre. Estes fatores podem afetar, em seu conjunto, a disposição do usuário em manter a mesma velocidade de operação nos trechos em tangente e nos trechos em curva. Visando minimizar a impactação negativa desses fatores inerentes aos trechos curvos, são introduzidos os conceitos de superelevação e de superlargura que, devidamente considerados nos projetos das curvas horizontais, ensejam condições de operação mais homogêneas para os usuários ao longo das rodovias. SUPERELEVAÇÃO Ao percorrer um trecho de rodovia em curva horizontal com certa velocidade, um veículo fica sujeito à ação de uma força centrífug a, que atua no sentido de dentro para fora da curva, tendendo a mantê lo em trajetória retilínea, tangente à curva. Isto obriga o condutor do veículo a esterçar o volante no sentido da curva para manter o veículo na trajetória desejada. Imaginando se uma pista de rolamento plana (sem abaulamentos ou inclinações transversais), essa manobra do condutor é capaz de manter o veículo na pista, na trajetória curva, graças ao atrito que se desenvolve entre os pneus e a superfície de rolamento (o que aconteceria se não houvesse esse atrito?). Mas os efeitos combinados da força de atrito e da força centrífuga se fazem sentir tanto sobre os passageiros dos veículos quanto sobre as cargas transportadas. O efeito principal sobre os passageiros é a sensação de desconforto causada pelos esforços laterais que empurram os passageiros para um lado ou para outro, dependendo do sentido da curva. Sobre as cargas, a atuação das forças laterais pode causar danos a mercadorias frágeis e desarrumação dos carregamentos, podendo até mesmo comprometer a estabilidade dos veículos em movimento.
2 Para contrabalançar os efeitos dessas forças laterais, procurando oferecer aos usuários melhores condições de conforto e de segurança no percurso das curvas horizontais, é utilizado o conceito de superelevação da pista de rolamento, que é a declividade transversal da pista nos trechos em curva, introduzida com a finalidade de reduzir ou eliminar os efeitos das forças laterais sobre os passageiros e sobre as cargas dos veículos em movimento. A superelevação é medida pela inclinação transversal da pista em relação ao plano horizontal, sendo expressa em proporção (m/m) ou em percentagem (%). Na figura abaixo, representa se o diagrama de forças que atua sobre um veículo em movimento, descrevendo uma trajetória circular, com uma dada velocidade longitudinal (tangencial), numa pista inclinada transversalmente. Na figura, a pista está inclinada com um ângulo µ, podendo a superelevação (e) ser expressa por: e = tg(α) (adimensional ou m/m), ou e = 100. tg(α) (%). FORÇAS ATUANTES SOBRE UM VEÍCULO EM TRAJETÓRIA CURVA Na figura acima estão representadas, numa seção transversal, as três principais forças que atuam sobre o veículo em movimento, quais sejam: a força de atrito (Fa), que atua sobre as faces dos pneus em contato com a pista; a força centrífuga (Fc), que é horizontal e atua sobre o centro de gravidade do veículo, podendo ser decomposta segundo as componentes: tangencial à pista, dada por : Ft = Fc. cos(α); e normal à pista, dada por : Fn = Fc. sen(α); a força peso do veículo (P), que é vertical e atua sobre o centro de gravidade de veículo, e que pode ser decomposta segundo as componentes: tangencial à pista, dada por : Pt = P. sen(α); e normal à pista, dada por : Pn = P. cos(α). A equação de equilíbrio de forças, no plano paralelo ao da pista de rolamento, pode ser representada por:
3 ou seja, o efeito da força centrífuga é compensado pelo da força de atrito somado ao da componente tangencial do peso do veículo (este último é que se constitui no efeito principal resultante da introdução da superelevação!). Observe se que, para uma dada velocidade de percurso e para um mesmo raio de curvatura, quanto maior for a superelevação, menor será a participação da força de atrito no equilíbrio das forças laterais, diminuindo, portanto a intensidade da resultante das forças laterais que atuam sobre os passageiros e sobre as cargas. A força centrífuga que atua sobre o veículo, nas condições representadas na figura anterior, pode ser calculada por: onde: Fc = força centrífuga (N); m = massa do veículo (kg); v = velocidade tangencial do veículo (m/s); R = raio da curva circular (m). Lembrando que Ft = Fc. cos (µ), e que: onde g é a aceleração normal da gravidade (9,8 m/s 2 ), a componente tangencial da força centrífuga pode ser expressa por: A força de atrito pode ser calculada, considerando a metodologia convencional da física (mecânica) clássica, por: Fa = f. (Pn + Fn) onde: Fa : força de atrito (N); f : coeficiente de atrito entre o pneu e o pavimento (adimensional); (Pn + Fn) : força de contato entre o pneu e o pavimento, perpendicular à superfície de contato (N).
4 Nessa expressão, dado que Fn resultará muito pequeno perante Pn para as inclinações transversais α normalmente empregadas (verifique isso, com valores usuais em projetos de rodovias!), despreza se, para fins práticos, a força Fn, e se considera que: Substituindo as expressões já vistas na equação de equilíbrio das forças que atuam lateralmente sobre o veículo, na seção transversal, tem se, no plano paralelo ao da pista: Dividindo todas as parcelas por P. cos(µ) e convertendo as unidades para expressar a variável velocidade em km/h, chega se a: ou, já representando o valor de tg(µ) pela notação de superelevação (e), equação que é conhecida como fórmula da superelevação teórica, onde: e = superelevação (m/m); V = velocidade do veículo (km/h); R = raio da curva circular (m); f = coeficiente de atrito transversal, entre pneu e pavimento (m/m). O coeficiente de atrito f difere do conceito puro de coeficiente de atrito da física clássica, pois se trata de um coeficiente de atrito de deslizamento lateral, medido dinamicamente, isto é, com o veículo em movimento. Em razão disso, o valor desse coeficiente de atrito transversal é variável, diminuindo à medida que aumenta a velocidade tangencial do veículo. Os valores a adotar para o coeficiente de atrito f são fixados pelas normas de projeto geométrico, tendo sido obtidos a partir de resultados de medições de campo realizadas em pesquisas bastante antigas, nas décadas de 30 a 50, e confirmadas por trabalhos mais recentes, de 1985, nos Estados Unidos (AASHTO, 1995, p.146; 154). As normas do DNER fixam, como valores de coeficientes de atrito transversal máximos admissíveis para fins de projeto, os transcritos na tabela abaixo, para diferentes velocidades diretrizes.
5 VALORES MÁXIMOS ADMISSÍVEIS DO COEFICIENTE f Fonte: Manual de projeto geométrico de rodovias rurais (DNER, 1999, p. 71) Esses valores são bastante inferiores aos limites verificados32 para determinadas condições de pneus e de pavimentos, e correspondem, na verdade, a coeficientes de atrito que foram medidos experimentalmente, com equipamentos apropriados, em velocidades tais que os motoristas, no limiar da sensação de desconforto, reagiam instintivamente, evitando transitar em velocidades maiores. Os valores máximos admissíveis do coeficiente de atrito transversal somente são empregados, em princípio, nas condições limites, ou seja, para as concordâncias horizontais com curvas de raios mínimos e com as superelevações máximas admitidas para o projeto. A fórmula acima não deve ser utilizada diretamente, na determinação da superelevação a ser adotada para o projeto de uma concordância horizontal, com os valores da tabela. Valores mínimos e máximos de superelevação No projeto e construção de uma rodovia, os trechos em tangente têm pista dotada de abaulamento, para facilitar a condução das águas pluviais para fora da superfície de rolamento. O acúmulo de água na pista poderia causar riscos aos usuários (eventualmente até a aquaplanagem de veículos transitando com excesso de velocidade), além de favorecer a infiltração de águas superficiais para as camadas inferiores do pavimento e para o subleito. As Normas do DNER consideram adequada a utilização dos seguintes valores para o abaulamento, nos projetos de rodovias com os pavimentos convencionais, (DNER, 1999, p. 146): revestimentos betuminosos com granulometria aberta: 2,500% a 3,000%; revestimentos betuminosos de alta qualidade (CAUQ): 2,000%; pavimento de concreto de cimento: 1,500%. Nos trechos em curva, a retirada das águas superficiais da pista é possibilitada pela existência de superelevações. Para curvas com raios muito grandes em relação à velocidade diretriz de projeto, os efeitos da força centrífuga resultariam desprezíveis, podendo se projetar as seções transversais da pista nessas curvas para as condições de trecho em tangente, isto é, com abaulamentos, dispensando se o uso de superelevações. Os valores de raios de curva acima dos quais as Normas do DNER sugerem considerar as curvas como se fossem tangentes, no dimensionamento das seções transversais, estão indicados na tabela abaixo.
6 VALORES DE R QUE DISPENSAM SUPERELEVAÇÃO Fonte: Manual de projeto geométrico de rodovias rurais (DNER, 1999, p. 97). Curvas com raios abaixo dos valores apontados na tabela acima exigem a consideração de superelevação adequada. A superelevação mínima admissível, nesses casos, mesmo quando as forças centrífugas envolvidas não a demandem, deverá ter valor igual ao do abaulamento, para fins de assegurar a devida drenagem superficial. Já o valor máximo admissível de superelevação a adotar para as concordâncias horizontais com raios pequenos, é estabelecido em função de outros critérios de ordem prática, levando se em consideração aspectos técnicos e econômicos. A maior taxa de superelevação admitida para fins de projeto de rodovias no Brasil é de 12%, devendo seu emprego ser limitado a casos de melhorias de rodovias existentes ou de correção de problemas existentes que não permitam o aumento dos raios de curvatura; superelevações dessa ordem são muito problemáticas para veículos lentos, que transitam com velocidades significativamente inferiores à velocidade diret riz, pois nesses casos a manutenção dos veículos nas trajetórias curvas pode demandar o esterçamento do volante no sentido contrário ao da curva, causando operação errática e perigosa. A superelevação máxima de 10% tem aplicação limitada ao projeto de rodovias de elevado padrão, onde as velocidades de operação dos veículos são relativamente elevadas, com pequena probabilidade de congestionamentos ou de ocorrência de situações que determinem o tráfego a baixas velocidades ou mesmo a parada de veículos sobre a pista. A consideração de superelevação máxima de 6% é recomendável para os projetos de rodovias que se desenvolvam em áreas onde as características de ocupação das áreas adjacentes dificultem o projeto de pistas superelevadas ou mesmo interfiram com as condições de fluidez do tráfego nas rodovias, resultando em velocidades de operação reduzidas. Quando as características de ocupação das áreas adjacentes são ainda mais problemáticas, pode se admitir o desenvolvimento de projetos com superelevação máxima limitada a 4% nas curvas horizontais. Por razões de segurança, a AASHTO recomenda que este valor de superelevação máxima seja considerado somente em áreas urbanas (AASHTO, 1995, p. 158). Uma vez definido o valor da superelevação máxima para o projeto de uma rodovia, este limite deverá ser observado em todo o projeto, servindo como parâmetro de referência na determinação dos valores específicos de superelevação a adotar para os diferentes raios de curvas, nas concordâncias horizontais. Raios mínimos das concordâncias horizontais Uma vez estabelecida a superelevação máxima a ser observada nas concordâncias horizontais para determinada condição ou classe de projeto de uma rodovia, fica também definido o menor raio de curva que
7 pode ser utilizado, de forma a não haver necessidade de empregar superelevações maiores que a máxima fixada. A fórmula teórica da superelevação, devidamente convertida, é utilizada pelas normas na determinação dos raios mínimos de curva admissíveis nos projetos. Explicitando, na citada fórmula, o raio (R), tem se que: e, na condição limite: Considerando os valores máximos admissíveis de coeficientes de atrito transversal discriminados na primeira tabela, pode se calcular, por intermédio da fórmula acima, os valores dos raios mínimos de curva que podem ser utilizados nos projetos, referenciados aos diferentes valores de superelevação máxima a adotar. Na próxima tabela, estão relacionados tais valores de raios mínimos. Superelevações a adotar nas concordâncias RAIOS MÍNIMOS DE CURVA PARA PROJETOS (metros) Fonte: Manual de projeto geométrico de rodovias rurais (DNER, 1999, p. 71) A superelevação máxima estabelecida para o projeto de uma rodovia somente deve ser utilizada nas concordâncias projetadas com o raio mínimo, que é uma condição extrema do projeto, a ser evitada sempre que possível e razoável. Quando se empregam raios de curva maiores que o mínimo, as forças centrífugas envolvidas diminuem à medida que aumenta o raio de curva, reduzindo, conseqüentemente, os valores de forças de atrito e/ou os de forças devidas à superelevação necess ários para equilibrar as forças centrífugas. Esta condição está matematicamente implícita da fórmula [5.2] que pode ser convenientemente transformada, resultando na igualdade:
8 Dado um raio de curva maior que o mínimo, há diferentes formas e critérios de balancear os valores de superelevação (e) e de coeficiente de atrito (f), de modo a que a soma de seus efeitos se iguale à força centrífuga atuante sobre o veículo. O critério desenvolvido pela AASHTO para tal balanceamento é o de estabelecer uma relação variável entre as participações de (e) e de (f) à medida que variam os raios de curva (R). O método adotado tem como pressupostos básicos: a velocidade média real de operação dos veículos (VR) é menor que a velocidade diretriz (V); os valores de velocidades considerados estão relacionados na tabela abaixo a seguir, onde estão também registrados os correspondentes valores de coeficiente de atrito máximo admissível (fmáx) pela AASHTO33: TABELA 5.4 VELOC. MÉDIAS DE OPERAÇÃO (VR) e COEFICIENTES (fmáx) Fonte: AASHTO (1995, p. 156; 172) para raio infinito, ou curvatura nula (1/R = 0), como não há força de atrito, o efeito combinado da superelevação e do atrito é nulo (e + f = 0); para raio de curva mínimo ou curvatura 1/Rmín), esse efeito combinado tem valor máximo, dado por (emáx + fmáx), calculado para a velocidade diretriz; para valores intermediários de curvatura (1/R), o valor de (e + f)r é obtido por interpolação linear (por que linear?); para fins de referência, considera se que à medida em que diminui o raio de curva (R) os efeitos da força centrífuga (calculados para a velocidade VR) são contrabalançados somente com a superelevação (e), sem contar com o atrito (f), até se atingir a superelevação máxima admissível fixada (emáx), que se verificará para um certo raio de curva (RPI); admitindo se, no entanto, que os veículos trafeguem na velocidade diretriz (V) e não na velocidade (VR), a manutenção da condição acima implica em se considerar que, até o raio RPI, o atrito (f) não é nulo, participando com uma parcela crescente, correspondente ao diferencial de velocidades (V VR), que se soma à superelevação; na figura abaixo, onde se ilustra o critério descrito, a reta 1 indica a participação do coeficiente de atrito no estágio inicial, em que se contava, por hipótese, apenas com a superelevação (na velocidade VR);
9 MÉTODO DE BALANCEAMENTO DA SUPERELEVAÇÃO E DO ATRITO Fonte: AASHTO (1990, p. 157) para valores de raio menores que RPI, contando com a superelevação máxima (emáx), passa se a contar com a participação crescente do atrito (f), calculado para a velocidade diretriz (V), até chegar ao limite (fmáx), para o raio de curva mínimo admitido (Rmín); a participação do atrito (f) nesse estágio está ilustrada pela reta 2, na figura acima; os valores de coeficiente de atrito (fr) a considerar no projeto, para cada curvatura (1/R) são então definidos pela curva (parábola do 2 grau) delimitada pelas retas 1 e 2 da figura anteriro, tangente às suas extremidades; definidos os valores de coeficiente de atrito a adotar, os valores de superelevação (er) são então determinados, para cada raio de curva (R), por: O DNER descreve critério assemelhado, porém mais simplificado, para a determinação dos valores de superelevação a adotar para cada concordância horizontal no projeto de rodovias.
10 Considerando apenas a velocidade diretriz, foram adotadas basicamente as mesmas hipóteses de referência para contrabalançar o efeito da força centrífuga, delimitando retas limites para as variações de superelevações e de coeficientes de atrito. Tangenciada por esses limites, foi adotada uma curva de variação para calcular diretamente os valores de superelevação ao invés de calcular primeiramente os valores de coeficiente de atrito. A curva adotada pelo DNER é expressa por (DNER, 1999, p. 99): onde: e R = superelevação a adotar para a concordância com raio de curva R (%); e máx = superelevação máxima admitida para a classe do projeto (%); R mín = raio mínimo de curva para a velocidade diretriz considerada (m); R = raio da curva circular utilizada na concordância (m). A adoção dessa curva de variação resulta no acréscimo gradativo e simultâneo dos valores de superelevação e de coeficiente de atrito para contrabalançar o aumento da força centrífuga, à medida que diminuem os raios das concordâncias horizontais. Os valores de superelevação obtidos de acordo com o critério estabelecido pelo DNER diferem muito pouco daqueles calculados de acordo com a metodologia mais complexa preconizada pela AASHTO. SUPERLARGURA As normas, manuais ou recomendações de projeto geométrico estabelecem as larguras mínimas de faixas de trânsito a adotar para as diferentes classes de projeto, levando em consideração aspectos de ordem prática, tais como as larguras máximas dos veículos de projeto e as respectivas velocidades diretrizes para projeto. As larguras de faixas de trânsito são fixadas com folgas suficientes em relação à largura máxima dos veículos, de modo a permitir não apenas a acomodação estática desses veículos, mas também suas variações de posicionamento em relação às traje tórias longitudinais, quando trafegam nas faixas, nas velocidades usuais (o que causa essas variações de posicionamento dos veículos?). Assim, nos trechos em tangente, os usuários de uma rodovia contam com uma certa liberdade de manobra no espaço correspondente à sua faixa de trânsito, o que lhes permite efetuar pequenos desvios e correções de trajetória para ajustes de curso, conferindo lhes uma certa condição de fluidez ao trafegar na rodovia. Nos trechos em curva, no entanto, essa condição é alterada, devido a dois fatores principais: quando descrevem trajetórias curvas, os veículos ocupam fisicamente espaços laterais maiores que as suas próprias larguras; devido a efeitos de deformação visual, causados pela percepção da pista em perspectiva, e devido às dificuldades naturais de operação de um veículo pesado em trajetória curva, os trechos em curva
11 horizontal provocam aparência de estreitamentos da pista à frente dos usuários, provocando sensação de confinamento. Com a finalidade de compensar esses fatores, os trechos em curva podem ser alargados, de forma a oferecer aos usuários condição de continuidade quanto à sensação de liberdade de manobra ou de condição de fluidez, no que diz respeito à disponibilidade de largura de faixa de trânsito. Essa largura adicional das faixas de trânsito, para os trechos em curva, é denominada de superlargura, sendo representada pela letra s (nesta publicação, será utilizada a notação sr para indicar a superlargura a adotar em uma concordância horizontal com curva circular de raio R). As superlarguras são calculadas considerando sempre veículos de maior porte, não tendo sentido o cálculo para veículos tipo VP, pois mesmo uma rodovia projetada para este tipo de veículo de projeto deverá permitir a passagem ocasional de um veículo de maior porte. O veículo básico para a determinação da superlargura a adotar numa concordância horizontal é o veículo tipo CO, pois os demais tipos de veículos, para os raios de curva convencionais e velocidades diretrizes normais, operarão satisfatoriamente com as superlarguras projetadas para atender ao veículo tipo CO. Em casos especiais, os cálculos poderão ser efetuados ou verificados para outros tipos de veículos. Cálculo da superlargura Considerando um veículo descrevendo uma trajetória circular, tal como esquematizado na figura abaixo, o DNER estabelece os seguintes critérios para a determinação da superlargura: o veículo percorre o trecho em curva circular mantendo seu eixo traseiro perpendicular à trajetória, ou seja, alinhado com o raio de curvatura; a roda dianteira externa descreve uma trajetória em curva circular, admitindo se, para fins de simplificação, que o raio dessa trajetória seja igual ao raio da concordância horizontal (do eixo da rodovia); ESQUEMA PARA DETERMINAÇÃO DA SUPERLARGURA
12 a trajetória de um veículo percorrendo uma curva circular descreve um gabarito (GC) dado pela largura do veículo (LV) acrescida de uma largura adicional que se deve à disposição do veículo na curva, veículo esse que tem uma distância entre eixos (EE) entre os eixos traseiro e dianteiro; essa largura adicional pode ser obtida pelas seguintes relações geométricas, definidas a partir da figura acima: o veículo ocupa geometricamente um gabarito devido ao balanço dianteiro (GD), que é um acréscimo de largura devido à disposição do veículo na curva, em função do seu balanço dianteiro (BD), medido entre o eixo dianteiro e a frente do veículo; esse acréscimo também pode ser deduzido a partir da figura 5.3, pelas seguintes relações geométricas: Ou: dependendo do veículo de projeto34, pode se considerar também um gabarito devido ao balanço traseiro (GT), que é outro acréscimo de largura devido à disposição do veículo na curva, em função do balanço traseiro (BT), medido entre o eixo traseiro e o limite traseiro do veículo;
13 estabelece se, para o veículo, um valor de gabarito lateral (GL), que é a folga lateral livre que deve ser mantida para o veículo de projeto em movimento; o gabarito lateral é fixado em função da largura da faixa de trânsito, de acordo com os valores da tabela abaixo: VALORES DE GABARITO LATERAL Fonte: Manual de projeto geométrico de rodovias rurais (DNER, 1999, p. 76). para compensar as dificuldades naturais de manobra em curva e as diferenças entre as características de operação dos motoristas, considera se para a pista (independentemente do número de faixas de trânsito) um acréscimo de largura adicional (FD), denominado de folga dinâmica, dada pela fórmula atribuída a VOSHEL: Com base nesses critérios, pode se então determinar a largura total (LT) com a qual deverá ser projetada a pista de uma rodovia em curva, que tenha N faixas de trânsito, para que os efeitos de ordem estática e dinâmica sobre os usuários, causados pela curvatura, sejam devidamente compensados. No caso de rodovia com pista simples e duas faixas de trânsito, uma para cada sentido de percurso, observase que o gabarito devido ao balanço dianteiro do veículo que percorre a faixa externa não exerce influência sobre o posicionamento dos veículos que se cruzam na curva, podendo ser desconsiderado no cálculo da superlargura. O mesmo se verifica para o caso de pista dupla, com duas ou mais faixas de trânsito por sentido: para cada pista, o gabarito devido ao balanço dianteiro do veículo que percorre a faixa externa da curva não afeta o posicionamento dos veículos nas demais faixas, podendo ser desconsiderado. Assim, a largura total (LT) de uma pista em curva, com N faixas de trânsito, poderá ser calculada por: com as grandezas já definidas anteriormente. Como a largura normal da pista em tangente (LN) é dada por: onde:
14 L N : largura total da pista em tangente (m); N : número de faixas de trânsito na pista; L F : largura de projeto da faixa de trânsito (m); a superlargura (S R ) a adotar para a pista, numa concordância horizontal com raio de curva R, pode ser finalmente expressa por: sendo: S R : superlargura para uma pista em curva horizontal (m); L T : largura total de uma pista em curva (m); L N : largura normal de uma pista em tangente (m). Bom estudo!!!
PROJETO DE ESTRADAS Pr P of o. D r D. An A d n e d r e so s n o n Man a zo n l zo i
PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli SUPERELEVAÇÃO & SUPERLARGURA CONCEITOS: Criar condições que permitam aos usuários o desenvolvimento e a manutenção de velocidades de percurso próximas à velocidade
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1. Projeto Geométrico das Estradas. Aula 5.
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1 Projeto Geométrico das Estradas Aula 5 Recife, 2014 Elementos Geométricos das Estradas de Rodagem Planimétricos (Projeto
Estrada de Rodagem Superlargura e superelevação
Porf. odrigo de Alvarenga osa 3/03/01 Estrada de odagem e superelevação Prof. r. odrigo de Alvarenga osa [email protected] (7) 9941-3300 1 Um veículo tipo pode ser considerado como um retângulo
Noções de Topografia Para Projetos Rodoviarios
Página 1 de 8 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA
ELEMENTOS BÁSICOS PARA O PROJETO DE UMA ESTRADA Introdução Um bom projeto de uma estrada procura evitar: Curvas fechadas e frequentes Greide muito quebrado Declividades fortes Visibilidade deficiente Elementos
Características Técnicas para Projeto
Características Técnicas para Projeto Projeto Geométrico É a fase do projeto de estradas que estuda as diversas características geométricas do traçado, principalmente em função da leis de movimento, características
Noções de Topografia Para Projetos Rodoviarios
Página 1 de 7 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia
PROJETO E CONSTRUÇÃO DE ESTRADAS
27 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO GEOMÉTRICO DE VIAS 4 SEÇÃO TRANSVERSAL 4.1 ELEMENTOS BÁSICOS DIMENSÕES Perpendicularmente ao eixo, a estrada pode ser constiutída pelos seguintes elementos:
-ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO
INFRAINFRA -ESTRUTURA VIÁRIA TT048 SUPERELEVAÇÃO Profa. Daniane Franciesca Vicentini Prof. Djalma Pereira Prof. Eduardo Ratton Profa. Márcia de Andrade Pereira DEFINIÇÕES CORPO ESTRADAL: forma assumida
Noções de Topografia Para Projetos Rodoviarios
Página 1 de 5 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia
CURVAS HORIZONTAIS COM TRANSIÇÃO
CURVAS HORIZONTAIS COM TRANSIÇÃO Introdução Trecho reto para uma curva circular: Variação instantânea do raio infinito para o raio finito da curva circular Surgimento brusco de uma força centrífuga Desconforto
Projeto Geométrico Horizontal
UNICAP Universidade Católica de Pernambuco Prof. Glauber Carvalho Costa Estrada 1 Projeto Geométrico Horizontal Aula 4 Recife, 2016 Elementos Planimétricos de uma Estrada Curvas de Concordância Horizontal
Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS
Prof. Vinícius C. Patrizzi ESTRADAS E AEROPORTOS GEOMETRIA DE VIAS Elementos geométricos de uma estrada (Fonte: PONTES FILHO, 1998) CURVAS HORIZONTAIS Estudo sobre Concordância Horizontal: O traçado em
PROJETO DE ESTRADAS Prof o. f D r D. An A de rson on Ma M nzo zo i
PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli CONCEITOS: Após traçados o perfil longitudinal e transversal, já se dispõe de dados necessários para uma verificação da viabilidade da locação do greide de
Capítulo TRABALHO E ENERGIA
Capítulo 6 TRABALHO E ENERGIA A B C DISCIPLINA DE FÍSICA CAPÍTULO 6 - TRABALHO E ENERGIA 6.1 Um bloco, com 20kg de massa, sobe uma rampa com 15º de inclinação e percorre 55,375 metros até parar. Os coeficientes
A unidade de freqüência é chamada hertz e simbolizada por Hz: 1 Hz = 1 / s.
Movimento Circular Uniforme Um movimento circular uniforme (MCU) pode ser associado, com boa aproximação, ao movimento de um planeta ao redor do Sol, num referencial fixo no Sol, ou ao movimento da Lua
SUPERELEVAÇÃO E SUPERLARGURA
SUPERELEVAÇÃO E SUPERLARGURA Quando um veículo trafega em um trecho reto, com velocidade constante, a resultante das forças que atuam sobre ele é nula (movimento retilíneo uniforme). Ao chegar a uma curva,
Notas de aulas de Estradas (parte 8)
1 Notas de aulas de Estradas (parte 8) Hélio Marcos Fernandes Viana Tema: Superelevação Conteúdo da parte 8 1 Introdução Cálculo da superelevação 3 Distribuição da superelevação 1 Introdução A superelevação
3 Modelo Cinemático do Veículo
3 Modelo Cinemático do Veículo Nesse capítulo se faz uma breve apresentação do modelo cinemático do veículo, descrito em (Speranza,Spinola, 2005) e em seguida projeta-se a malha de controle onde são feitos
ESTRADAS E AEROPORTOS. Prof. Vinícius C. Patrizzi
ESTRADAS E AEROPORTOS Prof. Vinícius C. Patrizzi 1. SISTEMA DE PISTA: O sistema de pistas de pouso e decolagem de um aeroporto consiste do pavimento estrutural (a pista propriamente dita), os acostamentos,
Unidade 13 Introdução à Dinâmica Impulsiva. Introdução Quantidade de Movimento Impulso Teorema do Impulso
Unidade 13 Introdução à Dinâmica Impulsiva Introdução Quantidade de Movimento Impulso Teorema do Impulso Introdução Em um acidente automobilístico, nem sempre é fácil descobrir quem foi o culpado. Por
a) o módulo da aceleração do carrinho; (a c = 0,50 m/s) b) o módulo da aceleração do sistema constituído por A e B; (a = 4,0 m/s 2 )
1 - Dois blocos, A e B, ambos de massa m, estão ligados por um fio leve e flexível, que passa por uma polia de massa desprezível, que gira sem atrito. O bloco A está apoiado sobre um carrinho de massa
CURVAS HORIZONTAIS CIRCULARES: DETERMINAÇÃO DO Rmin
00794 Pavimentos de Estradas I CURVAS HORIZONTAIS CIRCULARES: DETERMINAÇÃO DO Rmin Prof. Carlos Eduardo Troccoli Pastana [email protected] (14) 34-444 AULA TEÓRICA 1 Adaptado das Notas de Aula do
Introdução ao Projeto de Aeronaves. Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo
Introdução ao Projeto de Aeronaves Aula 17 Diagrama v-n de Manobra, Vôo em Curva e Envelope de Vôo Tópicos Abordados Diagrama v-n de Manobra. Desempenho em Curva. Envelope de Vôo e Teto Absoluto Teórico.
PROJETO DE ESTRADAS Pr P of o. D r D. An A d n e d r e so s n o n Man a zo n l zo i
PROJETO DE ESTRADAS Prof. Dr. Anderson Manzoli CONCEITOS: Quando o alinhamento muda instantaneamente da tangente para uma curva circular, o motorista não pode manter o veículo no centro da faixa, no início
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08
ROLAMENTO, TORQUE E MOMENTUM ANGULAR Física Geral I (1108030) - Capítulo 08 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 21 Sumário Rolamento Rolamento como rotação e translação combinados e como uma
João Fortini Albano 24
João Fortini Albano 24 4 - FUNÇÕES, CLASSIFICAÇÃ FUNCINAL, CLASSE E NRAS ARA RDVIAS Função de uma via: é o tipo de serviço que a via proporciona aos usuários. É o desempenho da via para a finalidade do
Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO
Prática 1: RELAÇÃO ENTRE FORÇA E ACELERAÇÃO 1.1 Objetivo: Estudar a relação entre a força, massa e aceleração. 1.2 Material Necessário: 01 Plano Inclinado com ajuste angular regulável 01 Carrinho de movimento
Análise de Regressão. Notas de Aula
Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas
CINEMÁTICA DO PONTO MATERIAL
1.0 Conceitos CINEMÁTICA DO PONTO MATERIAL Cinemática é a parte da Mecânica que descreve os movimentos. Ponto material é um corpo móvel cujas dimensões não interferem no estudo em questão. Trajetória é
Introdução ao Projeto de Aeronaves. Aula 29 Diagrama v-n de Manobra e de Rajada
Introdução ao Projeto de Aeronaves Aula 29 Diagrama v-n de Manobra e de Rajada Tópicos Abordados Diagrama v-n de Manobra. Diagrama v-n de Rajada. Extensão para o Diagrama v-n de Rajada Esta aula repete
Lista de Exercícios (Profº Ito) Componentes da Resultante
1. Um balão de ar quente está sujeito às forças representadas na figura a seguir. Qual é a intensidade, a direção e o sentido da resultante dessas forças? c) qual o valor do módulo das tensões nas cordas
Desenvolvimento de Veículos Autônomos em Escala. Identificação de Parâmetros e Calibração dos Modelos dos Sistemas de Propulsão, Frenagem e Direção
Desenvolvimento de Veículos Autônomos em Escala. Identificação de Parâmetros e Calibração dos Modelos dos Sistemas de Propulsão, Frenagem e Direção Aluno: Thais Barreto Joffe Orientador: Mauro Speranza
PLANO DE ESTUDO TRIMESTRE:1º
C O L É G I O K E N N E D Y / R E D E P I T Á G O R A S PLANO DE ESTUDO TRIMESTRE:1º PLANO DE ESTUDO PROFESSOR:MARCÃO DATA DA AVALIAÇÃO: 30/09/16 CONTEÚDO(S) A SER(EM) COBRADO(S) NA AVALIAÇÃO: DISCIPLINA:
Aula 6 Propagação de erros
Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se
EXPERIÊNCIA 05. Nome Número Turma Data. Figura 5.1 Plano inclinado
Faculdade de Engenharia de Sorocaba Laboratório de Física Física Experimental I EXPERIÊNCIA 05 Nome Número Turma Data Plano Inclinado 5.1 Fundamentos Teóricos Componente do Peso Considere o plano inclinado
UNICAP Universidade Católica de Pernambuco Prof. Eduardo Oliveira Estradas 1
UNICAP Universidade Católica de Pernambuco Prof. Eduardo Oliveira Estradas 1 Características Técnicas: Velocidades: Velocidade Diretriz ou de projeto Velocidade de Operação Velocidade diretriz ou de projeto
LEIS DE NEWTON. a) Qual é a tensão no fio? b) Qual é a velocidade angular da massa? Se for necessário, use: sen 60 = 0,87, cos 60 = 0,5.
LEIS DE NEWTON 1. Um pêndulo cônico é formado por um fio de massa desprezível e comprimento L = 1,25 m, que suporta uma massa m = 0,5 kg na sua extremidade inferior. A extremidade superior do fio é presa
PROJETO GEOMÉTRICO DE RODOVIAS
PROJETO GEOMÉTRICO DE RODOVIAS Curso: 7º Período - Engenharia de Agrimensura e Cartográfica Prof. Paulo Augusto F. Borges 1. INTRODUÇÃO SUPERELEVAÇÃO Quando um veículo trafega em um trecho em tangente
Lista de Exercícios (Profº Ito) Blocos
TEXTO PARA A PRÓXIMA QUESTÃO Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 1. Dois blocos, de massas M e M, estão ligados através de um fio inextensível de
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
14-11-2013. Adaptado de Serway & Jewett Marília Peres 2013. Marília Peres
Adaptado de Serway & Jewett Marília Peres 2013 2 1 Se a aceleração de um objecto é zero, podemos dizer que equilíbrio. di er q e este se encontra em eq ilíbrio Matematicamente, é equivalente a dizer que
a) N B > N A > N C. b) N B > N C > N A. c) N C > N B > N A. d) N A > N B > N C. e) N A = N C = N B.
Prof. Renato SESI Carrão Física 1º. ano 2011 Lista de exercícios 1 (Aulas 13 a 24) *** Formulário *** v = Δx/Δt Δx = x f x i Δt = t f t i a = Δv/Δt Δv = v f v i F R = m.a g = 10 m/s 2 P = m.g F at = μ.n
Erros e Incertezas. Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.
Rafael Alves Batista Instituto de Física Gleb Wataghin Universidade Estadual de Campinas (Dated: 10 de Julho de 2011.) I. INTRODUÇÃO Quando se faz um experimento, deseja-se comparar o resultado obtido
PROJETO E CONSTRUÇÃO DE ESTRADAS
11 PROJETO E CONSTRUÇÃO DE ESTRADAS PROJETO EOMÉTRICO DE VIAS 2 - CURVAS HORIZONTAIS SIMPLES 2.1 - INTRODUÇÃO O traçado em planta de uma estrada deve ser composto de trechos retos concordados com curvas
FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO
FÍSICA - 1 o ANO MÓDULO 27 TRABALHO, POTÊNCIA E ENERGIA REVISÃO Fixação 1) O bloco da figura, de peso P = 50N, é arrastado ao longo do plano horizontal pela força F de intensidade F = 100N. A força de
PROTENSÃO AULA 2 PONTES DE CONCRETO ARMADO
PROTENSÃO AULA 2 PONTES DE CONCRETO ARMADO PONTE - DEFINIÇÃO Construção destinada a estabelecer a continuidade de uma via de qualquer natureza. Nos casos mais comuns, e que serão tratados neste texto,
Matemática Básica Intervalos
Matemática Básica Intervalos 03 1. Intervalos Intervalos são conjuntos infinitos de números reais. Geometricamente correspondem a segmentos de reta sobre um eixo coordenado. Por exemplo, dados dois números
Turbina eólica: conceitos
Turbina eólica: conceitos Introdução A turbina eólica, ou aerogerador, é uma máquina eólica que absorve parte da potência cinética do vento através de um rotor aerodinâmico, convertendo em potência mecânica
v = velocidade média, m/s; a = aceleração média do corpo, m/s 2 ;
1. Cinemática Universidade Estadual do Norte Fluminense Darcy Ribeiro Centro de Ciências e Tecnologias Agropecuárias - Laboratório de Engenharia Agrícola EAG 0304 Mecânica Aplicada Prof. Ricardo Ferreira
05. COMUNICAÇÃO VISUAL EXTERNA
05. COMUNICAÇÃO VISUAL EXTERNA 5.1 COMUNICAÇÃO VISUAL EXTERNA AGÊNCIAS Agências sem recuo em relação à calçada 1 2 3 4 Elementos de comunicação visual As fachadas das agências dos Correios, sem recuo em
Física Professor Fernando 2ª série / 1º trimestre
Física Professor Fernando 2ª série / 1º trimestre Questão 01) Em um parque de diversão, Carlos e Isabela brincam em uma gangorra que dispõe de dois lugares possíveis de se sentar nas suas extremidades.
Guia Linear. Tamanho. Curso 07 20. Patins. Características Técnicas Material das guias DIN 58 CrMoV4 Material dos patins DIN 16 MnCr5
Guias Lineares - Série GH G H Guia Linear - Guia Linear Tamanho Curso 07 20 Máx. 4000mm 09 25 12 35 Exemplo: GH20-200 15 45 GH35-100 Patins G H P - Guia Linear Tamanho 07 20 09 25 12 35 15 45 Patins ---
FATEC Faculdade de Tecnologia de Pavimentação Departamento de Transportes e Obras de Terra - Prof. Edson 1- RAIO MÍNIMO DE CURVATURA HORIZONTAL
1- RAIO MÍNIMO DE CURVATURA HORIZONTAL Os raios mínimos de curvatura horizontal são os menores raios das curvas que podem ser percorridas em condições limite com a velocidade diretriz e à taxa máxima de
FÍSICA - 1 o ANO MÓDULO 30 QUANTIDADE DE MOVIMENTO E IMPULSÃO REVISÃO
FÍSICA - 1 o ANO MÓDULO 30 QUANTIDADE DE MOVIMENTO E IMPULSÃO REVISÃO Como pode cair no enem? Quando uma fábrica lança um modelo novo de automóvel é necessário que muitos testes sejam feitos para garantir
Mecânica Geral. Aula 04 Carregamento, Vínculo e Momento de uma força
Aula 04 Carregamento, Vínculo e Momento de uma força 1 - INTRODUÇÃO A Mecânica é uma ciência física aplicada que trata dos estudos das forças e dos movimentos. A Mecânica descreve e prediz as condições
Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/
Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir
Universidade do Estado de Mato Grosso UNEMAT. Estradas 1 Projeto geométrico. 4 Elementos Planimétricos
Universidade do Estado de Mato Grosso UNEMAT Faculdade de Ciências Exatas e Tecnológicas FACET Curso: Bacharelado em Engenharia Civil Estradas 1 Projeto geométrico 4 Elementos Planimétricos Prof. Me. Arnaldo
1.2. Grandezas Fundamentais e Sistemas de Unidades
CAPÍTULO 1 Grandezas, Unidades e Dimensões 1.1. Medidas Uma grandeza física é uma propriedade de um corpo, ou particularidade de um fenómeno, susceptível de ser medida, i.e. à qual se pode atribuir um
Pontifícia Universidade Católica do Rio Grande do Sul. Faculdade de Engenharia FACULDADE DE ARQUITETURA E URBANISMO SISTEMAS ESTRUTURAIS II
Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia FACULDADE DE ARQUITETURA E URBANISMO SISTEMAS ESTRUTURAIS II COMENTÁRIOS Norma NBR 6118/2007 Prof. Eduardo Giugliani 1 0. COMENTÁRIOS
PLANO INCLINADO. a. a aceleração com que o bloco desce o plano; b. a intensidade da reação normal sobre o bloco;
PLANO INCLINADO 1. Um corpo de massa m = 10kg está apoiado num plano inclinado de 30 em relação à horizontal, sem atrito, e é abandonado no ponto A, distante 20m do solo. Supondo a aceleração da gravidade
Características das Figuras Geométricas Espaciais
Características das Figuras Geométricas Espaciais Introdução A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana e trata dos métodos apropriados para o estudo de objetos espaciais,
Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da massa específica do meio µ, de acordo com a expressão:
PROVA DE FÍSICA DO VESTIBULAR 96/97 DO INSTITUTO MILITAR DE ENGENHARIA (03/12/96) 1 a Questão: Valor : 1,0 Suponha que a velocidade de propagação v de uma onda sonora dependa somente da pressão P e da
Aula 12: Correlação e Regressão
Aula 12: Correlação e Regressão Sumário Aula 12: Correlação e Regressão... 1 12.l Correlação... 2 12.2 Diagrama de dispersão... 2 12.3 Correlação linear... 3 12.3.1 Coeficiente de correlação linear...
Licença de uso exclusiva para Petrobrás S.A. Licença de uso exclusiva para Petrobrás S.A.
ABNT-Associação Brasileira de Normas Técnicas Sede: Rio de Janeiro Av. Treze de Maio, 13-28º andar CEP 20003-900 - Caixa Postal 1680 Rio de Janeiro - RJ Tel.: PABX (021) 210-3122 Fax: (021) 240-8249/532-2143
Disciplina: FÍSICA I Curso: MATEMÁTICA PROF. ZENAR PEDRO SCHEIN Sala: ATIVIDADES PARA O DIA 29/2/2015
1 Disciplina: FÍSICA I Curso: MATEMÁTICA PROF. ZENAR PEDRO SCHEIN Sala: ATIVIDADES PARA O DIA 9//015 OBS.: TODOS OS TEXTOS E EXERCÍCIOS ORGANIZADOS EM FÍSICA I SÃO COMPILADOS DA BIBLIOGRAFIA BÁSICA OU
Engenheiro Civil, Doutor em Estruturas, Sócio de Vitório & Melo Projetos Estruturais e Consultoria Ltda.
Análise Comparativa de Métodos de Alargamento de Tabuleiros de Pontes e Viadutos, com Foco no Desempenho Estrutural, nos Aspectos Construtivos e nos Custos Finais de Intervenção. José Afonso Pereira Vitório
Perfil Longitudinal. A sua definição deve ter em conta:
Perfil Longitudinal A sua definição deve ter em conta: Rasante Topografia Traçado em planta Distâncias de visibilidade Segurança Drenagem Integração no meio ambiente Custos de construção Custos de exploração
Professora Florence. Para haver movimento, a resultante das forças ativas deve ter intensidade maior que a da força de atrito estática máxima.
1. (Uepb 2013) Um jovem aluno de física, atendendo ao pedido de sua mãe para alterar a posição de alguns móveis da residência, começou empurrando o guarda-roupa do seu quarto, que tem 200 kg de massa.
Resistência dos Materiais
Aula 4 Deformações e Propriedades Mecânicas dos Materiais Tópicos Abordados Nesta Aula Estudo de Deformações, Normal e por Cisalhamento. Propriedades Mecânicas dos Materiais. Coeficiente de Poisson. Deformação
Metrologia Professor: Leonardo Leódido
Metrologia Professor: Leonardo Leódido Sumário Definição Conceitos Básicos Classificação de Forma de Orientação de Posição Definição Tolerância pode ser definida como um intervalo limite no qual as imperfeições
MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES
MEDIDAS DE VAZÃO ATRAVÉS DE VERTEDORES 1. OBJETIVO Familiarização com o uso de vertedores como medidores de vazão. Medir a vazão de canais com vertedores de soleira delgada triangulares e retangulares,
aplicada no outro bloco exceder o valor calculado na alínea 4.1? R: 16 N; 2 ms -2 ; 1 ms -2
Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 6 Dinâmica do Ponto Material Capítulo 3 no lectivo 2010-2011 Conhecimentos e capacidades a adquirir pelo aluno plicação dos conceitos
Notas de aulas de Estradas (parte 9)
1 Notas de aulas de Estradas (parte 9) Hélio Marcos Fernandes Viana Tema: Superlargura Conteúdo da parte 9 1 Introdução 2 Cálculo da superlargura 3 Distribuição da superlargura 2 1 Introdução Superlargura
Aprimorando os Conhecimentos de Mecânica Lista 6 Vetores II
Aprimorando os Conhecimentos de Mecânica Lista 6 Vetores II O texto seguinte refere-se às questões 1 e 2. O Atol das Rocas, localizado em mar territorial brasileiro (aproximadamente 267km da cidade de
Problemas de Mecânica e Ondas 8
Problemas de Mecânica e Ondas 8 P 8.1. ( Introdução à Física, J. Dias de Deus et. al. ) a) A figura representa uma onda aproximadamente sinusoidal no mar e uma boia para prender um barco, que efectua 10
Precisão do fuso de esferas
Precisão do ângulo de avanço A precisão do fuso de esferas no ângulo de avanço é controlado de acordo com os padrões JIS (JIS B 1192-1997). As classes de precisão C0 a C5 são defi nidas na linearidade
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I
LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm
Geometria Diferencial de Curvas Espaciais
Geometria Diferencial de Curvas Espaciais 1 Aceleração tangencial e centrípeta Fernando Deeke Sasse Departamento de Matemática CCT UDESC Mostremos que a aceleração de uma partícula viajando ao longo de
Concepção da Forma Arquitetônica_2 bares e restaurantes _ dimensionamento básico
Concepção da Forma Arquitetônica_2 bares e restaurantes _ dimensionamento básico fonte: PANERO, Julius; ZELNIK, Martin. Las Dimensiones en los Espacios Interiores. Mexico: Gustavo Gili, 1996 [1979]. Pg
Mecânica Geral. Aula 05 - Equilíbrio e Reação de Apoio
Aula 05 - Equilíbrio e Reação de Apoio 1 - Equilíbrio de um Ponto Material (Revisão) Condição de equilíbrio de um Ponto Material Y F 0 F X 0 e F 0 Exemplo 01 - Determine a tensão nos cabos AB e AD para
Dobra/Corte por cisalhamento
Dobra/Corte por cisalhamento Esta publicação aborda o dobramento a frio, e também o corte da chapa antidesgaste Hardox e da chapa de aço estrutural Weldox. Nestes tipos de aços, combinamos elevada resistência
MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS
1 MECÂNICA - DINÂMICA APLICAÇÃO DAS LEIS DE NEWTON BLOCOS 1. (Ufrj) Dois blocos de massa igual a 4kg e 2kg, respectivamente, estão presos entre si por um fio inextensível e de massa desprezível. Deseja-se
5. Derivada. Definição: Se uma função f é definida em um intervalo aberto contendo x 0, então a derivada de f
5 Derivada O conceito de derivada está intimamente relacionado à taa de variação instantânea de uma função, o qual está presente no cotidiano das pessoas, através, por eemplo, da determinação da taa de
e o da placa (S P ) será:, sendo (BF ) a menor dimensão da fundação e (B P ) a menor dimensão da placa.
45.(ALERJ/FGV/2017) Em uma prova de carga, o recalque elástico sofrido pela placa quadrada do equipamento de 300 mm de dimensão, em um solo argiloso sobre o qual será assentada uma sapata retangular de
3 - Características das Estradas Não- Pavimentadas
33 3 - Características das Estradas Não- Pavimentadas 3.1 - Introdução O estado da superfície ou leito carroçável de qualquer estrada depende do material, das intempéries, do tráfego e da manutenção. Uma
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1
PROGRAMAÇÃO DE COMPUTADORES I - BCC701-2015 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1 Exercício 1 Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência
Movimento uniformemente variado. Capítulo 4 (MUV)
Movimento uniformemente variado Capítulo 4 (MUV) Movimento uniformemente variado MUV aceleração escalar (α) é constante e não nula. O quociente α = v t é constante e não nulo. Função horária da velocidade
Parada Obrigatória. Dê a Preferência. Velocidade Máxima Permitida. Sentido Obrigatório. Passagem Obrigatória. Siga em Frente
Compõe-se de luzes acionadas alternada ou intermitentemente através de sistema elétrico/eletrônico, cuja função é controlar os deslocamentos em trânsito. Sinalização semafórica de regulamentação Tem a
Profa. Luciana Rosa de Souza
Profa. Luciana Rosa de Souza o Curto prazo e Longo prazo No estudo da produção, é importante que se diferencie o curto prazo do longo prazo. Curto Prazo: refere-se ao período de tempo no qual um ou mais
Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas
Engrenagens Engrenagens são elementos de máquinas que transmitem o movimento por meio de sucessivos engates de dentes, onde os dentes atuam como pequenas alavancas. Classificação das Engrenagens As engrenagens
Introdução ao Projeto de Aeronaves. Aula 9 Análise Aerodinâmica da Asa
Introdução ao Projeto de Aeronaves Aula 9 Análise Aerodinâmica da Asa Tópicos Abordados Asas de Envergadura Finita. Forma Geométrica e Localização da Asa na Fuselagem. Alongamento e Relação de Afilamento.
Critérios Básicos para Elaboração de Projeto e Construção de Rede de Distribuição com Poste de Concreto Duplo T
ITA 012 Rev. 1 Janeiro / 2007 Praça Leoni Ramos n 1 São Domingos Niterói RJ Cep 24210-205 http:\\ www.ampla.com Critérios Básicos para Elaboração de Projeto e Construção de Rede de Distribuição com Poste
Aula de Exercícios Recuperação Paralela (Leis de Newton)
Aula de Exercícios Recuperação Paralela (Leis de Newton) Exercício 1. (TAUBATÉ) Um automóvel viaja com velocidade constante de 72km/h em trecho retilíneo de estrada. Pode-se afirmar que a resultante das
. B(x 2, y 2 ). A(x 1, y 1 )
Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x
Sistema de Abastecimento de Água 1 CAPÍTULO 5 REDE DE DISTRIBUIÇÃO DE ÁGUA
Sistema de Abastecimento de Água 1 CAPÍTUO 5 REDE DE DISTRIBUIÇÃO DE ÁGUA Sistema de Abastecimento de Água 2 1. Considerações Gerais A rede de distribuição de água é constituída por um conjunto de condutos
Aula 15 Campo Elétrico
1. (Fatec 2010) Leia o texto a seguir. Técnica permite reciclagem de placas de circuito impresso e recuperação de metais Circuitos eletrônicos de computadores, telefones celulares e outros equipamentos
Centro de gravidade de um corpo é o ponto onde podemos supor que seu peso esteja aplicado.
Apostila de Revisão n 4 DISCIPLINA: Física NOME: N O : TURMA: 2M311 PROFESSOR: Glênon Dutra DATA: Mecânica - 4. Corpo Rígido 4.1. Torque análise semiquantitativa, na Primeira Etapa, e quantitativa, na
PRINCIPAIS ETAPAS DE UM PROJETO DE ENGENHARIA DE ESTRADAS
PRINCIPAIS ETAPAS DE UM PROJETO DE ENGENHARIA DE ESTRADAS Introdução Projeto geométrico de uma estrada: processo de correlacionar os seus elementos físicos com as características de operação, frenagem,
