Projeto básico de controladores
|
|
|
- Rayssa Castel-Branco Fontes
- 9 Há anos
- Visualizações:
Transcrição
1 Projeto básico de controladores l l l l Definição das margens Diagramas de Bode Diagramas de Nyquist Exemplos de projetos
2 Margem de ganho Conhecido o máximo ganho (K m ) que assegure a estabilidade para o controle proporcional de uma dada planta de fase mínima (zeros no semi-plano esquerdo) e realimentação unitária negativa, a margem de ganho é definida como: MG = 20log10 K m
3 Exercício 19.1: Margem de ganho Dado a planta abaixo, calcule a sua margem de ganho: Y() s 1 = U() s s( s+ 5)( s+ 8)
4 Solução: Margem de ganho Y() s 1 = U() s s( s+ 5)( s+ 8) MG = 20log10 K m np=[1]; dp=poly([ ]); rlocus(np,dp) km=519 mg=20*log10(km) MG = 54.3 db
5 Teste em Simulink: : Margem de ganho K=519 muito próximo da estabilidade marginal Tempo muito longo para visualizar a instabilidade k=522
6 Margem de fase Mínimo atraso de fase que pode ser adicionado por um controlador a um sistema de malha aberta estável de modo a desestabilizar o sistema de malha fechada.
7 Margens de ganho e fase na FT senoidal l Com ganho e atraso a FT de malha aberta fica: s = st G( s) = Ke a P( s) l FT de malha fechada fica: sta Ke P() s FTmf () s = sta 1 + Ke P( s) jω l Fazendo pode-se obter as frequências que instabilizam o sistema malha fechada fazendo jωt 1 + Ke a P( jω ) = 0
8 Margens de ganho e fase na FT senoidal jωt 1 + Ke a P( jω ) = 0 l Duas condições para satisfazer a equação e jωt a KP( jω ) = 1 P( jω ) = 180 l A FT malha aberta pode ser escrita na forma a G( jω) = KP( jω) e e jωt jφ ( jω )
9 Margens de fase na FT senoidal l Quando a primeira é satisfeita KP( jω ) = 1 Pode-se definir ω cg Frequência de cruzamento de ganho l Pode-se observar o quão distante a fase θ jωt esta de satisfazer a segunda e a P( jω ) = 180 l Na frequência ω cg φ( jω) θ = 180 θ = φ( jω) Margem de fase em graus
10 Margens de ganho na FT senoidal l Quando a segunda é satisfeita e jωt a Pode-se definir = ωcf P( jω ) 180 Frequência de cruzamento de fase l Pode-se observar o quão distante o ganho esta de satisfazer a primeira KP( jω ) = 1 l Na frequência ωcg ( KP jω ) 0 20log10 ( ) KP( jω ) Margem de ganho em dbs
11 Exercício 19.2: Margem de fase Dado a planta abaixo, calcule a sua margem de fase: Y() s 1 = U() s s( s+ 5)( s+ 8)
12 Solução: Margem de fase Y() s 1 = U() s s( s+ 5)( s+ 8) MF = ( 90.5) np=[1]; dp=poly([ ]); w=logspace(-3,2) bode(np,dp,w) wcg=0.025 MF = 89.5
13 Teste em Simulink: : Margem de fase jωt G() s e a P() s ωt = a = θ T a θ 89.5* pi /180 = = 62.5 ω Ta= 65s
14 Vizualização das margens l As margens podem ser visualizadas diretamente nos diagramas de Bode, Nyquist e Nichols. l Primeiramente faz-se necessário definir algumas freqüências para visualização das margens
15 Definição dos pontos de cruzamentos l Freqüência de cruzamento de ganho: corresponde ao ponto em que o ganho cruza a linha de zero decibéis no diagrama do módulo
16 Definição dos pontos de cruzamentos l Freqüência de cruzamento de fase: corresponde ao ponto em que a fase cruza a linha de -180 graus no diagrama de fase
17 Como calcular as margens l Na freqüência de cruzamento de ganho define-se a margem de fase como o ângulo que falta para completar 180 graus. MF
18 Como calcular as margens l Na freqüência de cruzamento de fase definese a margem de ganho como a diferença em decibéis para atingir zero db. MG
19 Usando os diagramas de Bode As margens podem ser vistas no diagrama de Bode (comando margin) Para a planta: Y() s 1 = U() s s( s+ 5)( s+ 8) np=[1]; dp=poly([ ]); margin(np,dp) MF MG
20 No diagrama de Nyquist Considerando o ponto onde zero Db raio unitário o 180 cruzamento com o eixo real negativo
21 Margens no diagrama de Nyquist Nyquist Diagrams As margens podem ser encontradas no círculo de raio unitário e no ponto de cruzamento do eixo real negativo. Imaginary Axis MF 1/MG Real Axis
22 Margens finitas menores A aproximação dos cruzamentos do ponto (-1,0) gera margens menores tanto para o ganho como para a fase
23 Usando o diagrama de Nichols As margens são visualizadas em um único gráfico MF MG np=[1]; dp=poly([ ]); nichols(np,dp)
24 Exemplo 19.1: Margens finitas Para a planta (comando margin): Y( s) 1 = U() s s( s+ 2)( s+ 4) Bode Diagrams Gm= db (at rad/sec), Pm= deg. (at rad/sec) Phase (deg); Magnitude (db) MF MG Frequency (rad/sec)
25 Exemplo 19.1: Gráfico do lugar das raízes Usando o comando rlocus: Y( s) 1 = U() s s( s+ 2)( s+ 4) Imag Axis Real Axis
26 Exemplo 19.1: Diagrama de Nyquist Para a planta: Y( s) 1 = U( s) s( s+ 2)( s+ 4) % raio unitário teta=linspace(0,2*pi,100); re=cos(teta); im=sin(teta); plot(re,im,'k') axis equal, hold on np=1; dp=poly([-4-2 0]); sys=tf(np,dp); [r i]=nyquist(sys); r1(1,:)=r(1,1,:); i1(1,:)=i(1,1,:); plot(r1,i1,'b'), grid zoom
27 Exemplo 19.1: Diagrama de Nichols Para a planta: Y( s) 1 = U( s) s( s+ 2)( s+ 4) Nichols Charts 50 Open-Loop Gain (db) Open-Loop Phase (deg)
28 Exemplo 19.2: Margem de ganho infinita Para a planta: Y( s) 16 = U( s) ( s+ 2)( s+ 4) Bode Diagrams Gm = Inf, Pm= deg. (at rad/sec) 0 Phase (deg); Magnitude (db) Frequency (rad/sec)
29 Exemplo 19.2: Lugar das raízes Para a planta: Y( s) 16 = U( s) ( s+ 2)( s+ 4) Imag Axis Real Axis
30 Exemplo 19.2: Diagrama de Nyquist Para a planta: Y( s) 16 = U( s) ( s+ 2)( s+ 4)
31 Exemplo 19.2: Diagrama de Nichols Para a planta: Y( s) 16 = U( s) ( s+ 2)( s+ 4) Nichols Charts 0-20 Open-Loop Gain (db) Open-Loop Phase (deg)
32 Exemplo 19.3: Sempre estável Para a planta: Y ( s) U ( s) = ( s + 8 2)( s + 4) Bode Diagrams 0 Gm = Inf, Pm=180 deg. (at 0 rad/sec) Phase (deg); Magnitude (db) Frequency (rad/sec)
33 Exemplo 19.3: Lugar das raízes Para a planta: Y ( s) U ( s) = ( s + 8 2)( s + 4) Imag Axis Real Axis
34 Exemplo 19.3: Diagrama de Nyquist Para a planta: Y( s) 8 = U( s) ( s+ 2)( s+ 4)
35 Exemplo 19.3: Diagrama de Nichols Para a planta: Y ( s) U ( s) = ( s + 8 2)( s + 4) Nichols Charts 0-20 Open-Loop Gain (db) Open-Loop Phase (deg)
36 Margem de Redução de ganho Quando o sistema é instável em malha aberta (pólos da FT de malha aberta no SPD), a margem de redução de ganho é definida como o menor ganho (K r ) que assegure a estabilidade do sistema em malha fechada: MRG = 20log10 ( ) K r
37 Margem de Redução de ganho Observar as margens juntamente com o lugar das raízes da malha aberta np=...; dp=...; figure(1) margin(np,dp) figure(2) rlocus(np,dp)
38 Exemplo 19.4: Margem de redução de ganho Para a planta cuja FT é Gs () = 2 3s + 6s calcule a margem de ganho e margem de fase e justifique o resultado s
39 Solução: nps=[3 6 4]; dps=[ ]; figure(1) margin(nps,dps) figure(2) rlocus(nps,dps)
40 Solução: km=0.371 mg=20*log10(km); mg=
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA
CAPÍTULO 4 - ANÁLISE DA RESPOSTA EM FREQÜÊNCIA 4.. Introdução Pelo termo resposta em freqüência, entende-se a resposta em regime estacionário de um sistema com entrada senoidal. Nos métodos de resposta
Exemplo de Projeto. 2. Controle de velocidade de um fita de áudio digital sujeito a retardo no tempo 2.1. Controle PID 2.2. Estabilidade robusta
Exemplo de Projeto 1. Retardo no tempo 1.1. Modelo de incerteza? 2. Controle de velocidade de um fita de áudio digital sujeito a retardo no tempo 2.1. Controle PID 2.2. Estabilidade robusta 3. Exercícios
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Estabilidade relativa e o critério de Nyquist: margens de ganho e fase 2. Critérios de desempenho especificados no domínio da freqüência Resposta em freqüência
Ajuste de Reguladores de Velocidade de Turbinas Hidráulicas
Ajuste de Reguladores de Velocidade de Turbinas Hidráulicas Características do Controle de Velocidade de Turbinas Hidráulicas Resposta Inversa da Turbina: Necessidade de redução de ganho transitório; Redução
Sistemas de Controle I
Sistemas de Controle I UNIVERSIDADE FEDERAL DO PARÁ CENTRO TECNOLÓGICO PPGEE Prof.: Dr.Carlos Tavares Capítulo V Introdução ao Controle de Processos Industriais III.1 Controladores tipo Relé e PID III.2
Sistemas a Tempo Discreto - Projeto
Sistemas a Tempo Discreto - Projeto 1. Especificações de Projeto no domínio discreto 2. Projeto via Emulação 2.1 Controladores Equivalentes Discretos 2.2 Mapeamento pólo-zero 2.3 Avaliação do projeto pag.1
Método de Margem de Ganho
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ102- CONTROLE DE PROCESSOS custo Método de Margem de Ganho Outros Processos e de de Fase Separação Prof a Ninoska Bojorge Resposta de
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA
RESPOSTA EM FREQUÊNCIA: CONTROLADOR AVANÇO E ATRASO DE FASE (LEAD-LAG) OGATA CCL Profa. Mariana Cavalca Retirado de OGATA, Katsuhiko. Engenharia de controle moderno. 1. ed. Rio de Janeiro: Prentice Hall,
Método do Lugar das Raízes
Método do Lugar das Raízes 1. Conceito do Lugar das Raízes 2. Virtudes do Lugar das Raízes (LR) pag.1 Controle de Sistemas Lineares Aula 8 No projeto de um sistema de controle, é fundamental determinar
Projeto pelo Lugar das Raízes
Projeto pelo Lugar das Raízes 0.1 Introdução Controle 1 Prof. Paulo Roberto Brero de Campos Neste apostila serão estudadas formas para se fazer o projeto de um sistema realimentado, utilizando-se o Lugar
O Método do Lugar das Raízes Parte 2. Controle de Sistemas I Renato Dourado Maia (FACIT)
O Método do Lugar das Raízes Parte 2 Controle de Sistemas I Renato Dourado Maia (FACIT) 1 O procedimento para se obter o traçado do gráfico do Lugar das Raízes é realizado por meio de um procedimento ordenado
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;
Diagramas de Bode. Introdução
Diagramas de Bode Introdução Sistemas e Sinais Diagramas de Bode Escala Logarítmica de Amplitude Escala Logarítmica de Frequência Análise dos Termos das Funções de Resposta em Frequência Composição do
Controle por Computador Parte II. 22 de novembro de 2011
Controle por Computador Parte II 22 de novembro de 2011 Outline 1 Exemplo de Projeto 2 Controladores PID 3 Projeto de Controle em Tempo Discreto Exemplo de Projeto Exemplo de Projeto: Controle de azimute
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist
Aula 4 - Resposta em Frequência, Sensibilidade, Margem de Ganho e Margem de Fase, Controle em Avanço e Atraso, Critério de Nyquist Universidade de São Paulo Introdução Método da Resposta em Frequência
Controle e servomecanismo TE240 Análise no domínio da frequência. Juliana L. M. Iamamura
Controle e servomecanismo TE240 Análise no domínio da frequência Juliana L. M. Iamamura Análise no domínio da frequência Projetos simples Não é necessário conhecer polos e zeros Sinais decompostos em somas
Capítulo 10. Técnicas de Resposta de Freqüência
Capítulo 10 Técnicas de Resposta de Freqüência Fig.10.1 O Analisador Dinâmico de Sinal HP 35670A obtém dados de resposta de freqüência de um sistema físico. Os dados exibidos podem ser usados para analisar,
Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores
António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal [email protected] Sumário 1. (a) Filtros IIR e FIR (b) Dimensionamento de Filtros FIR (c) Janelas para dimensionamento de filtros FIR
Controle de Processos Aula 14: Critério de Estabilidade (Bode)
107484 Controle de Processos Aula 14: Critério de Estabilidade (Bode) Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2018 E. S. Tognetti (UnB)
SISTEMAS REALIMENTADOS
SISTEMAS REALIMENTADOS Prof.: Helder Roberto de O. Rocha Engenheiro Eletricista Doutorado em Computação Sintonia de controladores PID Mais da metade dos controladores industriais em uso emprega sistemas
EES-49/2012 Resolução da Prova 3. 1 Dada a seguinte função de transferência em malha aberta: ( s 10)
EES-49/2012 Resolução da Prova 3 1 Dada a seguinte função de transferência em malha aberta: ( s 10) Gs () ss ( 10) a) Esboce o diagrama de Nyquist e analise a estabilidade do sistema em malha fechada com
Introdução Diagramas de Bode Gráficos Polares Gráfico de Amplitude em db Versus Fase. Aula 14. Cristiano Quevedo Andrea 1
Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro 2012. 1 / 48 Resumo 1 Introdução 2 Diagramas de Bode 3
2 a PROVA CONTROLE DINÂMICO Turma B 2 /2015
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta. Faculdade de Tecnologia É permitido usar calculadora. Universidade de Brasília Prof. Adolfo Bauchspiess Auditório SG11, 21/1/215,
CONTROLO MEEC. 1º semestre 2018/2019. Transparências de apoio às aulas teóricas. Capítulo Projecto Nyquist/Bode. Maria Isabel Ribeiro António Pascoal
CONROLO MEEC º semestre 208/209 ransparências de apoio às aulas teóricas Capítulo Projecto Nyquist/Bode Maria Isabel Ribeiro António Pascoal odos os direitos reservados Estas notas não podem ser usadas
Projeto de Compensadores no Domínio da Frequência
Projeto de Compensadores no Domínio da Frequência Maio de 214 Loop Shaping I No projeto de compensadores no domínio da frequência, parte-se do pressuposto de que o sistema a ser controlado pode ser representado
EES-20: Sistemas de Controle II. 20 Outubro 2017 (Manhã)
EES-20: Sistemas de Controle II 20 Outubro 2017 (Manhã) 1 / 57 Recapitulando: Discretização de controladores analógicos - Limitações Trata-se de aproximação Não se leva em conta o efeito do segurador de
Controle H - PPGEE - EPUSP Exemplo 1 - Projeto Ótimo H SISO
Controle H - PPGEE - EPUSP Exemplo - Projeto Ótimo H SISO Prof. Diego Segundo Período 7 Exemplo Neste exemplo, iremos resolver com mais detalher o problema.7 do livro do Skogestad, segunda edição, versão
EE-253: Controle Ótimo de Sistemas. Aula 6 (04 Setembro 2018)
EE-253: Controle Ótimo de Sistemas Aula 6 (4 Setembro 218) 1 / 54 Regulador Linear Quadrático Modelo linear: ẋ = Ax + Bu com (A, B) estabilizável. Funcional de custo quadrático: J = [ ] x T (t)qx(t) +
I Controle Contínuo 1
Sumário I Controle Contínuo 1 1 Introdução 3 11 Sistemas de Controle em Malha Aberta e em Malha Fechada 5 12 Componentes de um sistema de controle 5 13 Comparação de Sistemas de Controle em Malha Aberta
Nyquist, Função de Sensibilidade e Desempenho Nominal
Nyquist, Função de Sensibilidade e Desempenho Nominal 1. Revisitando o critério de estabilidade de Nyquist 1.1. Margens de ganho e de fase 2. Erro de rastreamento e função de sensibilidade 2.1. Vetor de
RESOLUÇÃO 3 a PROVA CONTROLE DINÂMICO - 2 /2015
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta. Faculdade de Tecnologia Não é permitido/necessário usar calculadora. Universidade de Brasília Prof. Adolfo Bauchspiess Auditório
Introdução AVALIAÇÃO DE DESEMPENHO. No domínio do tempo. No domínio da freqüência. Função de transferência. Módulo e fase da função de transferência
AVALIAÇÃO DE DESEMPENHO Introdução Introdução Análise no domínio do tempo Resposta ao degrau Resposta à rampa Aula anterior Resposta à parábola Análise no domínio da freqüência Diagramas de Bode Diagrama
Compensadores: projeto no domínio da
Compensadores: projeto no domínio da frequência Relembrando o conteúdo das aulas anteriores: o Compensador (também conhecido como Controlador) tem o objetivo de compensar características ruins do sistema
Aula 11. Cristiano Quevedo Andrea 1. Curitiba, Outubro de DAELT - Departamento Acadêmico de Eletrotécnica
Aula 11 Cristiano Quevedo Andrea 1 1 UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Outubro de 2011. Resumo 1 Introdução - Lugar das Raízes
23/04/2018. Estabilidade de Circuitos com AMPOP
Estabilidade de Circuitos com AMPOP 1 Estabilidade de Circuitos com AMPOP Função de transferência em malha fechada Hipóteses: ganho CC constante pólos e zeros em altas freqüências (s) constante em baixas
Descrição de Incertezas e Estabilidade Robusta
Descrição de Incertezas e Estabilidade Robusta 1. Estabilidade robusta? 1.1. Função de transferência nominal e critério de estabilidade robusta 2. Caracterizando modelos de incertezas não-estruturadas
Unidade V - Desempenho de Sistemas de Controle com Retroação
Unidade V - Desempenho de Sistemas de Controle com Retroação Introdução; Sinais de entrada para Teste; Desempenho de um Sistemas de Segunda Ordem; Efeitos de um Terceiro Pólo e de um Zero na Resposta Sistemas
Margem de Ganho e Margem de Fase Diagrama de Nichols
Departamento de Engenharia Química e de Petróleo UFF Margem de Ganho e Margem de Fase Diagrama de Nichols Outros Processos de Separação Critério de Estabilidade de Desenvolvido por Harry (1932) nos laboratórios
Análise de Sistemas no Domínio da Freqüência. Diagrama de Bode
Análise de Sistemas no Domínio da Freqüência Diagrama de Bode Análise na Freqüência A análise da resposta em freqüência compreende o estudo do comportamento de um sistema dinâmico em regime permanente,
O critério de Nyquist
O critério de Nyquist Critério de análise de estabilidade de sistemas dinâmicos lineares com realimentação negativa. Usa a função de transferência em malha aberta (antes da realimentação). É uma aplicação
Erros de Estado Estacionário. Carlos Alexandre Mello. Carlos Alexandre Mello [email protected] 1
Erros de Estado Estacionário Carlos Alexandre Mello 1 Introdução Projeto e análise de sistemas de controle: Resposta de Transiente Estabilidade Erros de Estado Estacionário (ou Permanente) Diferença entre
Projeto através de resposta em frequência
Guilherme Luiz Moritz 1 1 DAELT - Universidade Tecnológica Federal do Paraná 04 de 2013 Objetivos Refoçar o conceito das características da resposta em frequência Saber utilizar o diagrama para projeto
DIAGRAMAS DE BODE, NYQUIST E NICHOLS
DIAGRAMAS DE BODE, NYQUIST E NICHOLS Os diagramas de resposta em freqüência são muito úteis para analisar a estabilidade de um sistema realimentado. Existem 3 formas de analisar a resposta em freqüência
ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA
VIII- CAPÍTULO VIII ANÁLISE DO MÉTODO DA RESPOSTA EM FREQÜÊNCIA 8.- INTRODUÇÃO O método da resposta em freqüência, nada mais é que a observação da resposta de um sistema, para um sinal de entrada senoidal,
Modelos Matemáticos de Sistemas
Modelos Matemáticos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;
Aula 19: Projeto de controladores no domínio da frequência
Aula 19: Projeto de controladores no domínio da frequência prof. Dr. Eduardo Bento Pereira Universidade Federal de São João del-rei [email protected] 14 de novembro de 2017. prof. Dr. Eduardo Bento Pereira
INTRO ao CONTROLO. 1º semestre 2013/2014. Transparências de apoio às aulas teóricas. Critério de Nyquist. Maria Isabel Ribeiro António Pascoal
INTRO ao CONTROLO º semestre 3/4 Transparências de apoio às aulas teóricas Critério de Nyquist Maria Isabel Ribeiro António Pascoal Todos os direitos reservados Estas notas não podem ser usadas para fins
CAPÍTULO Compensação via Compensador de Avanço de Fase
CAPÍTULO 8 Projeto no Domínio da Freqüência 8.1 Introdução Este capítulo aborda o projeto de controladores usando o domínio da freqüência. As caracteristicas de resposta em freqüência dos diversos controladores,
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência 1. Sistemas de fase mínima 2. Exemplo de traçado do diagrama de Bode 3. Medidas da resposta em freqüência 4. Especificações de desempenho no domínio da freqüência pag.1
Métodos Avançados em Sistemas de Energia Eletrônica de Potência para Geração Distribuída
Departamento de Engenharia Elétrica Métodos Avançados em Sistemas de Energia Retiicador e Inversor em Ponte Completa Pro. João Américo Vilela [email protected] Bibliograia HART, D. W. Eletrônica de
A Derivada. 1.0 Conceitos. 2.0 Técnicas de Diferenciação. 2.1 Técnicas Básicas. Derivada de f em relação a x:
1.0 Conceitos A Derivada Derivada de f em relação a x: Uma função é diferenciável / derivável em x 0 se existe o limite Se f é diferenciável no ponto x 0, então f é contínua em x 0. f é diferenciável em
Para cada partícula num pequeno intervalo de tempo t a percorre um arco s i dado por. s i = v i t
Capítulo 1 Cinemática dos corpos rígidos O movimento de rotação apresenta algumas peculiaridades que precisam ser entendidas. Tem equações horárias, que descrevem o movimento, semelhantes ao movimento
COMPENSAÇÃO CP s(s+2)(s+8) CP1- Dada a FT em malha aberta G(s) = de um sistema com realimentação
CP- CP- Dada a FT em malha aberta G(s) = COMPENSAÇÃO s(s+)(s+8) de um sistema com realimentação negativa unitária, compense esse sistema, utilizando métodos de lugar de raízes, de forma que: a) o sistema
Estabilidade no Domínio da Freqüência
Estabilidade no Domínio da Freqüência 1. Motivação 2. Mapas de contorno no Plano-s 3. Critério de Nyquist pag.1 Controle de Sistemas Lineares Aula 16 Estabilidade no Domínio da Freqüência Como analisar
1:9 2 a PROVA CONTROLE DINÂMICO - 1 /2017
ENE/FT/UnB Departamento de Engenharia Elétrica Prova individual, sem consulta, Faculdade de Tecnologia Só é permitido/necessário calculadora simples, Universidade de Brasília (operações com números complexos)
Teoria dos Sistemas LEEC 2002/2003 Utilização do Matlab
Teoria dos Sistemas LEEC 2002/2003 Utilização do Matlab I Análise de sistema com atraso Considere o sistema realimentado da figura (exercício da aula prática nº 1) e Ts G p onde era indicado que a planta
Método do Lugar das Raízes
Método do Lugar das Raízes Conceito de Lugar das Raízes; O Procedimento do Lugar das Raízes; Projeto de Parâmetros pelo Método do Lugar das Raízes; Sensibilidade e Lugar das Raízes; Controlador de Três
1 Propagação em sistemas rádio móveis
1 Propagação em sistemas rádio móveis Para se chegar a expressões de atenuação de propagação que melhor descrevam as situações reais encontradas, vai-se acrescentando complexidade ao problema inicial (espaço
IV. ESTABILIDADE DE SISTEMAS LIT
INSTITUTO TECNOLÓGICO DE AERONÁUTICA CURSO DE ENGENHARIA MECÂNICA-AERONÁUTICA MPS-43: SISTEMAS DE CONTROLE IV. ESTABILIDADE DE SISTEMAS LIT Prof. Davi Antônio dos Santos ([email protected]) Departamento de
R + b) Determine a função de transferência de malha fechada, Y (s)
FUP IC Teoria do Controlo xercícios Análise de Sistemas ealimentados Teoria do Controlo xercícios Análise de Sistemas ealimentados AS Considere o sistema da figura ao lado: a) Determine a função de transferência
6.1 Controladores Digitais baseados em Controladores Analógicos
UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE SISTEMAS DE CONTROLE II 6 CONTROLADORES DIGITAIS 6.1 Controladores Digitais baseados
Análise e Processamento de Sinal e Imagem. II - Filtros Analógicos e Digitais. António M. Gonçalves Pinheiro
II - Filtros Analógicos e Digitais António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal [email protected] Filtros Analógicos e Digitais 1. Filtros de Sinais Contínuos 2. Diagramas de Bode
Lista de Exercícios 2
Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Elétrica 107484 Controle de Processos 1 o Semestre 2018 Prof. Eduardo Stockler Tognetti Lista de Exercícios 2 Para os exercícios
Métodos de Resposta em Freqüência
Métodos de Resposta em Freqüência. Exemplo de projeto: sistema de controle de uma máquina de inscultura 2. MATLAB 3. Exemplo de Projeto Seqüencial: sistema de leitura de um drive 4. Diagramas de Bode de
B. A. Angelico, P. R. Scalassara, A. N. Vargas, UTFPR, Brasil
Estabilidade Estabilidade é um comportamento desejado em qualquer sistema físico. Sistemas instáveis tem comportamento, na maioria das vezes, imprevisível; por isso é desejável sempre garantirmos a estabilidade
Método de Nyquist. definições propriedades (Teorema de Cauchy) estabilidade Relativa. Margem de Ganho Margem de Fase
Método de Nyquist M O T I V A Ç Ã O F U N Ç Õ E S C O M P L E X A S definições propriedades (Teorema de Cauchy) C A M I N H O D E N Y Q U I S T D I A G R A M A S D E N Y Q U I S T C R I T É R I O D E E
Estrutura geral de um sistema com realimentação unitária negativa, com um compensador (G c (s) em série com a planta G p (s).
2 CONTROLADORES PID Introdução Etrutura geral de um itema com realimentação unitária negativa, com um compenador (G c () em érie com a planta G p (). 2 Controladore PID 2. Acção proporcional (P) G c ()
Projecto de Controladores Digitais por Emulação
Modelação, Identificação e Controlo Digital 2 Modelos em Controlo por Computador 43 Projecto de Controladores Digitais por Emulação C(s) Relógio y(t) A/D y(kh) D(z) Algoritmo u(kh) D/A u(t) Problema: Dado
EA-721 : PRINCÍPIOS DE CONTROLE E SERVOMECANISMO Primeira Lista de Exercícios
EA-721 : PRINCÍPIOS DE CONTROLE E SERVOMECANISMO Primeira Lista de Exercícios José C. Geromel e Rubens H. Korogui Exercício 1 Resolva as equações diferenciais a seguir pelo método dos coeficientes a determinar
Controle de Processos Aula: Estabilidade e Critério de Routh
107484 Controle de Processos Aula: Estabilidade e Critério de Routh Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2016 E. S. Tognetti (UnB)
Controle de Sistemas. O Método do Lugar das Raízes. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas
Controle de Sistemas O Método do Lugar das Raízes Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Introdução No projeto de um sistema de controle, é fundamental se determinar
MATEMÁTICA II. Aula 5. Trigonometria na Circunferência Professor Luciano Nóbrega. 1º Bimestre
1 MATEMÁTICA II Aula 5 Trigonometria na Circunferência Professor Luciano Nóbrega 1º Bimestre 2 ARCOS e ÂNGULOS A medida de um arco é, por definição, a medida do ângulo central correspondente. As unidades
Sistemas de Controle 2
Pontifícia Universidade Católica de Goiás Escola de Engenharia Sistemas de Controle 2 Cap.10 Técnicas de Resposta em Frequência Prof. Dr. Marcos Lajovic Carneiro 10. Técnicas de Resposta de Frequência
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática
Universidade dos Açores Curso de Especialização Tecnológica Gestão da Qualidade Matemática Sinopse: Nesta disciplina são abordados conceitos básicos da teoria dos erros, funções e gráficos, derivadas,
0.1 Conceitos básicos
Analise por resposta em frequencia 0 Conceitos básicos O método de análise por resposta em freqüência, desenvolvido anteriormente ao método do lugar das raízes, data do período de930 a 940 e foi apresentado
Equilíbrio de uma Partícula
Apostila de Resistência dos Materiais I Parte 2 Profª Eliane Alves Pereira Turma: Engenharia Civil Equilíbrio de uma Partícula Condição de Equilíbrio do Ponto Material Um ponto material encontra-se em
Faculdade de Engenharia da UERJ - Departamento de Engenharia Elétrica Controle & Servomecanismo I - Prof.: Paulo Almeida Exercícios Sugeridos
Faculdade de Engenharia da UERJ Departamento de Engenharia Elétrica Controle & Servomecanismo I Prof.: Paulo Almeida Exercícios Sugeridos Estabilidade, Resposta Transitória e Erro Estacionário Exercícios
Departamento de Engenharia Química e de Petróleo UFF. Disciplina: TEQ102- CONTROLE DE PROCESSOS. Diagrama de Bode. Outros Processos de Separação
Departamento de Engenharia Química e de Petróleo UFF Disciplina: TEQ1- CONTROLE DE PROCESSOS custo Diagrama de Bode Outros Processos de Separação Prof a Ninoska Bojorge Informação Papel Bode 1 3 Papel
PROJETO DE CONTROLADORES A PARTIR DO PLANO S. critério Routh-Hurwitz análise de estabilidade análise de desempenho
PROJETO DE CONTROLADORES A PARTIR DO PLANO S critério Routh-Hurwitz análise de estabilidade análise de desempenho Critério Routh-Hurwitz: análise da estabilidade Sistemas de primeira ordem: 1 x o (t)=
