Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Tamanho: px
Começar a partir da página:

Download "Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores"

Transcrição

1 António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal [email protected]

2 Sumário 1. (a) Filtros IIR e FIR (b) Dimensionamento de Filtros FIR (c) Janelas para dimensionamento de filtros FIR (d) Dimensionamento de Filtros IIR (e) Transformada Bilinear

3 Exemplo de Típico de Filtro Analógico implementado com filtro Digital x(t) ADC x[n] Filtro Digital y[n] DAC Filtro de Reconstrução y(t) Filtro Analógico Filtro Passa-Baixo Nota: Na implementação de um filtro digital os dados de entrada e os cálculos internos são todos quantizados em precisão finita, resultando em erros de arredondamento que degradam o funcionamento previsto teoricamente.

4 Filtros Analógicos Caracterizados por respostas impulsivas de duração infinita Equação Diferencial de Coeficientes constantes H a (s) = Y a(s) X a (s) = M d ks k N c ks k N c k d k y(t) dt k = M d k d k x(t) dt k Equação às Diferenças de Coeficientes constantes H d (z) = Y d(z) X d (z) = M b kz k N a kz k N a k y[n k] = M b k x[n k] FIR - Finite Impulse Response Caracterizados por respostas impulsivas de duração finita M a k = 0, com k 1 y[n] = b k x[n k] IIR - Infinite Impulse Response Caracterizados por respostas impulsivas de duração infinita

5 - Propriedades dos Filtros FIR FIR - Finite Impulse Response 1. Têm memória finita, logo qualquer transitório inicial é de duração limitada. 2. São estáveis BIBO, ou seja, no sentido em que uma entada limitada origina uma saída limitada 3. Permitem qualquer resposta em Amplitude desejável, com uma resposta em Fase linear (ou seja, sem distorção de fase)

6 Desenho de a partir de Filtros Analógicos Este procedimento tem as seguintes vantagens: 1. As técnicas de projecto de Filtros analógicos estão bastante desenvolvidas. 2. Alguns métodos de projecto resultam em filtros com fórmulas relativamente simples, originando filtros com desenho simples. 3. Em muitas aplicações existe vantagem em utilizar um Filtro digital que permita simular (em computador) o funcionamento de filtros analógicos

7 Filtros FIR FIR - Finite Impulse Response São filtros digitais de resposta finita finita. Considerando um filtro genérico descrito pela equação as diferenças: N a k y[n k] = resulta no filtro FIR de ordem M + 1: M b k x[n k] a k = 0, com k 1 M y[n] = b k x[n k] em que se considera a 0 = 1 para normalização

8 Filtros FIR Nota: Considerando de forma geral o somatório de convolução E sendo Então h[k] = b k em que M y[n] = h[k]x[n k] M y[n] = b k x[n k] h[n] = M b k δ[n k]

9 Filtros FIR Pode-se provar que um filtro FIR de ordem N tem fase linear se respeitar: h[n] = h[n 1 n] Nesse caso a fase do filtro será dada por: N par h[n] φ H (e jω ) = Ω N 1 2 h[n] N ímpar N-1 n N-1 n N-1 2 N-1 2

10 Filtros FIR Desenho de Filtros FIR a partir de Filtros requerido Truncar a resposta impulsiva do filtro requerido h R [n] multiplicando por uma janela w[n]: h F IR [n] = h R [n] w[n] A janela rectangular é a mais intuitiva, mas apresenta desvantagens devido ao fenómeno de Gibbs: { 1, 0 n N 1 w[n] = 0, c.c.

11 Filtros FIR Janelas de truncatura w[n] Hamming Hanning Bartlett Blackman w[n] = cos w[n] = 1 2 w[n] = w[n] = cos ( ) 2πn, 0 n N 1 N 1 ( ( )) 2πn 1 cos, 0 n N 1 N 1 { 2n/(N 1), 0 n (N 1)/2 2 2n/(N 1), (N 1)/2 n N 1 ( ) ( ) 2πn 4πn cos, 0 n N 1 N 1 N 1

12 Filtros FIR Janelas de truncatura w[n] 1 Rectangular Hamming Hanning Blackman Bartlett 0

13 Filtros FIR b=fir1(m,wc) - dimensiona filtro FIR b - vector com coeficientes do filtro M - ordem do filtro FIR wc - frequência de corte Comando do Matlab Por defeito usa a janela de Hamming. No entanto podem-se usar outras janelas: b=fir1(m,wc,boxcar(m+1)) - usa janela rectangular b=fir1(m,wc,hamming(m+1)) - usa janela de hamming (o mesmo que por defeito)

14 Projecto de Filtros IIR 1. Invariância Impulsiva Consiste em amostrar a respota impulsiva do filtro analógico. 2. Desenho com base na Solução Numérica da Equação diferencial do filtro Analógico 3. Transformada Bilinear Solução numérica alternativa à aproximação das derivadas por uma equação às diferenças

15 Projecto de Filtro IIR - Invariância Temporal Amostragem da resposta impulsiva do Filtro Analógico a digitalizar: As transformadas neste caso levam: h[n] = h a (nt a ) H(z) Z=e sta = 1 T a + k= ( H a s + j 2π ) k T a Polos mapeados com: Re{s} 0 e Im{s} π/t a são mapeados no interior do círculo unitário, z 1 Im{s} π/ta 1 Im{z} Re{s} π/ta 1 Re{z}

16 Projecto de Filtro IIR - Invariância Temporal Resposta em frequência do filtro digital e do filtro analógico relacionam-se por: H(e jω ) = 1 + ( H a jω + j 2π ) k T a T a k= Considerando o teorema de amostragem: Se H a (jω) = 0 para ω π/t a, então H ( e jω) = 1 T a H a (j(ω/t )), Ω π H(jω/Τa) H(e jω) 0 ω π 0 π Ω

17 Projecto de Filtro IIR - Desenho com base na Solução Numérica da Equação diferencial do filtro Analógico Sendo y[n] = y a (nt a ) pode-se definir: primeira derivada como: dy a dt 1 {y[n]} = y[n] y[n 1] T a k-esima derivada como: dk y a dt k k {y[n]} = 1 { k 1 {y[n]} } Isto origina a seguinte transformada: s = 1 z 1 1 z = T a 1 st a Nota: Este procedimento é altamente insatisfatório para filtros que não sejam filtros passa-baixo. Mapamento Im{s} a Re{s} 1 Im{z} 1 Re{z}

18 Projecto de Filtro IIR - Transformada Bilinear Resolução numérica alternativa - Integra-se a equação diferencial e a aproximação numérica é calculada para o integral Resulta em: s = 2 1 z 1 z = 1 + (T a/2)s T a 1 + z 1 1 (T a /2)s Em termos de frequência discreta (Ω) e contínua (ω): ( ) ωta Ω = 2 arctan 2 π Mapamento Im{s} a 1 Im{z} 0 Re{s} 1 Re{z} -π 0

19 Projecto de Filtro IIR - Transformada Bilinear Tem as seguintes propriedades que a fazem ser a preferida: Origina Estáveis a partir de Filtros Contínuos Estáveis. Mapeia o eixo imaginário do plano s no círculo unitário do plano z (isto evita efeito de Aliasing ). Como desvantagem apresenta uma distorção no eixo da frequência.

20 Transformações de um filtro digital passa-baixo com frequências de corte θ p Tipo Filtro Frequência Transformação Fórmulas de Desenho Associado PASSA BAIXO PASSA ALTO PASSA BANDA REJEITA BANDA Ω p Ω p Ω 1, Ω 2 Ω 1, Ω 2 z 1 z 1 α α = sen ((θ p Ω p )/2) 1 αz 1 sen ((θ p + Ω p )/2) z 1 z 1 + α α = cos ((Ω p + θ p )/2) 1 + αz 1 cos ((Ω p θ p )/2) k+1 z 1 + k 1 k+1 k 1 k+1 z 2 2αk z 1 z 2 2αk z 1 z 2 2αk k+1 z k+1 z k 1+k 1 k 1+k z 2 2αk k+1 z α = cos ((Ω 2 + Ω 1 )/2) cos ((Ω 2 Ω 1 )/2) ( ) Ω2 Ω 1 k = cotg tg θ p 2 2 α = cos ((Ω 2 + Ω 1 )/2) cos ((Ω 2 Ω 1 )/2) ( ) Ω2 Ω 1 k = cotg tg θ p 2 2

Análise e Processamento de Sinal e Imagem. II - Filtros Analógicos e Digitais. António M. Gonçalves Pinheiro

Análise e Processamento de Sinal e Imagem. II - Filtros Analógicos e Digitais. António M. Gonçalves Pinheiro II - Filtros Analógicos e Digitais António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal [email protected] Filtros Analógicos e Digitais 1. Filtros de Sinais Contínuos 2. Diagramas de Bode

Leia mais

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir:

O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: Sistemas e Sinais O processo de filtragem de sinais pode ser realizado digitalmente, na forma esquematizada pelo diagrama apresentado a seguir: 1 Sistemas e Sinais O bloco conversor A/D converte o sinal

Leia mais

Técnicas de Desenho de Filtros Digitais

Técnicas de Desenho de Filtros Digitais Técnicas de Desenho de Filtros Digitais Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Técnicas de Desenho de Filtros Digitais p1/38 Resumo Desenho de filtros discretos com base em filtros

Leia mais

Disciplina: Processamento Digital de Sinais Aula 03 - Filtros Digitais

Disciplina: Processamento Digital de Sinais Aula 03 - Filtros Digitais Disciplina: Processamento Digital de Sinais Aula 03 - Prof. ([email protected]) Departamento de Engenharia Elétrica Universidade Federal da Bahia Conteúdo 1 2 3 são sistemas lineares invariantes no

Leia mais

Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais

Processamento (Digital) de Sinal. Caderno de exercícios para as horas não presenciais Caderno de exercícios para as horas não presenciais João Paulo Teixeira ESTiG, 014 Capítulo 1 Sinais 1. Considere o Considere o seguinte sinal contínuo: x(t) 1-1 0 1 3 t a. Represente y1(t)=x(t+1). b.

Leia mais

Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva

Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva Filtros Digitais FIR (Finite Impulse Response) Prof. Juan Mauricio Villanueva [email protected] www.cear.ufpb.br/juan 1 Filtros FIR (Finite Impulse Response) Para um sistema FIR de ordem M Com função

Leia mais

Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota

Revisão Análise em frequência e amostragem de sinais. Hilton de Oliveira Mota Revisão Análise em frequência e amostragem de sinais Hilton de Oliveira Mota Introdução Análise em frequência (análise espectral): Descrição de quais frequências compõem um sinal. Por quê? Senóides são

Leia mais

Capítulo 6 Filtragem, Amostragem e Reconstrução

Capítulo 6 Filtragem, Amostragem e Reconstrução Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais Capítulo 6 Filtragem, Amostragem e Reconstrução 6. Filtragem 6.2 Amostragem e reconstrução de sinais

Leia mais

ESTUDO DE UM CIRCUITO RC COMO FILTRO

ESTUDO DE UM CIRCUITO RC COMO FILTRO Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T6 Física Experimental I - 2007/08 ESTUDO DE UM CIRCUITO RC COMO FILTRO 1. Objectivo Estudo do funcionamento, em regime estacionário,

Leia mais

CAPÍTULO 2 AMOSTRAGEM DE SINAIS CONTÍNUOS 2.1 CONVERSORES ANALÓGICO-DIGITAL E DIGITAL-ANALÓGICO

CAPÍTULO 2 AMOSTRAGEM DE SINAIS CONTÍNUOS 2.1 CONVERSORES ANALÓGICO-DIGITAL E DIGITAL-ANALÓGICO 17 Prof. César Janeczko (2º semestre de 2014) CAPÍTULO 2 AMOSTRAGEM DE SINAIS CONTÍNUOS 2.1 CONVERSORES ANALÓGICO-DIGITAL E DIGITAL-ANALÓGICO Muitos dos sinais diretamente encontrados na ciência e engenharia

Leia mais

A Transformada de Fourier e Suas Aplicações

A Transformada de Fourier e Suas Aplicações Ciclo de Seminários Técnicos A Transformada de Fourier e Suas Aplicações Joseana Macêdo Fechine Grupo PET Computação DSC/CEEI/UFCG Agenda Motivação Transformada de Fourier: Breve Histórico Conceitos Básicos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2015-2 a Fase Prova Escrita de MATEMÁTICA A - o Ano 205-2 a Fase Proposta de resolução GRUPO I. O valor médio da variável aleatória X é: µ a + 2 2a + 0, Como, numa distribuição de probabilidades de uma variável aleatória,

Leia mais

Projeto básico de controladores

Projeto básico de controladores Projeto básico de controladores l l l l Definição das margens Diagramas de Bode Diagramas de Nyquist Exemplos de projetos Margem de ganho Conhecido o máximo ganho (K m ) que assegure a estabilidade para

Leia mais

Transformada de Fourier Discreta (DFT)

Transformada de Fourier Discreta (DFT) UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Transformada de Fourier Discreta (DFT) Prof. Juan Moises Mauricio Villanueva [email protected] 1 Transformada de Fourier

Leia mais

Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015

Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 Curso de Engenharia Elétrica Processamento Digital de Sinais II Exercícios sobre filtros não recursivos Data de entrega: 17/11/2015 1) Projete um filtro FIR passa baixas de 3 etapas com frequência de corte

Leia mais

Técnicas de Projeto de Filtros

Técnicas de Projeto de Filtros Técnicas de Projeto de Filtros Carlos Alexandre Mello Técnicas de Projeto de Filtros O projeto de um filtro tem três passos: Especificações Determinada pela aplicação Aproximações Projeto do filtro especificamente

Leia mais

Semana 7 Resolução de Sistemas Lineares

Semana 7 Resolução de Sistemas Lineares 1 CÁLCULO NUMÉRICO Semana 7 Resolução de Sistemas Lineares Professor Luciano Nóbrega UNIDADE 1 2 INTRODUÇÃO Considere o problema de determinar as componentes horizontais e verticais das forças que atuam

Leia mais

Sinais e Sistemas - ESP208

Sinais e Sistemas - ESP208 Sinais e Sistemas - ESP208 Mestrado Profissional em Engenharia de Sistemas e Produtos Filtros Digitais FIR e IIR Fabrício Simões IFBA 01 de novembro de 2017 Fabrício Simões (IFBA) Sinais e Sistemas - ESP208

Leia mais

Introdução a filtros digitais. Theo Pavan e Adilton Carneiro TAPS

Introdução a filtros digitais. Theo Pavan e Adilton Carneiro TAPS Introdução a filtros digitais Theo Pavan e Adilton Carneiro TAPS Filtro anti-aliasing Com um sinal já digitalizado não é possível distinguir entre uma frequência alias e uma frequência que realmente esteja

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano 2011-2 a Fase Prova Escrita de MATEMÁTICA A - 1o Ano 011 - a Fase Proposta de resolução GRUPO I 1. Como no lote existem em total de 30 caixas, ao selecionar 4, podemos obter um conjunto de 30 C 4 amostras diferentes,

Leia mais

. B(x 2, y 2 ). A(x 1, y 1 )

. B(x 2, y 2 ). A(x 1, y 1 ) Estudo da Reta no R 2 Condição de alinhamento de três pontos: Sabemos que por dois pontos distintos passa uma única reta, ou seja, dados A(x 1, y 1 ) e B(x 2, y 2 ), eles estão sempre alinhados. y. B(x

Leia mais

ANÁLISE DE SISTEMAS CONTÍNUOS AMOSTRADOS

ANÁLISE DE SISTEMAS CONTÍNUOS AMOSTRADOS MINISÉRIO DA EDUCAÇÃO E DO DESPORO CENRO FEDERAL DE EDUCAÇÃO ECNOLÓGICA DO PARANÁ DEPARAMENO ACADÊMICO DE ELERÔNICA ANÁLISE DE SISEMAS CONÍNUOS AMOSRADOS A grande maioria dos processos físicos é analógico.

Leia mais

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas

3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/ de Junho de Respostas 3 o Teste (1 a data) Sistemas e Sinais (LEIC-TP) 2008/2009 12 de Junho de 2009 Respostas i Problema 1. (0,75v) Considere o sinal ( n n, x(n)=cos 8 4) +π Assinale a afirmação correcta x(n) é um sinal periódico

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial I Funções Racionais e com Radicais Taxa de Variação e Derivada TPC nº 6 (entregar no dia 14 01

Leia mais

Sistemas Digitais II. Interface com o mundo analógico. Prof. Marlon Henrique Teixeira Abril/2014

Sistemas Digitais II. Interface com o mundo analógico. Prof. Marlon Henrique Teixeira Abril/2014 Sistemas Digitais II Interface com o mundo analógico Prof. Marlon Henrique Teixeira Abril/2014 Objetivos Compreender a teoria de funcionamento e as limitações dos circuitos de diversos tipos de conversores

Leia mais

Processamento de sinais digitais

Processamento de sinais digitais Processamento de sinais digitais Aula 1: Filtros digitais [email protected] Tópicos Definição de um filtro digital Anatomia de um filtro digital Descrição no domínio da frequência de sinais e sistemas

Leia mais

Filtros Digitais 1 FILTROS DIGITAIS (5.1) y = A. x B. y. onde A = C / D e B = D / D

Filtros Digitais 1 FILTROS DIGITAIS (5.1) y = A. x B. y. onde A = C / D e B = D / D Filtros Digitais FILTROS DIGITAIS Um filtro digital é um sistema temporal discreto projetado para passar o conteúdo espectral de um sinal de entrada em uma determinada banda de freqüências [DEF 88],isto

Leia mais

Processamento (Digital) de Sinal. Caderno de exercícios para as aulas

Processamento (Digital) de Sinal. Caderno de exercícios para as aulas Caderno de exercícios para as aulas João Paulo Teixeira ESTiG, 04 Processamento (Digital) de Sinal ESTiG - IPB Exercícios Matlab. Identificar no ambiente Matlab o Command Window, o Workspace, o Current

Leia mais

Teste Tipo. Sinais e Sistemas (LERCI) 2004/2005. Outubro de Respostas

Teste Tipo. Sinais e Sistemas (LERCI) 2004/2005. Outubro de Respostas Teste Tipo Sinais e Sistemas (LERCI) 2004/2005 Outubro de 2004 Respostas i Problema. Considere o seguinte integral: + 0 δ(t π/4) cos(t)dt em que t e δ(t) é a função delta de Dirac. O integral vale: 2/2

Leia mais

Avaliação e Desempenho Aula 1 - Simulação

Avaliação e Desempenho Aula 1 - Simulação Avaliação e Desempenho Aula 1 - Simulação Introdução à simulação Geração de números aleatórios Lei dos grandes números Geração de variáveis aleatórias O Ciclo de Modelagem Sistema real Criação do Modelo

Leia mais

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012)

I-6 Sistemas e Resposta em Frequência. Comunicações (6 de Dezembro de 2012) I-6 Sistemas e Resposta em Frequência (6 de Dezembro de 2012) Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de

Leia mais

Funções reais de variável real

Funções reais de variável real Funções reais de variável real Função exponencial e função logarítmica 1. Determine a base de cada logaritmo. log a 36 = 2 (b) log a (25a) = 5 (c) log a 4 = 0.4 2. Considere x = log 10 2 e y = log 10 3.

Leia mais

Comparação de filtros IIR e FIR

Comparação de filtros IIR e FIR Comparação de filtros IIR e FIR Rodrigo Farias/Humberto José de Sousa [email protected]/[email protected] Resumo: Este documento apresenta um comparativo de alguns filtros IIR e FIR. Este comparativo

Leia mais

Processamento de Sinal e Ôndulas. Mestrado em Matemática e Computação. Colectânea de Exercícios (com a utilizaçao do Mathematica)

Processamento de Sinal e Ôndulas. Mestrado em Matemática e Computação. Colectânea de Exercícios (com a utilizaçao do Mathematica) Processamento de Sinal e Ôndulas Mestrado em Matemática e Computação Colectânea de Exercícios (com a utilizaçao do Mathematica) Maria Joana Soares MMC processamento de sinal e ôndulas 2010/2011 departamento

Leia mais

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace

Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Análise de Sistemas em Tempo Contínuo usando a Transformada de Laplace Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do

Leia mais

Filtros Digitais: Estudo, Projeto e Simulação

Filtros Digitais: Estudo, Projeto e Simulação Filtros Digitais: Estudo, Projeto e Simulação Fabrício Simões IFBA 27 de outubro de 2015 Fabrício Simões (IFBA) Filtros Digitais: Estudo, Projeto e Simulação 27 de outubro de 2015 1 / 69 1 Filtragem Digital

Leia mais

Projeto de Filtros Não-Recursivos (FIR)

Projeto de Filtros Não-Recursivos (FIR) p.1/81 Projeto de Filtros Não-Recursivos (FIR) Eduardo Mendes [email protected] Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte,

Leia mais

Filtros IIR. 27 de outubro de 2015 IFBA. Fabrício Simões (IFBA) Filtros IIR 27 de outubro de / 49

Filtros IIR. 27 de outubro de 2015 IFBA. Fabrício Simões (IFBA) Filtros IIR 27 de outubro de / 49 Filtros IIR Fabrício Simões IFBA 27 de outubro de 2015 Fabrício Simões (IFBA) Filtros IIR 27 de outubro de 2015 1 / 49 1 Filtragem Digital 2 Filtro IIR Filtros de Primeira Ordem Filtros de Segunda Ordem

Leia mais

I-6 Sistemas e Resposta em Frequência

I-6 Sistemas e Resposta em Frequência I-6 Sistemas e Resposta em Frequência Comunicações 1 Sumário 1. A função especial delta-dirac 2. Sistemas 3. Resposta impulsional e resposta em frequência 4. Tipos de filtragem 5. Associação de sistemas

Leia mais

Introdução a aquisição e processamento de sinais

Introdução a aquisição e processamento de sinais TAPS Introdução a aquisição e processamento de sinais Prof. Theo Z. Pavan Departamento de Física - Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-USP Roteiro Aquisição de sinais e frequência

Leia mais

Filtro FIR. Processamento Digital de Sinais - ENG de julho de 2016 IFBA. Fabrício Simões (IFBA) Filtro FIR 22 de julho de / 30

Filtro FIR. Processamento Digital de Sinais - ENG de julho de 2016 IFBA. Fabrício Simões (IFBA) Filtro FIR 22 de julho de / 30 Filtro FIR Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Filtro FIR 22 de julho de 2016 1 / 30 1 Método de Projeto Usando Janelas 2 Tipos de Filtros

Leia mais

Análise no Domínio do Tempo de Sistemas em Tempo Discreto

Análise no Domínio do Tempo de Sistemas em Tempo Discreto Análise no Domínio do Tempo de Sistemas em Tempo Discreto Edmar José do Nascimento (Análise de Sinais e Sistemas) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco

Leia mais

Análise de Sistemas de Controle no Espaço de Estados

Análise de Sistemas de Controle no Espaço de Estados Análise de Sistemas de Controle no Espaço de Estados 9.1 INTRODUÇÃO* (Capítulo 11 do Ogata) Um sistema moderno complexo pode ter muitas entradas e muitas saídas e elas podem ser interrelacionadas de maneira

Leia mais

Processamento de Sinal

Processamento de Sinal APSI - Processamento de Sinal Processamento de Sinal Conceitos, Métodos e Aplicações Texto Tutorial da Disciplina: APSI - LEEC J.P. Marques de Sá [email protected] Faculdade de Engenharia da Universidade do

Leia mais

Processamento Digital de Sinais. Notas de Aula. Estruturas para Sistemas de Tempo. Estruturas para Sistemas de Tempo Discreto. Implementação de SLIT:

Processamento Digital de Sinais. Notas de Aula. Estruturas para Sistemas de Tempo. Estruturas para Sistemas de Tempo Discreto. Implementação de SLIT: Estruturas para Sistemas de Tempo Discreto Estruturas para Sistemas de Tempo Discreto 2 Estruturas para Sistemas de Tempo Discreto Processamento Digital de Sinais Notas de Aula Estruturas para Sistemas

Leia mais

Transformações Conformes

Transformações Conformes META: Introduzir o conceito de transformações conforme. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Definir transformações conformes e exemplificar transformações conformes. PRÉ-REQUISITOS

Leia mais

i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S.

i) Filtragem ii) Amostragem e reconstituição cuja Transformada de Fourier (TF) é dada na Figura seguinte e que constitui a entrada de um SLIT S. 6ª Aula Prática de Sistemas e Sinais (LEIC Alameda) Sumário: i) Filtragem ii) Amostragem e reconstituição Exercícios Propostos Exercício 1: Considere o sinal x (t) cuja Transformada de Fourier (TF) é dada

Leia mais

PROJETO E ANÁLISE DO DESEMPENHO DOS FILTROS IIR POR MEIO DA TÉCNICA DE INVARIÂNCIA AO IMPULSO E TRANSFORMAÇÃO BILINEAR

PROJETO E ANÁLISE DO DESEMPENHO DOS FILTROS IIR POR MEIO DA TÉCNICA DE INVARIÂNCIA AO IMPULSO E TRANSFORMAÇÃO BILINEAR PROJETO E ANÁLISE DO DESEMPENHO DOS FILTROS IIR POR MEIO DA TÉCNICA DE INVARIÂNCIA AO IMPULSO E TRANSFORMAÇÃO BILINEAR Elder Eldervitch C. de OLIVEIRA (1); Adaildo Gomes D ASSUNÇÃO (2); Ronaldo A. MARTINS

Leia mais

Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado);

Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado); Filtros Digitais Filtros Digitais Um filtro digital é uma implementação de um filtro através de operações matemáticas aplicadas em um sinal amostrado (e quantizado); São usados para dois propósitos básicos:

Leia mais

Filtro FIR: Estudo, Projeto e Simulação

Filtro FIR: Estudo, Projeto e Simulação Filtro FIR : Características Projeto de um Filtro FIR 1/38 Filtro FIR: Estudo, Projeto e Simulação Fabrício Simões IFBA 28 de Novembro de 2011 Filtro FIR : Características Projeto de um Filtro FIR 2/38

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Estruturas de Sistemas Discretos

Estruturas de Sistemas Discretos Estruturas de Sistemas Discretos Luís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Estruturas de Sistemas Discretos p1/43 Resumo Representações gráficas das equações às diferenças Estruturas

Leia mais

- Cálculo 1 - Limites -

- Cálculo 1 - Limites - - Cálculo - Limites -. Calcule, se eistirem, os seguintes ites: (a) ( 3 3); (b) 4 8; 3 + + 3 (c) + 5 (d) 3 (e) 3. Faça o esboço do gráfico de f() = entre 4 f() e f(4)? 3. Seja f a função definida por f()

Leia mais

Amostragem de Sinais

Amostragem de Sinais UNIVERSIDADE FEDERAL DA PARAÍBA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Amostragem de Sinais Prof. Juan Moises Mauricio Villanueva [email protected] 1 Amostragem (Sampling) Para um sinal

Leia mais

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema

Resumo. Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier. Objectivo. Função Própria de um Sistema Resumo Sinais e Sistemas Representação de Sinais Periódicos em Séries de Fourier [email protected] Instituto Superior Técnico Resposta de SLITs a exponenciais complexas Série de Fourier de sinais contínuos

Leia mais

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Série de Fourier. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas Série de Fourier Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Lembremos da resposta de um sistema LTI discreto a uma exponencial complexa: x[ n] z,

Leia mais

Sinais e Sistemas - Lista 3

Sinais e Sistemas - Lista 3 UNIVERSIDADE DE BRASÍLIA, FACULDADE GAMA Sinais e Sistemas - Lista 3 7 de novembro de 0. Calcule a Transformada de Fourier dos seguintes sinais: a) x[n] = ( n ) u[n ] b) x[n] = ( ) n c) x[n] = u[n ] u[n

Leia mais

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π

y dx + (x 1) dy (a) Primeiramente encontremos uma parametrização para a curva m = (8 + 8 cos t)(2)dt = 16π + 16sen t = 16π MAT 2455 álculo Diferencial e Integral para Engenharia III Prova 2 14/5/213 Turma A Questão 1. a) 1, ponto) Um o tem o formato da curva {x, y) R 2 : x 2) 2 + y 2 = 4, y }. Se sua densidade de massa é dada

Leia mais

Modelos Matemáticos de Sistemas

Modelos Matemáticos de Sistemas Modelos Matemáticos de Sistemas Introdução; Equações Diferenciais de Sistemas Físicos; Aproximações Lineares de Sistemas Físicos; Transformada de Laplace; Função de Transferência de Sistemas Lineares;

Leia mais

Sinais, sistemas, e processamento de sinais; Classificação de sinais; O conceito de freqüência em sinais de tempo contínuo e discreto

Sinais, sistemas, e processamento de sinais; Classificação de sinais; O conceito de freqüência em sinais de tempo contínuo e discreto Sinais, sistemas, e processamento de sinais; Classificação de sinais; O conceito de freqüência em sinais de tempo contínuo e discreto Sinais, sistemas, e processamento de sinais U sinal é definido como

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 24 de setembro de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 24 de setembro de 2016 1 / 19 1 Transformada Z - Conceito

Leia mais

Conceitos Básicos Análise Espectral Geração de FM Demodulação de FM Extras. Modulação em Ângulo

Conceitos Básicos Análise Espectral Geração de FM Demodulação de FM Extras. Modulação em Ângulo Modulação em Ângulo Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Roteiro 1 Conceitos Básicos 2 Análise

Leia mais

Aula 6 PS Prof. César Janeczko. Filtros Digitais

Aula 6 PS Prof. César Janeczko. Filtros Digitais Aula 6 PS Prof. César Janeczko Filtros Digitais Filtros digitais são usados em geral para dois propósitos: 1 o separação de sinais que foram combinados, por exemplo, modulados; 2 o restauração de sinais

Leia mais

A Transformada de Fourier

A Transformada de Fourier Capítulo 5 A Transformada de Fourier 5.. Introdução A transformada de Fourier permite analisar de forma adequada funções não periódicas. A transformada de Fourier compete em algumas aplicações com a transformada

Leia mais

Tópicos de Física Moderna Engenharia Informática

Tópicos de Física Moderna Engenharia Informática EXAME - ÉPOCA NORMAL 7 de Junho de 007 1. Indique, de entre as afirmações seguintes, as que são verdadeiras e as que são falsas. a) A grandeza T na expressão cinética mv T = é o período de oscilações.

Leia mais

DESENVOLVIMENTO DE UM SISTEMA DE MEDIDAS EM TEMPO REAL DE TENSÃO, CORRENTE, POTÊNCIA E ENERGIA CONECTADO À PORTA PARALELA DO COMPUTADOR

DESENVOLVIMENTO DE UM SISTEMA DE MEDIDAS EM TEMPO REAL DE TENSÃO, CORRENTE, POTÊNCIA E ENERGIA CONECTADO À PORTA PARALELA DO COMPUTADOR UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA ELÉTRICA E DE PRODUÇÃO PROJETO DE MONOGRAFIA DESENVOLVIMENTO DE UM SISTEMA DE MEDIDAS EM TEMPO REAL DE

Leia mais

Processamento Digital de Sinais. Notas de Aula. Filtros Digitais Tipo FIR. Filtros Digitais Tipo FIR. Resposta ao impulso com duração finita

Processamento Digital de Sinais. Notas de Aula. Filtros Digitais Tipo FIR. Filtros Digitais Tipo FIR. Resposta ao impulso com duração finita Filtros Digitais tipo FIR Filtros Digitais tipo FIR Filtros Digitais Tipo FIR Processamento Digital de Sinais Notas de Aula Filtros Digitais Tipo FIR Resposta ao impulso com duração finita Função de transferência

Leia mais

Projeto de Filtros IIR. Transformações de Funções de Transferências Analógicas para Digitais e Transformações Espectrais

Projeto de Filtros IIR. Transformações de Funções de Transferências Analógicas para Digitais e Transformações Espectrais Projeto de Filtros IIR Transformações de Funções de Transferências Analógicas para Digitais e Transformações Espectrais Introdução Métodos mais usados para obtenção de funções de transferência de filtros

Leia mais

I-2 Sinais: classificação propriedades, operações

I-2 Sinais: classificação propriedades, operações I-2 Sinais: classificação propriedades, operações (30 de Setembro de 2013) 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso rectangular e sinc A onda quadrada e a sinusóide

Leia mais

Análise de Sistemas LTI através das transformadas

Análise de Sistemas LTI através das transformadas Análise de Sistemas LTI através das transformadas Luis Henrique Assumpção Lolis 23 de setembro de 2013 Luis Henrique Assumpção Lolis Análise de Sistemas LTI através das transformadas 1 Conteúdo 1 Resposta

Leia mais

Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira

Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira Módulo 3 Teoria da Amostragem Sistemas Multimédia Ana Tomé José Vieira Departamento de Electrónica, Telecomunicações e Informática Universidade de Aveiro 1 Sumário Noção de filtro Conversão A/D Amostragem

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS PLANIFICAÇÃO ANUAL. Ano letivo 2014 / 2015

ESCOLA SECUNDÁRIA DE CALDAS DAS TAIPAS PLANIFICAÇÃO ANUAL. Ano letivo 2014 / 2015 PLANIFICAÇÃO ANUAL MATEMÁTICA A 10º ANO Ano letivo 01 / 015 Gorete Branco, José Temporão, M.ª Arminda Machado, Paula Gomes, Teresa Clain GESTÃO DO TEMPO 1.º PERÍODO INICIO: 15 / 09 / 01 FIM: 16 /1 / 01

Leia mais

Resposta em Frequência de Sistemas LTI

Resposta em Frequência de Sistemas LTI Resposta em Frequência de Sistemas LTI Vimos que a resposta y(n) de um sistema LTI em estado zero é dada pela convolução linear do sinal de entrada x(n) com a sua resposta ao impulso h(n). Em particular,

Leia mais

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como.

TRANSFORMADA Z. A transformada Z de um sinal x(n) é definida como a série de potências: Onde z é uma variável complexa e pode ser indicada como. TRANSFORMADA Z A transformada Z (TZ) tem o mesmo papel, para a análise de sinais e sistemas discretos LTI, que a transformada de Laplace na análise de sinais e sistemas nos sistemas contínuos do mesmo

Leia mais

Filtros Digitais Aplicados em Sinais de Áudio

Filtros Digitais Aplicados em Sinais de Áudio Marco Aurélio Gonçalves da Silva Filtros Digitais Aplicados em Sinais de Áudio Orientador: Augusto Santiago Cerqueira Co-orientador: Marcelo Bernardes Vieira Universidade Federal de Juiz de Fora Instituto

Leia mais

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS()

FUNÇÕES MATEMÁTICAS NÚMERO : PI() SENO E COSSENO: SEN() E COS() FUNÇÕES MATEMÁTICAS FUNÇÕES MATEMÁTICAS O Excel possui uma série de funções matemáticas em sua biblioteca. Para utilizar uma função, sempre devem ser utilizados os parêntesis, mesmo que estes fiquem vazios.

Leia mais

Análise de Sinais e Sistemas

Análise de Sinais e Sistemas Universidade Federal da Paraíba Departamento de Engenharia Elétrica Análise de Sinais e Sistemas Luciana Ribeiro Veloso [email protected] ANÁLISE DE SINAIS E SISTEMAS Ementa: Sinais contínuos

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial Resumo Sinais e Sistemas Transformada de aplace uís Caldas de Oliveira lco@istutlpt Instituto Superior Técnico Definição da transformada de aplace Região de convergência Propriedades da transformada de

Leia mais

Análise de Regressão. Notas de Aula

Análise de Regressão. Notas de Aula Análise de Regressão Notas de Aula 2 Modelos de Regressão Modelos de regressão são modelos matemáticos que relacionam o comportamento de uma variável Y com outra X. Quando a função f que relaciona duas

Leia mais

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES

CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES CAP. II RESOLUÇÃO NUMÉRICA DE EQUAÇÕES NÃO LINEARES Vamos estudar alguns métodos numéricos para resolver: Equações algébricas (polinómios) não lineares; Equações transcendentais equações que envolvem funções

Leia mais

Processamento Digital de Sinais - ENG420

Processamento Digital de Sinais - ENG420 Processamento Digital de Sinais - ENG420 Fabrício Simões IFBA 22 de julho de 2016 Fabrício Simões (IFBA) Processamento Digital de Sinais - ENG420 22 de julho de 2016 1 / 46 Fabrício Simões (IFBA) Processamento

Leia mais

4 Funções de Transferência de Sistemas em Tempo Discreto

4 Funções de Transferência de Sistemas em Tempo Discreto Rio de Janeiro, 22 de agosto de 2017. 1 a Lista de Exercícios de Controle por Computador Tópicos: Sinais e sistemas em tempo discreto, equações a diferenças, transformada z e funções de transferência.

Leia mais

I-2 Sinais: classificação, propriedades e operações

I-2 Sinais: classificação, propriedades e operações I-2 Sinais: classificação, propriedades e operações Comunicações ISEL - ADEETC - Comunicações 1 Sumário 1. Sinais contínuos e discretos 2. Sinais não periódicos e periódicos Pulso retangular e sinc A onda

Leia mais

TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier

TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier TRANSFORMADA DE FOURIER EM TEMPO DISCRETO (DTFT) E TRANSFORMADA DISCRETA DE FOURIER (DFT) Larissa Driemeier LIVRO TEXTO Essa aula é baseada nos livros: [1] [2] INTRODUCTION TO Signal Processing Sophocles

Leia mais

Filtros Digitais Tipo FIR

Filtros Digitais Tipo FIR Filtros Digitais tipo FIR Processamento Digital de Sinais Notas de Aula Filtros Digitais Tipo FIR Ricardo Tokio Higuti Departamento de Engenharia Elétrica - FEIS - Unesp Observação: Estas notas de aula

Leia mais

Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito

Teoria das Comunicações Prof. André Noll Barreto Prova 1 Gabarito Prova Gabarito Questão (4 pontos) Um pulso é descrito por: g t = t e t / u t u t, a) Esboce o pulso. Este é um sinal de energia ou de potência? Qual sua energia/potência? (,7 ponto) b) Dado um trem periódico

Leia mais

A. Equações não lineares

A. Equações não lineares A. Equações não lineares 1. Localização de raízes. a) Verifique se as equações seguintes têm pelo menos uma solução nos intervalos dados: i) (x - 2) 2 ln(x) = 0, em [1, 2] e [e, 4]. ii) 2 x cos(x) (x 2)

Leia mais