Margarida Uva Nunes Silva Agrupamento de Escolas de Pinhal de Frades PROFMAT Lisboa

Tamanho: px
Começar a partir da página:

Download "Margarida Uva Nunes Silva margaridasilvaani@gmail.com. Agrupamento de Escolas de Pinhal de Frades PROFMAT 2011 - Lisboa"

Transcrição

1 Margarida Uva Nunes Silva Agrupamento de Escolas de Pinhal de Frades PROFMAT - Lisboa

2 Tábua da multiplicação 2

3 Tábua da multiplicação Uma visão geométrica 3

4 I. Construção da tabuada geométrica Um encontro com elementos geométricos 4

5 Construindo (1) Desenhar e pintar um quadrado de lado 1 com um lápis de cor; Sucessivamente, a partir do vértice inferior direito do quadrado anterior, desenhar e pintar sempre com a cor escolhida quadrados de lado 2, 3, 4,. Com a folha quadriculada na horizontal, e começando no ponto A: 5

6 Construindo (2) Com um lápis de carvão, traçar rectas sobre os lados dos quadrados, quer na horizontal, quer na vertical. 6

7 Construindo (3) Pintar as figuras geometricamente iguais ou congruentes utilizando lápis da mesma cor. 7

8 Construindo (4) Escrever o número das linhas e das colunas; Escrever nos rectângulos o produto que representa o número de quadrículas. 8

9 Construída pelos alunos Tabuada Geométrica 9

10 Realizada no computador Tabuada Geométrica 10

11 II. Regularidades no padrão geométrico da tabuada Uma perspectiva algébrica 11

12 Que figuras geométricas se encontram no padrão? Por que podemos considerar um padrão? O que acontece às figuras ao longo das linhas e das colunas? Qual a particularidade dos produtos das figuras da diagonal? Que números especiais temos aí? Onde se situam as figuras congruentes? Onde se encontram as figuras de lado 1? E os números primos? Pistas 12

13 Pistas Todas as figuras equivalentes são congruentes? Exemplifica! Indica os produtos das figuras de área 12. Que números são os das linhas e das colunas? Indica duas figuras justapostas (ligadas por um dos lados). Qual é a área do rectângulo composto pelas duas figuras? 13

14 Regularidades Todo o padrão é composto por figuras geométricas que são rectângulos; o quadrado é um rectângulo especial em que a medida do comprimento e da largura é a mesma; As medidas: largura e comprimento do quadrado estão representadas pela número das linhas e das colunas; o seu produto representa a área do rectângulo; Quando o rectângulo é quadrado, a área representada pelo produto de factores iguais pode ser representada na forma de uma potência de expoente 2; Os quadrados estão situados na diagonal esquerda; a sua área representada por potências de expoente 2 são os números quadrados, ou quadrados perfeitos; O padrão tem um eixo de reflexão sobre a diagonal sendo por isso, as figuras simétricas em relação ao eixo (dobrar o papel pela diagonal dos quadrados e pôr à janela ) 14

15 Regularidades As figuras congruentes estão pintadas da mesma cor; As áreas dos rectângulos representadas por números primos encontram-se na linha 1 ou coluna 1; Figuras com a mesma área podem ser congruentes ou não: há sempre um par de figuras congruentes; Os números primos têm um e um só par de figuras equivalentes e essas figuras são congruentes; Um número não primo, pode ser representado por figuras equivalentes que não são congruentes; Os números das linhas e das colunas são divisores dos números representados pelas áreas. 15

16 III. Potencialidades A tabuada geométrica como um modelo para pensar 16

17 Modelo para pensar Depois de construída a tabuada geométrica ela pode ser desconstruída ; Os rectângulos desconstruídos ajudam a pensar em situações diversas em que possam ser feitas conexões com as áreas; Permite trabalhar bem a propriedade distributiva associada ao conceito de área (Modelo de área de Van Hiele); Permite trabalhar o conceito de área composta; Ajuda a compreender a composição e decomposição dos números em parcelas e em factores; Ajuda a compreender o algoritmo da multiplicação e a encontrar outras formas de multiplicar desenvolvendo o sentido de número e de operação. 17

18 Problema 1 Na tabuada geométrica encontra todas as figuras de perímetro 20 e descobre qual a de maior área. Perímetro 20 Semi-perímetro 10 Figuras ( C ; L) Área Quadrado 18

19 Tarefa 2 Dados quatro algarismos, forma dois números, de forma a que o produto seja o maior possível. 1, 3, 4, 5 Valor de posição: algarismo mais forte nas dezenas: 1) 53 x 41 = 50 x x x x 1 = = ) 51 x 43 = 50 x x x x 1 = = 2193 Maior produto 19

20 Tarefa 2 Dados quatro algarismos, forma dois números, de forma a que o produto seja o maior possível. 1, 3, 4, 5 Porquê? Valor de posição: algarismo mais forte nas dezenas: 1) 53 x 41 = Diferença 12 Como generalizar para qualquer número? 2) 51 x 43 = Diferença 8 Rectângulo mais quadrado Maior produto 20

21 Tarefa 2 Generalizando Quando é que o produto de dois números é máximo? Quando a diferença entre os lados é mínima, ou seja, quando o rectângulo é mais quadrado. 21

22 Tarefa 3 O João e a Anita, enquanto a mãe fazia compras no supermercado, entretinhamse a contar o número de caixas de bombons de uma prateleira. Nessa prateleira estavam 15 caixas como as da figura. De imediato toca a pensar Quantos bombons estão ao todo nessa prateleira? 22

23 Tarefa 3 Possível resolução (I) 15 caixas de 12 bombons 4 15 x x 5 x 3 x 4 = = 9 x 20 = = x 5 x 2 x 6 = = 10 x 18 = = 180 Decompondo em produtos e Margarida voltando Uva Nunes a compor Silva PROFMAT Utilizando a PROPRIEDADE ASSOCIATIVA 23

24 Tarefa 3 Possível 15 resolução (II) 15 caixas de 12 bombons x x (10 + 2) = = = = x (10 + 5) = = = = 180 Decompondo um dos números em parcelas Transformação de uma área simples numa composta por Margarida 2 rectângulos Uva Nunes Silva Utilizando PROFMAT a PROPRIEDADE 24 DISTRIBUTIVA

25 Tarefa 3 Possível resolução (III) 15 caixas de 12 bombons 15 x (10 + 5) x (10 + 2) = = = = = Decompondo os dois números em parcelas Transformação de uma área simples numa área composta por 4 rectângulos Utilizando a PROPRIEDADE DISTRIBUTIVA

26 Tarefa 3 Possível resolução (III) 15 caixas de 12 bombons 15 x 12 = 15 x 12 =(10+5) x (10+2) x 10 = x 10 = 20 5 x 10 = 50 2 x 5 = x10 A compreensão do ALGORITMO! 5 10 x 10 10x x = 180 (Modelo de Área devan Hiele, 1998) 26

27 Reflexão Que aprendizagens matemáticas? Que conteúdos? Que capacidades? Que conexões? E não matemáticas? Qual o papel da tabuada geométrica? 34

28 Quais as características das tarefas propostas? Que tarefas para cada ano de escolaridade? Que papel o do professor na utilização deste recurso? Quais as características do ambiente de sala de aula de um trabalho desta natureza? Qual o papel do aluno? Reflexão Qual a perspectiva do ensino da matemática? 35

29 Bibliografia Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Reston, VA: NCTM. Ministério da Educação (2007). Programa de Matemática do Ensino Básico. Lisboa: DGIDC/ Ministério da Educação. Mousley, J. (2004). An aspect of mathematical understanding: The notion of "connected knowing". In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp ). Bergen, Norway: Bergen University College. Van de Walle, J. A. (2006). Teaching Student-Centered Mathematics. New York: Longman 36

30 Obrigada pela vossa participação! 37

31 Margarida Uva Nunes Silva Agrupamento de Escolas de Pinhal de Frades PROFMAT - Lisboa

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES

PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES PLANIFICAÇÃO ANUAL MATEMÁTICA 3 DOMÍNIOS OBJETIVOS ATIVIDADES Números naturais Conhecer os numerais ordinais Utilizar corretamente os numerais ordinais até centésimo. Contar até um milhão Estender as regras

Leia mais

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016 1.º Período Conteúdos Programados Previstas Dadas Números e Operações Utilizar corretamente os numerais ordinais até vigésimo. Ler e representar

Leia mais

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano

Agrupamento de Escolas Eugénio de Castro 1º Ciclo. Critérios de Avaliação. Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Agrupamento de Escolas Eugénio de Castro 1º Ciclo Critérios de Avaliação Ano Letivo 2015/16 Disciplina MATEMÁTICA 3.º Ano Números e Operações Números naturais Utilizar corretamente os numerais ordinais

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1º e 2º Ciclo do Ensino Básico

Programa de Formação Contínua em Matemática para Professores do 1º e 2º Ciclo do Ensino Básico Álgebra Cadeia de tarefas I Contextos Numéricos Tabelas coloridas A Maria desenhou uma tabela com números de 1 a 25 e depois construiu as cinco tabelas com padrões coloridos e sem números. Qual teria sido

Leia mais

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo

Metas Curriculares do Ensino Básico Matemática 1.º Ciclo. António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Metas Curriculares do Ensino Básico Matemática 1.º Ciclo António Bivar Carlos Grosso Filipe Oliveira Maria Clementina Timóteo Números e Operações Contar até cem, mil,... Descodificar o sistema de numeração

Leia mais

ESCOLA BÁSICA VASCO DA GAMA - SINES

ESCOLA BÁSICA VASCO DA GAMA - SINES ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 anguru Matemático sem Fronteiras 2010 Duração: 1h30min Destinatários: alunos dos 10 e 11 nos de Escolaridade Nome: Turma: Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. s

Leia mais

Planejamento Anual 2014 Matemática 1º período 3º ano - Ensino Fundamental I. Reconhecer a necessidade de contar no cotidiano.

Planejamento Anual 2014 Matemática 1º período 3º ano - Ensino Fundamental I. Reconhecer a necessidade de contar no cotidiano. COLÉGIO LA SALLE BRASÍLIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Planejamento Anual 2014 Matemática

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 5.º ANO PLANIFICAÇÃO GLOBAL ANO LETIVO 2012/2013 Planificação Global 5º Ano 2012-2013 1/7 NÚMEROS

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2015 OBJETIVO GERAL

Planejamento Anual. Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2015 OBJETIVO GERAL Planejamento Anual Componente Curricular: Matemática Ano: 6º ano Ano Letivo: 2015 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Simetria de Figuras Planas e Espaciais

Simetria de Figuras Planas e Espaciais Simetria de Figuras Planas e Espaciais Introdução A maioria das pessoas acreditam que a simetria está ligada mais a pensamentos sobre Arte e Natureza do que sobre Matemática. De fato, nossas ideias de

Leia mais

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016

DEPARTAMENTO DE 1º Ciclo - Grupo 110. Planificação Anual / Critérios de avaliação. Disciplina: Matemática 2.º ano 2015/2016 DEPARTAMENTO DE 1º Ciclo - Grupo 110 Planificação Anual / Critérios de avaliação Disciplina: Matemática 2.º ano 2015/2016 Domínio (Unidade/ tema) Subdomínio/Conteúdos Metas de Aprendizagem Estratégias/

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( )

2 Matrizes. 3 Definição Soma de duas matrizes, e ( ) 4 Propriedades Propriedades da soma de matrizes ( ) Nova School of Business and Economics Apontamentos Álgebra Linear 1 Definição Matriz ( ) Conjunto de elementos dispostos em linhas e colunas. Ex.: 0 1 é uma matriz com 2 linhas e 3 colunas. 2 Definição

Leia mais

ESCOLA SECUNDÁRIA DE JÁCOME RATTON

ESCOLA SECUNDÁRIA DE JÁCOME RATTON ESCOLA SECUNDÁRIA DE JÁCOME RATTON 8º Ano MATEMÁTICA Setembro/2010 Tópico de Aprendizagem Semelhanças Tarefa nº2 Razão de semelhança Nome Razão de semelhança Observa as seguintes figuras, em que uma fotografia

Leia mais

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA

PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA PLANIFICAÇÃO ANUAL DO NOVO PROGRAMA DE MATEMÁTICA 5º ano 2012/2013 UNIDADE: Números e Operações 1 - NÚMEROS NATURAIS OBJECTIVOS GERAIS: - Compreender e ser capaz de usar propriedades dos números inteiros

Leia mais

Bingo 12. Material: tabuleiro (anexo), fichas de fixar (que não deslizem) ou lápis e dois dados.

Bingo 12. Material: tabuleiro (anexo), fichas de fixar (que não deslizem) ou lápis e dois dados. I Bingo 12 Material: tabuleiro (anexo), fichas de fixar (que não deslizem) ou lápis e dois dados. Como jogar: cada jogador lança os dois dados na sua vez e, em seguida, coloca na sua parte do tabuleiro

Leia mais

Fórmula versus Algoritmo

Fórmula versus Algoritmo 1 Introdução Fórmula versus Algoritmo na resolução de um problema 1 Roberto Ribeiro Paterlini 2 Departamento de Matemática da UFSCar No estudo das soluções do problema abaixo deparamos com uma situação

Leia mais

Projeção ortográfica da figura plana

Projeção ortográfica da figura plana A U L A Projeção ortográfica da figura plana Introdução As formas de um objeto representado em perspectiva isométrica apresentam certa deformação, isto é, não são mostradas em verdadeira grandeza, apesar

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Indicadores de aprendizagem Verifica se sabes: Identificar o conjunto dos números inteiros.

CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Indicadores de aprendizagem Verifica se sabes: Identificar o conjunto dos números inteiros. CAPÍTULO 1- OPERAÇÕES COM NÚMEROS INTEIROS Identificar o conjunto dos números inteiros. Representar na recta numérica os números inteiros. Indicar o valor absoluto e o simétrico de um número. Comparar

Leia mais

Proporcionalidade Directa e Inversa

Proporcionalidade Directa e Inversa Proporcionalidade Directa e Inversa Ensino da Matemática I Mestrado no Ensino da Matemática do 3º Ciclo do Ensino Básico e do Secundário Faculdade de Ciências e Tecnologia da Universidade de Coimbra Helena

Leia mais

O sentido da divisão e os vários tipos de problemas

O sentido da divisão e os vários tipos de problemas O sentido da divisão e os vários tipos de problemas Dividir - envolve a repartição equitativa dos elementos de um conjunto (por exemplo, doces por crianças) A divisão / distribuição é diferente da adição

Leia mais

TIPOS DE REFLEXÃO Regular Difusa

TIPOS DE REFLEXÃO Regular Difusa Reflexão da luz TIPOS DE REFLEXÃO Regular Difusa LEIS DA REFLEXÃO RI = raio de luz incidente i normal r RR = raio de luz refletido i = ângulo de incidência (é formado entre RI e N) r = ângulo de reflexão

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

AMEI Escolar Matemática 9º Ano Equações do 2º grau

AMEI Escolar Matemática 9º Ano Equações do 2º grau AMEI Escolar Matemática 9º Ano Equações do 2º grau Operações com polinómios. Casos notáveis da multiplicação de polinómios. Decomposição em factores (revisões) Na escrita de polinómios as letras representam

Leia mais

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas

Agrupamento de Escolas António Rodrigues Sampaio Planificação Anual das Atividades Letivas Departamento Curricular: 1º ciclo Ano de escolaridade: 3º ano Área Curricular: MATEMÁTICA Ano letivo:2015/2016 Perfil do aluno à saída do 1º ciclo: Participar na vida sala de aula, da escola e da comunidade

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA

ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA ESCOLA ESTADUAL DE ENSINO FUNDAMENTAL E MÉDIO PREFEITO WILLIAMS DE SOUZA ARRUDA PROFESSOR: PEDRO ROMÃO BATISTA COMPONENTE CURRICULAR: MATEMÁTICA PLANOS DE CURSO PARA 6º E 7º ANOS Campina Grande, 2011 -

Leia mais

DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR. Palavras-chave: Multiplicação; Egípcio; Russo; Chinês; Gelosia.

DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR. Palavras-chave: Multiplicação; Egípcio; Russo; Chinês; Gelosia. DIFERENTES POVOS E SUAS TÉCNICAS DE MULTIPLICAR Micheli Cristina Starosky Roloff Instituto Federal Catarinense Campus Camboriú micheli_roloff@ifc-camboriu.edu.br Resumo: Ao longo dos tempos, diferentes

Leia mais

Canguru Matemático sem Fronteiras 2015

Canguru Matemático sem Fronteiras 2015 anguru Matemático sem Fronteiras 2015 http://www.mat.uc.pt/canguru/ ategoria: Benjamim Destinatários: alunos dos 7. o e 8. o anos de escolaridade ome: Turma: Duração: 1h 30min anguru Matemático. Todos

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Os jogos nas aulas de matemática

Os jogos nas aulas de matemática UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE DEPARTAMENTO DE EDUCAÇÃO ENCONTRO REGIONAL DE EDUCAÇÃO MATEMÁTICA Oficina: Os jogos nas aulas de matemática Professora: Odenise Maria bezerra Natal, agosto de

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos...

Sumário. Volta às aulas. Vamos recordar?... 7 1. Grandezas e medidas: tempo e dinheiro... 59. Números... 10. Regiões planas e seus contornos... Sumário Volta às aulas. Vamos recordar?... Números... 0 Um pouco da história dos números... Como os números são usados?... 2 Números e estatística... 4 Números e possibilidades... 5 Números e probabilidade...

Leia mais

Cores e Formas. Aplicando os conceitos da reciclagem, fazer uso das formas geométricas como materiais para a composição e decomposição de figuras.

Cores e Formas. Aplicando os conceitos da reciclagem, fazer uso das formas geométricas como materiais para a composição e decomposição de figuras. Cores e Formas 1) Objetivo Geral Aplicando os conceitos da reciclagem, fazer uso das formas geométricas como materiais para a composição e decomposição de figuras. 2) Objetivo Específico Reconhecimento,

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO 1º Ciclo Planificação Anual de Matemática 1º ano Ano Letivo 2015/2016 1º Trimestre Domínios Números e Operações Números naturais Contar até cinco Correspondências

Leia mais

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados? cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos

Leia mais

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação.

VERSÃO DE TRABALHO. Prova Final de Matemática. 2.º Ciclo do Ensino Básico. Prova 62/2.ª Fase. Critérios de Classificação. Prova Final de Matemática 2.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 62/2.ª Fase Critérios de Classificação 9 Páginas 2015 Prova 62/2.ª F. CC Página 1/ 9 CRITÉRIOS GERAIS

Leia mais

CADEIA DE TAREFAS I. GROWING PATTERNS. Continua os padrões. Página 1. Programa de Acompanhamento e Formação Contínua em Matemática

CADEIA DE TAREFAS I. GROWING PATTERNS. Continua os padrões. Página 1. Programa de Acompanhamento e Formação Contínua em Matemática INSTITUTO POLITÉCNICO DO PORTO CADEIA DE TAREFAS I. GROWING PATTERNS Continua os padrões. [In, APM (2002, 2ª Ed.). Materiais para o 1.º Ciclo. Caderno 1. Lisboa: APM. (pág. 15)] Página 1 II. GROWING PATTERNS

Leia mais

Domínio Subdomínio Conteúdos Metas

Domínio Subdomínio Conteúdos Metas Escola Básica e Secundária da Graciosa Planificação Anual de Matemática de 1º ano Ano letivo 2014/2015 Períodos Domínio Subdomínio Conteúdos Metas Situar-se e situar objetos no espaço - Relações de posição

Leia mais

Alguns exemplos de problemas resolvidos

Alguns exemplos de problemas resolvidos Alguns exemplos de problemas resolvidos Partilhamos contigo alguns problemas e respetivas resoluções que selecionámos, para ilustrar todo este desafiante processo de resolução de problemas. Vais reparar

Leia mais

Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu lado concreto

Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu lado concreto Universidade Severino Sombra Fundamentos Teóricos e Metodologia de Matemática 1 1 Com uma coleção de figuras e de formas geométricas que mais parecem um jogo, mostre à turma que os números também têm seu

Leia mais

Conselho de Docentes do 1.º Ano PLANIFICAÇÃO Anual de Matemática Ano letivo de 2015/2016

Conselho de Docentes do 1.º Ano PLANIFICAÇÃO Anual de Matemática Ano letivo de 2015/2016 Conselho de Docentes do 1.º Ano PLANIFICAÇÃO Anual de Matemática Ano letivo de 2015/2016 Domínios/Subdomínios Objetivos gerais Descritores de desempenho Avaliação Números e Operações Números naturais Contar

Leia mais

Projeção ortográfica de modelos com elementos paralelos e oblíquos

Projeção ortográfica de modelos com elementos paralelos e oblíquos A U L A Projeção ortográfica de modelos com elementos paralelos e oblíquos Introdução Você já sabe que peças da área da Mecânica têm formas e elementos variados. Algumas apresentam rebaixos, outras rasgos,

Leia mais

Equacionando problemas - II

Equacionando problemas - II A UA UL LA Equacionando problemas - II Introdução Nossa aula Nas duas últimas aulas, resolvemos diversas equações do º grau pelo processo de completar o quadrado perfeito ou pela utilização da fórmula

Leia mais

Prova da segunda fase - Nível 1

Prova da segunda fase - Nível 1 Caro Aluno, Parabéns pela sua participação na nona edição da Olimpíada de Matemática de São José do Rio Preto! Lembre-se de que uma Olimpíada é diferente de uma prova escolar. Muitas vezes, as questões

Leia mais

Organização e tratamento d. e dados

Organização e tratamento d. e dados Organização e tratamento d e dados Proposta de cadeia de tarefas para o 7.º ano - 3.º ciclo Equações Setembro de 2009 Equações Página 1 Índice Introdução Proposta de planificação Tarefas 1A Balanças 1B

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO A PREENCHER PELO ALUNO Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA U.A. Número convencional do Agrupamento

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental)

XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Instruções: XXXVI OLIMPÍADA PAULISTA DE MATEMÁTICA Prova da Primeira Fase (11 de agosto de 2012) Nível (6 o e 7 o anos do Ensino Fundamental) Folha de Perguntas A duração da prova é de 3h30min. O tempo

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES

Leia mais

19 de Outubro de 2012

19 de Outubro de 2012 Escola Básica Integrada com JI de Santa Catarina Ficha de Avaliação de Matemática 19 de Outubro de 2012 A PREENCHER PELO ALUNO 8ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( )

Leia mais

Que imagens têm ou não têm simetria?

Que imagens têm ou não têm simetria? O mundo da simetria Que imagens têm ou não têm simetria? Isometrias Isometria: Transformação geométrica que preserva as distâncias; as figuras do plano são transformadas noutras geometricamente iguais.

Leia mais

Base Nacional Comum Curricular 2016. Lemann Center at Stanford University

Base Nacional Comum Curricular 2016. Lemann Center at Stanford University Base Nacional Comum Curricular 2016 Lemann Center at Stanford University Parte II: Base Nacional Comum: Análise e Recomendações da Seção de Matemática Phil Daro Dezembro, 2015 BASE NACIONAL COMUM: ANÁLISE

Leia mais

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad.

C 1. 45 minutos. Prova de Aferição de Matemática. 1.º Ciclo do Ensino Básico 8 Páginas. Matemática/2012. PA Matemática/Cad. PROVA DE AFERIÇÃO DO 1.º CICLO DO ENSINO BÁSICO Matemática/2012 Decreto-Lei n.º 6/2001, de 18 de janeiro A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome completo A PREENCHER PELO AGRUPAMENTO

Leia mais

GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS

GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS 1 GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS Agda Jéssica de Freitas Galletti UnB DF aj.mat@hotmail.com Francisca Priscila Ferreira da Silva UnB - DF priscilafs.df@hotmail.com Gabriela Aparecida

Leia mais

Cotagem de dimensões básicas

Cotagem de dimensões básicas Cotagem de dimensões básicas Introdução Observe as vistas ortográficas a seguir. Com toda certeza, você já sabe interpretar as formas da peça representada neste desenho. E, você já deve ser capaz de imaginar

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

Construção de funções a partir de problemas geométricos

Construção de funções a partir de problemas geométricos Construção de funções a partir de problemas geométricos Atividade introdutória M. Elisa. E. L. Galvão IME-USP/UNIBAN Problema: entre todos os retângulos de mesmo perímetro, qual é o de maior área? Como

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 6- º ano. Este material é um complemento da obra Matemática 6. uso escolar. Venda proibida. 6 ENSINO FUNDAMENTAL 6- º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 6 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida.

Leia mais

O problema do jogo dos discos 1

O problema do jogo dos discos 1 O problema do jogo dos discos 1 1 Introdução Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar Temos aplicado o problema do jogo dos discos em classes de estudantes de Licenciatura em Matemática

Leia mais

O Significado do Sinal de Igualdade na Jornada pelos Três Mundos da Matemática

O Significado do Sinal de Igualdade na Jornada pelos Três Mundos da Matemática O Significado do Sinal de Igualdade na Jornada pelos Três Mundos da Matemática Josias Nogueira Badaró 1 Rosana Nogueira de Lima 2 Programa de Estudos Pós- Graduados em Educação Matemática Universidade

Leia mais

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20.

Solução da prova da 1 a fase OBMEP 2015 Nível 1. QUESTÃO 1 ALTERNATIVA E Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. 1 QUESTÃO 1 Como 2 x 100,00 126,80 = 200,00 126,80 = 73,20, o troco foi de R$ 73,20. QUESTÃO 2 Como 4580247 = 4580254 7, concluímos que 4580247 é múltiplo de 7. Este fato também pode ser verificado diretamente,

Leia mais

ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO

ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO ÍNDICE DOS CONCEITOS, RELAÇÕES E OPERAÇÕES NAS ATIVIDADES E JOGOS DO LIVRO 2 O ANO Páginas 1. A ORGANIZAÇÃO E O TRATAMENTO DE INFORMAÇÕES 1.1- Através de gráficos... 2, 9, 20, 65, 116 1.2- Através de tabelas...

Leia mais

EIXO/TEMA IV - TRATAMENTO DA INFORMAÇÃO Descritor 27 Ler informações e dados apresentados em tabelas.

EIXO/TEMA IV - TRATAMENTO DA INFORMAÇÃO Descritor 27 Ler informações e dados apresentados em tabelas. SUGESTÕES DE ATIVIDADES PARA O TRABALHO COM AS HABILIDADES E OS CONTEÚDOS DOS DESCRITORES DA MATRIZ SAEB E DAS EXPECTATIVAS DE APRENDIZAGEM DA MATRIZ CURRICULAR DO ESTADO DE GOIÁS CADERNO 5 Matemática

Leia mais

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de:

2º ANO CONTEÚDO ROCESSO SELETIVO 2016. O aluno deverá demonstrar habilidades de: 2º ANO de: reconhecer letras; reconhecer sílabas; estabelecer relação entre unidades sonoras e suas representações gráficas; ler palavras; ler frases; localizar informação explícita em textos; reconhecer

Leia mais

1 Tema: Interdisciplinaridade com a Arte - Simetria e Padrões

1 Tema: Interdisciplinaridade com a Arte - Simetria e Padrões UNIVERSIDADE FEDERAL DO PARANÁ Setor de Educação Programa Institucional de Bolsas de Iniciação à Docência PIBID/UFPR Projeto Interdisciplinar Pedagogia e Matemática PLANO DE AULA Projeto Literatura e Matemática

Leia mais

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno

Matemática. Prova a de Aferição de. 1.º Ciclo do Ensino Básico. Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico. A preencher pelo Aluno Prova de Aferição de Matemática 1.º Ciclo do Ensino Básico A preencher pelo Aluno 2007 Nome: A preencher pela U.E. N.º convencional do aluno: N.º convencional da escola: N.º convencional do aluno: N.º

Leia mais

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan

Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matéria: Matemática Assunto: Divisores e Múltiplos Prof. Dudan Matemática Divisores e Múltiplos Os múltiplos e divisores de um número estão relacionados entre si da seguinte forma: Se 15 é divisível por

Leia mais

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula

Anexo B Relação de Assuntos Pré-Requisitos à Matrícula Anexo B Relação de Assuntos Pré-Requisitos à Matrícula MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DEPARTAMENTO DE EDUCAÇÃO E CULTURA DO EXÉRCITO DIRETORIA DE EDUCAÇÃO PREPARATÓRIA E ASSISTENCIAL RELAÇÃO

Leia mais

Programa de Formação Contínua em Matemática para Professores do 1º e 2º Ciclo do Ensino Básico

Programa de Formação Contínua em Matemática para Professores do 1º e 2º Ciclo do Ensino Básico Programa de Formação Contínua em Matemática para Professores do 1º e 2º Ciclo do Ensino Básico Organização espacial cadeia de tarefas. Referencias do PMEB Propósito principal de ensino Desenvolver nos

Leia mais

Beatriz Santomauro (bsantomauro@fvc.org.br) === PARTE 1 ==== Clique para ampliar

Beatriz Santomauro (bsantomauro@fvc.org.br) === PARTE 1 ==== Clique para ampliar Um novo jeito de ensinar a tabuada Discutir com os alunos sobre a relação dos produtos da multiplicação e as propriedades envolvidas nos cálculos ajuda a memorizar os resultados e a encontrar os que eles

Leia mais

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva:

É possível que cada pacote tenha: ( ) 2 ( ) 3 ( ) 4 ( ) 5 ( ) 6 ( ) 7 ( ) 9 ( ) 10. 02- Circule as frações equivalentes: 03- Escreva: PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 5º ANO - ENSINO FUNDAMENTAL ========================================================================== 0- Leia e resolva: a) No início do

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Aula 8. Acesse: http://fuvestibular.com.br/

Aula 8. Acesse: http://fuvestibular.com.br/ Acesse: http://fuvestibular.com.br/ Aula 8 A multiplicação nada mais é que uma soma de parcelas iguais. E a divisão, sua inversa, "desfaz o que a multiplicação faz". Quer ver? Vamos pensar nas questões

Leia mais

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS

PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos

Leia mais

Aula 18 Elipse. Objetivos

Aula 18 Elipse. Objetivos MÓDULO 1 - AULA 18 Aula 18 Elipse Objetivos Descrever a elipse como um lugar geométrico. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio entre os focos e eixo

Leia mais

MATEMÁTICA BÁSICA. Operações

MATEMÁTICA BÁSICA. Operações MATEMÁTICA BÁSICA Regras dos Sinais a) Adição (+) Soma (+) + (+) = (+) (-) + (-) = (-) (+) + (-) = Sinal do Maior (-) + (+) = Sinal do Maior (+6) + (+3) = +6 +3 = 9 (-6) + (-3) = -6-3 = -9 (+6) + (-3)

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo

Leia mais

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com

BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é

Leia mais

Matriz Curricular de Matemática 6º ao 9º ano 6º ano 6º Ano Conteúdo Sistemas de Numeração Sistema de numeração Egípcio Sistema de numeração Romano Sistema de numeração Indo-arábico 1º Trimestre Conjunto

Leia mais

Novo Programa de Matemática do Ensino Básico - 3º Ciclo

Novo Programa de Matemática do Ensino Básico - 3º Ciclo Proposta de cadeia de tarefas para o 8.º ano - 3.º ciclo Isometrias Autores: Professores das turmas piloto do 8.º ano de escolaridade Ano Lectivo 2009/2010 Outubro de 2010 Isometrias Página 1 Índice Introdução

Leia mais

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano

PLANEJAMENTO ANUAL DE. MATEMÁTICA 7º ano COLÉGIO VICENTINO IMACULADO CORAÇÃO DE MARIA Educação Infantil, Ensino Fundamental e Médio Rua Rui Barbosa, 1324, Toledo PR Fone: 3277-8150 PLANEJAMENTO ANUAL DE MATEMÁTICA 7º ano PROFESSORAS: SANDRA MARA

Leia mais

O USO DE PROGRAMAS COMPUTACIONAIS COMO RECURSO AUXILIAR PARA O ENSINO DE GEOMETRIA ESPACIAL

O USO DE PROGRAMAS COMPUTACIONAIS COMO RECURSO AUXILIAR PARA O ENSINO DE GEOMETRIA ESPACIAL O USO DE PROGRAMAS COMPUTACIONAIS COMO RECURSO AUXILIAR PARA O ENSINO DE GEOMETRIA ESPACIAL Angélica Menegassi da Silveira UNIFRA Eleni Bisognin - UNIFRA Resumo: O presente artigo tem como objetivo apresentar

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

Prova 32/ 1.ª F. Página 2/12. Página em branco

Prova 32/ 1.ª F. Página 2/12. Página em branco Rubricas dos Professores Vigilantes Provas a Nível de Escola PROVA FINAL DO 1º CICLO DO ENSINO BÁSICO Matemática/Prova 32/1ª Fase/2014 Decreto-Lei nº 139/2012, de 5 de julho A PREENCHER PELO ESTUDANTE

Leia mais

Classifique as tarefas seguintes segundo a tipologia de CHARLES E LESTER e segundo a

Classifique as tarefas seguintes segundo a tipologia de CHARLES E LESTER e segundo a SITUAÇÕES PROBLEMÁTICAS Classifique as tarefas seguintes segundo a tipologia de CHARLES E LESTER e segundo a tipologia de PONTE. Um palhaço muda de laço e de chapéu todos os dias em que actua no circo.

Leia mais

SUB12 Campeonato de Resolução de Problemas de Matemática Edição 2009/2010

SUB12 Campeonato de Resolução de Problemas de Matemática Edição 2009/2010 Puxa um banco ou uma cadeira O Sr. António fabrica na sua oficina de marcenaria bancos e cadeiras de madeira. Os bancos e as cadeiras têm pés exactamente iguais. Cada banco leva 3 pés e cada cadeira tem

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Índice. Nota introdutória...3. Tabuada com dados...5. Divisores em linha...8. Avançando com o resto...11. Jogo da fronteira...14. É esticá-lo...

Índice. Nota introdutória...3. Tabuada com dados...5. Divisores em linha...8. Avançando com o resto...11. Jogo da fronteira...14. É esticá-lo... Workshop Jogos 40 41 Índice Nota introdutória...3 Tabuada com dados...5 Divisores em linha...8 Avançando com o resto...11 Jogo da fronteira...14 É esticá-lo...21 Ge-ó-pá...26 Saída do porto...33 Jogo do

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso

Disciplina: Matemática. Período: I. Professor (a): Liliane Cristina de Oliveira Vieira e Maria Aparecida Holanda Veloso COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

A interpretação gráfica e o ensino de funções

A interpretação gráfica e o ensino de funções A interpretação gráfica e o ensino de funções Adaptado do artigo de Katia Cristina Stocco Smole Marília Ramos Centurión Maria Ignez de S. Vieira Diniz Vamos discutir um pouco sobre o ensino de funções,

Leia mais