μ 9 μ, os pulsos refletido e refratado não sofrem inversão de fase. d) 1 2

Tamanho: px
Começar a partir da página:

Download "μ 9 μ, os pulsos refletido e refratado não sofrem inversão de fase. d) 1 2"

Transcrição

1 1. Duas fontes sonoras 1 e 2, de massas desprezíveis, que emitem sons, respectivamente, de frequências f Hz e f Hz são colocadas em um sistema, em repouso, constituído por dois blocos, A e B, unidos por um fio ideal e inextensível, de tal forma que uma mola ideal se encontra comprimida entre eles, como mostra a figura abaixo. A fonte sonora 1 está acoplada ao bloco A, de massa 2 m, e a fonte sonora 2 ao bloco B, de massa m. Um observador O, estacionário em relação ao solo, dispara um mecanismo que rompe o fio. Os blocos passam, então, a se mover, separados da mola, com velocidades constantes em relação ao solo, sendo que a velocidade do bloco B é de 80 m s. Considere que não existam forças dissipativas, que a velocidade do som no local é constante e igual a 340 m s, que o ar se encontra em repouso em relação ao solo. Nessas condições, a razão entre as frequências sonoras percebidas pelo observador, devido ao movimento das fontes 2 e 1, respectivamente, é: a) 1 b) 2 c) 3 d) 4 2. Analisando a figura do gráfico que representa três ondas sonoras produzidas pela mesma fonte, assinale a alternativa correta para os três casos representados. a) As frequências e as intensidades são iguais. b) As frequências e as intensidades são diferentes. c) As frequências são iguais, mas as intensidades são diferentes. d) As frequências são diferentes, mas as intensidades são iguais. 3. A qualidade do som que permite distinguir um som forte de um som fraco, por meio da amplitude de vibração da fonte sonora é definida como: a) timbre b) altura c) intensidade d) tubo sonoro 4. Considere um sistema formado por duas cordas elásticas diferentes, com densidades lineares μ 1 e μ 2, tal que μ 1 μ 2. Na corda de densidade linear μ 1 é produzido um pulso que se desloca com velocidade constante e igual a v, conforme indicado na figura abaixo.

2 Após um intervalo de tempo t, depois de o pulso atingir a junção das duas cordas, verifica-se que o pulso refratado percorreu uma distância 3 vezes maior que a distância percorrida pelo pulso refletido. Com base nessas informações, podemos afirmar, respectivamente, que a relação entre as densidades lineares das duas cordas e que as fases dos pulsos refletido e refratado estão corretamente relacionados na alternativa: a) μ1 3 μ2, o pulso refletido sofre inversão de fase mas o pulso refratado não sofre inversão de fase. μ 3 μ, os pulsos refletido e refratado não sofrem inversão de fase. b) 1 2 c) μ1 9 μ2, o pulso refletido não sofre inversão de fase mas o pulso refratado sofre inversão de fase. μ 9 μ, os pulsos refletido e refratado não sofrem inversão de fase. d) Uma corda de massa 100 g vibra com uma frequência de 200 Hz, como está descrito na figura a seguir. O produto da força tensora com o comprimento da corda, em N m, deve ser de: a) 1200 b) 1440 c) 1800 d) 2400 e) A figura mostra esquematicamente uma montagem utilizada em aulas práticas de física para o estudo de ondas estacionárias em cordas. Um gerador de sinal elétrico faz com que um oscilador mecânico produza ondas em uma corda tracionada por uma massa suspensa. A amplitude de oscilação do eixo do oscilador é independente da frequência e muito menor que a altura dos fusos. A roldana é considerada ideal. Sobre esse experimento, analise as seguintes afirmativas: I. Se a distância entre o oscilador e a roldana for reduzida, a frequência para se obter uma onda estacionária de mesmo número de fusos (ventres) que o mostrado na figura será maior e o comprimento de onda será menor. II. Se a massa suspensa for aumentada, o comprimento de onda do harmônico mostrado não é alterado e a frequência de ressonância será maior. III. Se a frequência do quarto harmônico for 600 Hz, a do quinto harmônico será 750 Hz. IV. Todos os pontos da corda vibram com a mesma frequência e velocidade transversal. V. A velocidade do deslocamento transversal de um ponto da corda será máxima nas posições de cristas e vales.

3 Com relação às afirmativas, assinale a alternativa CORRETA. a) somente as afirmativas II, III e IV estão corretas. b) somente as afirmativas I, III e V estão corretas. c) somente as afirmativas I, II e III estão corretas. d) somente as afirmativas I, II, IV e V estão corretas. e) somente as afirmativas II e IV estão corretas. 7. A figura abaixo representa uma onda estacionária produzida em uma corda de comprimento L 50 cm. Sabendo que o módulo da velocidade de propagação de ondas nessa corda é 40m s, a frequência da onda é de: a) 40Hz. b) 60Hz. c) 80Hz. d) 100Hz. e) 120Hz. 8. Um professor de física do ensino médio propôs um experimento para determinar a velocidade do som. Para isso, enrolou um tubo flexível de 5,0 m (uma mangueira de jardim) e colocou as duas extremidades próximas a um microfone, como ilustra a Figura abaixo. O microfone foi conectado à placa de som de um computador. Um som foi produzido próximo a uma das extremidades do tubo no caso, estourou-se um pequeno balão de festas e o som foi analisado com um programa que permite medir o intervalo de tempo entre os dois pulsos que eram captados pelo microcomputador: o pulso provocado pelo som do estouro do balão, que entra no tubo, e o pulso provocado pelo som que sai do tubo. Essa diferença de tempo foi determinada como sendo de 14,2 ms. A velocidade do som, em m/s, medida nesse experimento vale:

4 a) 704 b) 352 c) 0,35 d) 70 e) Considere duas cordas vibrantes, com ondas estacionárias e senoidais, sendo uma delas produzida por um violino e outra por uma guitarra. Assim, é correto afirmar que nos dois tipos de ondas estacionárias, têm-se as extremidades das cordas vibrando com amplitudes: a) nulas. b) máximas. c) variáveis. d) dependentes da frequência das ondas. 10. A figura abaixo ilustra uma montagem experimental para estudo de ondas estacionárias em cordas esticadas, retratando um dos harmônicos de onda estacionária possível de ser gerada pelo experimento. Para gerar ondas estacionárias, entre os pontos A e B, o experimento permite ajustes na tensão da corda (controle manual), e na frequência de perturbação periódica (controle via regulagem do motor). Considere a montagem experimental retratada na Figura 4, o conhecimento sobre ondas estacionárias, e analise as proposições. I. As ondas estacionárias não são ondas de propagação, mas resultam da interferência entre as ondas incidentes (propagando-se de A para B) e das ondas refletidas pelo ponto fixo B (propagando-se de B para A). Portanto, em determinadas condições de ajustes de frequência e tensão na corda, ocorrerá a ressonância e, consequentemente, a formação de harmônicos de onda estacionária. II. A densidade linear de massa da corda utilizada no experimento não interfere na geração das ondas estacionárias, isto é, cordas mais espessas ou menos espessas, submetidas às mesmas condições de perturbação e tensão, gerarão o mesmo harmônico de onda estacionária. III. Fixando a frequência de perturbação da corda, e partindo-se de um estado de ressonância, é possível atingir um harmônico superior apenas mediante o aumento da tensão da corda. IV. Ondas estacionárias não são decorrentes de fenômenos de interferência e ressonância. Assinale a alternativa correta: a) Somente as afirmativas II e IV são verdadeiras. b) Somente as afirmativas III e IV são verdadeiras. c) Somente as afirmativas I e III são verdadeiras. d) Somente as afirmativas I, III e IV são verdadeiras. e) Somente a afirmativa II é verdadeira. 11. Um diapasão com frequência natural de 400 Hz é percutido na proximidade da borda de uma proveta graduada, perfeitamente cilíndrica, inicialmente cheia de água, mas que está sendo vagarosamente esvaziada por meio de uma pequena torneira na sua parte inferior. Observa-se que o volume do som do diapasão torna-se mais alto pela primeira vez quando a

5 coluna de ar formada acima d água atinge uma certa altura h. O valor de h, em centímetros, vale: (Dado: velocidade do som no ar v 320 m s ) a) 45 b) 36 c) 28 d) 20 e) 18 Som 12. Em 1816 o médico francês René Laënnec, durante um exame clínico numa senhora, teve a ideia de enrolar uma folha de papel bem apertada e colocar seu ouvido numa das extremidades, deixando a outra livre para ser encostada na paciente. Dessa forma, não só era evitado o contato indesejado com a paciente, como os sons se tornavam muito mais audíveis. Estava criada assim a ideia fundamental do estetoscópio [do grego, stêthos (peito) skopéo (olhar)]. É utilizado por diversos profissionais, como médicos e enfermeiros, para auscultar (termo técnico correspondente a escutar) sons vasculares, respiratórios ou de outra natureza em diversas regiões do corpo. É composto por três partes fundamentais. A peça auricular tem formato anatômico para adaptar-se ao canal auditivo. Os tubos condutores do som a conectam à peça auscultatória. E, por fim, a peça auscultatória, componente metálico colocado em contato com o corpo do paciente. Essa peça é composta por uma campânula, que transmite melhor os sons de baixa frequência - como as batidas do coração - e o diafragma, que transmite melhor os sons de alta frequência, como os do pulmão e do abdômen. A folha de papel enrolada pelo médico francês René Laënnec pode ser interpretada como um tubo sonoro aberto. Considerando o comprimento desse tubo igual a 34 cm e que, ao auscultar um paciente, houve a formação, no interior desse tubo, de uma onda estacionária longitudinal de segundo harmônico e que se propagava com uma velocidade de 340 m / s, qual a frequência dessa onda, em hertz? a) 250 b) 500 c) 1000 d) O canal auditivo da figura representa o órgăo de audiçăo humano que mede, em média, cerca de 2,5 cm de comprimento e que pode ser comparado a um tubo sonoro fechado, no qual a coluna de ar oscila com ventre de deslocamento na extremidade aberta e nó de

6 deslocamento na extremidade fechada. Considerando-se que a velocidade de propagaçăo do som no ar é igual a 340 m s e que a coluna de ar oscila segundo um padrăo estacionário fundamental no canal auditivo, pode-se afirmar pela análise da figura associada aos conhecimentos da Física que: a) o comprimento da onda sonora que se propaga no canal auditivo é igual a 2,5 cm. b) a frequência das ondas sonoras que atingem a membrana timpânica é, aproximadamente, igual a ,0 Hz. c) a frequência fundamental de oscilação da coluna de ar no canal auditivo é igual a 340,0 Hz. d) a frequência de vibração da membrana timpânica produzida pela oscilação da coluna de ar é igual a 3.400,0 Hz. e) a frequência do som transmitido ao cérebro por impulsos elétricos é o dobro da frequência da vibração da membrana timpânica. 14. Um experimento foi feito com a finalidade de determinar a frequência de vibração de um diapasão. Um tubo cilíndrico aberto em suas duas extremidades foi parcialmente imerso em um recipiente com água e o diapasão vibrando foi colocado próximo ao topo desse tubo, conforme a figura 1. O comprimento L da coluna de ar dentro do tubo foi ajustado movendo-o verticalmente. Verificou-se que o menor valor de L, para o qual as ondas sonoras geradas pelo diapasão são reforçadas por ressonância dentro do tubo, foi de 10 cm, conforme a figura 2. Considerando a velocidade de propagação do som no ar igual a 340 m s, é correto afirmar que a frequência de vibração do diapasão, em Hz, é igual a: a) 425. b) 850. c) d) e) Uma jovem de 60 kg realiza seu primeiro salto de paraquedas a partir de um helicóptero que permanece estacionário. Desde o instante do salto até o momento em que ela aciona a

7 abertura do paraquedas, passam-se 12s e durante todo esse tempo em que a jovem cai em queda livre, ela emite um grito de desespero cuja frequência é de 230 Hz. Considerando a velocidade do som igual a 340 m / s e o módulo da aceleração da gravidade igual a 2 10 m / s, determine a frequência aparente aproximada desse grito, emitido no instante 12s, quando percebida pelo instrutor de salto situado no helicóptero. Despreze a resistência do ar até a abertura do paraquedas. a) 140 b) 160 c) 170 d) Uma ambulância A em movimento retilíneo e uniforme aproxima-se de um observador O, em repouso. A sirene emite um som de frequência constante f A. O desenho ilustra as frentes de onda do som emitido pela ambulância. O observador possui um detector que consegue registrar, no esboço de um gráfico, a frequência da onda sonora detectada em função do tempo f o (t), antes e depois da passagem da ambulância por ele. Qual esboço gráfico representa a frequência f o (t) detectada pelo observador? a) b)

8 c) d) e) 17. A Figura 1 apresenta o gráfico da intensidade, em decibels (db), da onda sonora emitida por um alto-falante, que está em repouso, e medida por um microfone em função da frequência da onda para diferentes distâncias: 3 mm, 25 mm, 51mm e 60 mm. A Figura 2 apresenta um diagrama com a indicação das diversas faixas do espectro de frequência sonora para o modelo de alto-falante utilizado neste experimento. Relacionando as informações presentes nas figuras 1 e 2, como a intensidade sonora percebida é afetada pelo aumento da distância do microfone ao alto-falante? a) Aumenta na faixa das frequências médias. b) Diminui na faixa das frequências agudas. c) Diminui na faixa das frequências graves. d) Aumenta na faixa das frequências médias altas. e) Aumenta na faixa das frequências médias baixas. 18. Um homem (observador) assiste sentado a uma corrida de fórmula 1, localizado em uma arquibancada lateral à pista de corrida. O observador tem um aparelho que registra a

9 frequência principal do motor dos carros tanto na aproximação quanto no afastamento. Sabendo-se que a razão entre as frequências na aproximação e no afastamento é 3, pode-se afirmar, nesse caso, que a velocidade do carro de corrida (considerada constante) é, em m s, igual a: (Dado: a velocidade do som no ar é 340 m s. ) a) 170. b) 215. c) 290. d) 315. e) Um garoto está sentando próximo à janela de um trem que está se movendo com velocidade constante, em relação a um determinado referencial inercial. O tio do garoto está de pé próximo aos trilhos, em repouso em relação ao mesmo referencial, e vê o trem se afastar. A figura abaixo ilustra a situação e indica o sentido do movimento do trem. Considere que o ar está parado em relação a esse mesmo referencial e que o apito do trem emite um som de frequência igual a 400 Hz. Com base nessa situação e nos seus conhecimentos sobre o movimento ondulatório, o tio do garoto recebe (escuta) o som do apito do trem com frequência: a) igual à frequência do som emitido pelo apito do trem, pois o ar está parado. b) maior do que a frequência do som emitido pelo apito do trem, pois o trem está se afastando dele. c) menor do que a frequência do som emitido pelo apito do trem, pois o trem está se afastando dele. d) igual à frequência do som emitido pelo apito do trem, pois a frequência da fonte sonora não foi alterada. 20. O morcego emite pulsos de curta duração de ondas ultrassônicas, os quais voltam na forma de ecos após atingirem objetos no ambiente, trazendo informações a respeito das suas dimensões, suas localizações e dos seus possíveis movimentos. Isso se dá em razão da sensibilidade do morcego em detectar o tempo gasto para os ecos voltarem, bem como das pequenas variações nas frequências e nas intensidades dos pulsos ultrassônicos. Essas características lhe permitem caçar pequenas presas mesmo quando estão em movimento em relação a si. Considere uma situação unidimensional em que uma mariposa se afasta, em movimento retilíneo e uniforme, de um morcego em repouso. A distância e velocidade da mariposa, na situação descrita, seriam detectadas pelo sistema de um morcego por quais alterações nas características dos pulsos ultrassônicos? a) Intensidade diminuída, o tempo de retorno aumentado e a frequência percebida diminuída. b) Intensidade aumentada, o tempo de retorno diminuído e a frequência percebida diminuída. c) Intensidade diminuída, o tempo de retorno diminuído e a frequência percebida aumentada. d) Intensidade diminuída, o tempo de retorno aumentado e a frequência percebida aumentada. e) Intensidade aumentada, o tempo de retorno aumentado e a frequência percebida aumentada. 21. Um professor de Física, querendo ensinar ondas estacionárias aos seus alunos, construiu um experimento com duas cordas, como mostra a figura. Pressionou a corda 1 a 80 cm do ponto fixo e, tocando na corda, criou o primeiro harmônico de uma onda estacionária. Sabendo que a frequência conseguida na corda 1 e 440 hz, e que a velocidade da onda na corda 2 é o dobro da velocidade da onda na corda 1, determine a posição que alguém deverá pressionar a corda 2 para conseguir o primeiro harmônico de uma onda estacionária com o dobro da frequência conseguida na corda 1.

10 A alternativa correta é: a) C. b) A. c) B. d) D. 22. Uma onda estacionária é estabelecida em uma corda homogênea de comprimento 2π m, presa pelas extremidades, A e B, conforme figura abaixo. Considere que a corda esteja submetida a uma tensão de 10 N e que sua densidade linear de massa seja igual a 0,1kg / m. Nessas condições, a opção que apresenta um sistema massa-mola ideal, de constante elástica k, em N/ m e massa m, em kg, que oscila em movimento harmônico simples na vertical com a mesma frequência da onda estacionária considerada é: a) b) c)

11 d) 23. Dois tubos sonoros de mesmo comprimento se diferem pela seguinte característica: o primeiro é aberto nas duas extremidades e o segundo é fechado em uma das extremidades. Considerando que a temperatura ambiente seja de 20 C e a velocidade do som igual a 344 m / s, assinale a alternativa que representa a razão entre a frequência fundamental do primeiro tubo e a do segundo tubo. a) 2,0 b) 1,0 c) 8,0 d) 0,50 e) 0, Leia com atenção o texto que segue: O som é um tipo de onda que necessita de um meio para se propagar. Quando estamos Analisando a produção e a captação de uma onda sonora, estamos diante de três participantes: a fonte sonora, o meio onde ela se propaga e o observador que está captando as ondas. Temos então três referenciais bem definidos. O tipo de onda captada dependerá de como a fonte e o observador se movem em relação ao meio de propagação da onda. Vamos considerar o meio parado em relação ao solo. Neste caso temos ainda três situações diferentes: a fonte se movimenta e o observador está parado; a fonte está parada e o observador está em movimento; a fonte e o observador estão em movimento. Nos três casos podemos ter uma aproximação ou um afastamento entre a fonte e o observador. O texto refere-se a um fenômeno ondulatório facilmente observado nas ondas sonoras. Esse fenômeno é denominado: a) Superposição. b) Ressonância. c) Polarização. d) Efeito Doppler. 25. Ao ouvir uma flauta e um piano emitindo a mesma nota musical, consegue-se diferenciar esses instrumentos um do outro. Essa diferenciação se deve principalmente ao(a): a) intensidade sonora do som de cada instrumento musical. b) potência sonora do som emitido pelos diferentes instrumentos musicais. c) diferente velocidade de propagação do som emitido por cada instrumento musical d) timbre do som, que faz com que os formatos das ondas de cada instrumento sejam diferentes. e) altura do som, que possui diferentes frequências para diferentes instrumentos musicais. 26. O ouvido humano é o responsável pelo nosso sentido auditivo. Ele distingue no som três qualidades que são: altura, intensidade e timbre. A altura é a qualidade que permite ao mesmo diferenciar sons graves de sons agudos, dependendo somente da frequência do som. Considerando os conhecimentos sobre ondas sonoras e o exposto acima, assinale a alternativa correta que completa as lacunas das frases a seguir. Podemos afirmar que o som será mais quanto for sua frequência. a) grave - maior b) agudo - menor c) agudo - maior d) intenso - maior

12 27. Nossos sentidos percebem de forma distinta características das ondas sonoras, como: frequência, timbre e amplitude. Observações em laboratório, com auxílio de um gerador de áudio, permitem verificar o comportamento dessas características em tela de vídeo e confrontálas com nossa percepção. Após atenta observação, é correto concluir que as características que determinam a altura do som e a sua intensidade são, respectivamente: a) frequência e timbre. b) frequência e amplitude. c) amplitude e frequência. d) amplitude e timbre. e) timbre e amplitude. 28. O barulho emitido pelo motor de um carro de corrida que se desloca a 244,8km / h é percebido por um torcedor na arquibancada com frequência de 1.200Hz. A frequência real emitida pela fonte sonora considerando que a mesma se aproxima do torcedor é de: (Considere a velocidade do som 340m / s. ) a) 960Hz. b) 1.040Hz. c) 1.280Hz. d) 1.320Hz. 29. Analise a figura abaixo. Uma fonte sonora isotrópica emite ondas numa dada potência. Dois detectores fazem a medida da intensidade do som em decibels. O detector A que está a uma distância de 2,0 m da fonte mede 10,0 db e o detector B mede 5,0 db, conforme indica a figura acima. A distância, em metros, entre os detectores A e B, aproximadamente, vale: a) 0,25 b) 0,50 c) 1,0 d) 1,5 e) 2,0 30. Fisicamente, um violão é um conjunto de cordas vibrantes que, quando afinadas e tensionadas pela força correta, emitem um som cuja frequência corresponde ao primeiro harmônico da corda, também conhecido como som fundamental. Considere uma dessas 2 cordas com densidade linear de 10 kg / m cuja parte vibrante é de 55 cm de comprimento, tensionada por uma força de 144 N. Observando os valores das frequências na tabela abaixo, qual nota, aproximadamente, essa corda emitirá?

13 Tabela de frequências do primeiro harmônico emitidas pelas cordas de um violão afinado: Corda Nota Frequência 1 Mi (E) 329,65 Hz a) Mi b) Si c) Sol d) Ré e) Lá 2 Si (B) 246,95 Hz 3 Sol (G) 196,00 Hz 4 Ré (D) 146,85 Hz 5 Lá (A) 110,00 Hz 6 Mi (E) 82,40 Hz

14 Gabarito: Resposta da questão 1: [A] Sejam f' 1 e f' 2 as frequências detectadas pelo observador e v a velocidade do som no ar. Aplicando a expressão do efeito Doppler às duas situações, vem: v f ' 2 f 1 v vb f ' 2 f1 v va f ' 1 1 v f ' 1 v vb f f ' f ' 2 1 f 2 v va Resposta da questão 2: [C] As amplitudes são diferentes, os comprimentos de onda são os mesmos, a frequência também é a mesma e, por consequência, a velocidade da onda também é a mesma. Como dito anteriormente, a única coisa que muda é a intensidade da onda (que é relacionada com a amplitude). Resposta da questão 3: [C] A intensidade sonora está relacionada com a amplitude do som, permitindo a distinção de sons fracos e sons fortes. Ondas sonoras de grande amplitude são ondas que transportam grande energia e já as ondas de pouca amplitude são ondas que transportam pouca energia. Resposta da questão 4: [D] Sabendo que a velocidade de propagação de uma onda na corda depende da intensidade da força de tração T na mesma e da sua densidade linear μ, de acordo com a equação: v T μ E que a onda refratada na corda de menor densidade linear possui o triplo da velocidade da corda de maior densidade linear, podemos relacionar as duas equações lembrando que as trações nas cordas são iguais. Para a corda 1: v 1 T μ 1 E para a corda 2: v 3v 2 1 T μ 2 Fazendo a razão da corda 2 pela 1: 3v1 v1 T μ2 μ1 3 μ1 9μ2 T μ2 μ1

15 Por fim, o pulso da corda de maior densidade não sofre inversão de fase ao encontrar com a corda menor, nem para a refração e tão pouco para a reflexão. Ver figura ilustrativa abaixo. Resposta da questão 5: [B] A força tensora na corda é dada por: 2 T v μ (1), onde: 2L 2 0,9 m v λ f f 200 Hz v 120 m / s 3 3 m 0,1kg 1 μ μ kg / m L 0,9m 9 Substituindo em (1), temos: 2 1 T 120 m / s kg / m T 1600 N 9 Logo, o produto da força tensora com o comprimento da corda, em N m, será de: T L 1600 N 0,9 m T L 1440 N m Resposta da questão 6: [C] [I] Verdadeiro. Reduzindo a distância teremos uma frequência maior e um comprimento de onda menor. [II] Verdadeiro. Massa e comprimento de onda não são grandezas diretamente relacionadas, entretanto, a massa e a frequência são diretamente proporcionais. [III] Verdadeiro. A frequência fundamental do 4 harmônico é: a frequência fundamento do 5 harmônico: mesma frequência fundamental, logo a opção é verdadeira. f f 4 1 f1 150 hz, analisando 4 f5 f1 f1 150 hz, como ambos possuem a 5

16 [IV] Falso. A velocidade transversal é diferente de velocidade da onda. Logo, teremos pontos na corda com velocidade transversal maior ou menor que outros. [V] Falso. A velocidade do deslocamento transversal de um ponto da corda será mínima nas posições de cristas e vales. Resposta da questão 7: [E] Para a onda estacionária em questão, tem-se: L λ λ 0,5 m λ m Sabendo que a velocidade da onda em função de sua frequência e de seu comprimento de onda é dada pela equação: v λ f E usando a velocidade dada, obtém-se a frequência pedida. 1 v λ f 40 m / s m f f 120 Hz 3 Resposta da questão 8: [B] Para o cálculo da velocidade do som, basta usar a definição do movimento uniforme: Δs 5 m v v v 352 m / s Δt 3 14,2 10 s Resposta da questão 9: [A] Violino e guitarra são instrumentos de cordas, e as ondas estacionárias em cordas, sempre começa com um nó e termina com um nó, em todos os harmônicos. E sua amplitude nos pontos de nó são nulas. Resposta da questão 10: [B] Justificando os itens falsos: [I] Ondas estacionárias são ondas de propagação. [II] A Densidade da corda irá influenciar no harmônico. Resposta da questão 11: [D] Quando o volume do som do diapasão torna-se mais alto pela primeira vez, a coluna de água corresponde ao primeiro harmônico obtido na coluna de água.

17 Logo, de acordo com o desenho, a altura de líquido h é a quarta parte do comprimento da onda sonora. λ h λ 4h 4 E a expressão da velocidade da onda com a frequência e o comprimento de onda é dada por: v v λ f v 4 hf h 4f 320 m / s h h 0,2m 20 cm Hz Resposta da questão 12: [C] A figura mostra um tubo aberto em seu segundo harmônico. Como se pode notar nessa figura, no segundo harmônico, o comprimento de onda é igual ao comprimento do tubo. λ 34 cm; 0,34m; v 340m/s. Da equação fundamental da ondulatória: v 340 v λ f f f Hz. λ 0,34 Resposta da questão 13: [D]

18 Como no primeiro harmônico há a formação de apenas uma semifusa, logo ele ocupa toda a λ extensão do tubo sonoro fechado, ou seja, L. Isolando o comprimento de onda do primeiro 4 harmônico, vem: λ L λ 4L λ 4 2,5 λ 10 cm λ 0,1m 4 v 340 V λ f f f f Hz λ 0,1 Resposta da questão 14: [B] O comprimento L corresponde a meio fuso ou a um quarto do comprimento de onda. λ L λ 4L cm λ 0,4 m. 4 Da equação fundamental da ondulatória: v 340 v λ f f f 850 Hz. λ 0,4 Resposta da questão 15: [C] Para calcular a frequência aparente f observada pelo instrutor no helicóptero, devemos primeiro obter a velocidade da fonte sonora v aos 12s utilizando o movimento de queda livre, sem atrito. 2 v v0 gt v 0 10 m / s 12 s v 120 m / s A frequência aparente da fonte sonora se afastando do observador é dada por: vsom f ff vsom v Substituindo os valores referentes à frequência da fonte, velocidade do som e velocidade da fonte: 340 m / s f 230 Hz f 170 Hz 340 m / s 120 m / s Resposta da questão 16: [D] De acordo com o efeito Doppler para ondas sonoras, quando há: - aproximação relativa entre a fonte e o observador, a frequência detectada é maior que a frequência emitida: f o (t) f A. - afastamento relativo entre a fonte e o observador, a frequência detectada é menor que a frequência emitida: f o (t) f A. Resposta da questão 17: [C] Analisando o gráfico da figura 1 nota-se que, até 300 Hz, o nível sonoro diminui com o aumento da frequência para as quatro distâncias. Na tabela da figura 2, constata-se que sons nessas frequências são classificados como graves. Resposta da questão 18:

19 [A] Seja f 0 a frequência emitida pelo motor e f 1 e f 2 as frequências detectadas pelo observador, que está em repouso, na aproximação e no afastamento, respectivamente. De acordo com o enunciado, f 1 3 f 2. Assim, sendo v 340 m s a velocidade do som no ar e v c a velocidade do carro, aplicando a expressão do efeito Doppler às duas situações, vem: v f1 f0 v vc f1 v vc 3 f2 340 vc 4vc 680 vc 170 m s. v f2 v vc f2 340 v f c 2 f 0 v vc Resposta da questão 19: [C] De acordo com o Efeito Doppler, quando há afastamento relativo entre o detector e a fonte o som detectado tem frequência aparente menor que a do som emitido pela fonte. Resposta da questão 20: [A] Como a mariposa está se afastando, a intensidade do som recebido como eco diminui e o tempo de retorno aumenta. Resposta da questão 21: [C] Analisando o enunciado, temos os seguintes dados: f1 440 Hz f2 880 Hz v2 2 v1 l1 80 cm 0,8 m Sabendo que a frequência de um harmônico é dada por: n v fn 2l Analisando a 1ª corda, temos: n v1 1v f l 2 0,8 1 v ,6 v1 704 m s Agora, analisando a 2ª corda, temos: n v2 n 2 v f l2 2 l2 2 l l2 880 l2 0,8 m Resposta da questão 22: [D] Para a onda estacionária usaremos duas equações relacionadas com a velocidade da onda:

20 v λf e v T μ Igualando as duas equações: λf T μ Sendo a frequência na corda relacionada com a tensão, o comprimento de onda e a densidade linear de massa. 1 T f λ μ Já para o sistema massa-mola, temos a expressão para a frequência: 1 k f' 2π m Como as duas frequências devem ser iguais: 1 T 1 k λ μ 2π m Substituindo os valores fornecidos procuramos por uma alternativa que verifica a mesma relação; k 2π 0,1 2π m k 10 m Sendo a alternativa [D] a única que verifica essa relação. Resposta da questão 23: [A] A velocidade de uma onda expressa em função da frequência e de seu comprimento de onda é: v λ f E sabendo que a velocidade de propagação de ambas são iguais: v v λ f λ f Para o tubo 1: Para o tubo 2: λ L 1 λ1 2L 2 λ L 2 λ2 4L 4

21 Com isso, a razão das frequências será: f1 λ1 f1 λ2 f2 2L f1 4L f2 2 f2 Resposta da questão 24: [D] Efeito Doppler é o fenômeno ondulatório que ocorre quando há variação na frequência captada pelo observador devido ao movimento relativo entre ele e a fonte. Resposta da questão 25: [D] A qualidade do som que permite diferenciar sons de mesma frequência e de mesma intensidade é o timbre. Resposta da questão 26: [C] A resposta é direta: Quanto maior a frequência de um som, mais agudo este será. O contrário também é verdade: quanto menor for a frequência, mais grave será o som. Resposta da questão 27: [B] A altura de um som é caracterizada pela frequência da onda sonora, diferenciando um som grave de um som agudo. A intensidade de um som é caracterizada pela amplitude da onda sonora, diferenciando um som fraco de um som forte. Resposta da questão 28: [A] Sabendo que o a fonte está aproximando-se do observador, temos que a relação entre frequência observada (f ) e frequência emitida pela fonte (f f ) é dada por: f o f v v v f f Então: f f 960 Hz f Notar que a velocidade do carro f o (v f ) em m/s é igual a 68. Resposta da questão 29: [D] Da definição de nível de intensidade sonora (N) :

22 I N I N 10 I N 10 log log 10. I 0 10 I 0 I0 N A I A 10 I A I A I 0 I 0 I 0 I B 1 I 2 A 10 I N B B IB 5 IB IB 1 I A I 0 I 0 I 0 P P d 4 B 10 da 1,78 2 3,56m. 2 4π d 2 B 10 4 π d A dab d B d A 3,56 2 d A B 1,5m. Resposta da questão 30: [E] A frequência (f) do harmônico fundamental de uma corda sonora de comprimento L e densidade linear μ, quando tracionada por forças de intensidade F é dada por: 1 F f 0, ,2 Hz f 110 Hz. 2 L μ 2 0, Pela tabela, essa corda emitirá a nota Lá.

ONDULATÓRIA II : INTERFERÊNCIA / ACÚSTICA E ONDAS HARMÔNICAS

ONDULATÓRIA II : INTERFERÊNCIA / ACÚSTICA E ONDAS HARMÔNICAS 1. (Fac. Albert Einstein - Medicina 016) Em 1816 o médico francês René Laënnec, durante um exame clínico numa senhora, teve a ideia de enrolar uma folha de papel bem apertada e colocar seu ouvido numa

Leia mais

FÍSICA LISTA DE EXERCÍCIOS DE ACÚSTICA (FÍSICA B)

FÍSICA LISTA DE EXERCÍCIOS DE ACÚSTICA (FÍSICA B) FÍSICA Prof. Alex Siqueira LISTA DE EXERCÍCIOS DE ACÚSTICA (FÍSICA B) 1. (Eear 017) Analisando a figura do gráfico que representa três ondas sonoras produzidas pela mesma fonte, assinale a alternativa

Leia mais

Professor João Rodrigo Escalari Quintiliano LISTA 4 BIM 2º ANO

Professor João Rodrigo Escalari Quintiliano LISTA 4 BIM 2º ANO 1. (Pucrs 2016) Para uma espira circular condutora, percorrida por uma corrente elétrica de intensidade i, é registrado um campo magnético de intensidade B no seu centro. Alterando-se a intensidade da

Leia mais

A Somente I é correta. B Somente II é correta. C Todas estão corretas. D I e II estão corretas. E Somente III é correta.

A Somente I é correta. B Somente II é correta. C Todas estão corretas. D I e II estão corretas. E Somente III é correta. UECEVEST FÍSICA 2 ACÚSTICA PROF: ANDRADE QUESTÃO 01 Ondas de ultrassom são geradas por cristais oscilando rapidamente em um campo elétrico alternado e têm um alcance de frequência de mais de 20 khz. Durante

Leia mais

LISTA DE EXERCÍCIOS - ONDAS

LISTA DE EXERCÍCIOS - ONDAS UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 1 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis1 LISTA DE EXERCÍCIOS - ONDAS 013.1 1. Considere

Leia mais

CURCEP 2015 ACÚSTICA

CURCEP 2015 ACÚSTICA CURCEP 2015 ACÚSTICA FÍSICA B PROF.: BORBA INTRODUÇÃO É o segmento da Física que interpreta o comportamento das ondas sonoras audíveis frente aos diversos fenômenos ondulatórios. ONDA SONORA: Onda mecânica,

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 23 (pág. 78) AD TM TC. Aula 24 (pág. 79) AD TM TC. Aula 25 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 23 (pág. 78) AD TM TC. Aula 24 (pág. 79) AD TM TC. Aula 25 (pág. Física Setor A Prof.: Índice-controle de Estudo Aula 3 (pág. 78) AD M C Aula (pág. 79) AD M C Aula 5 (pág. 79) AD M C Aula 6 (pág. 8) AD M C Aula 7 (pág. 8) AD M C Aula 8 (pág. 83) AD M C Revisanglo Semi

Leia mais

ONDULATÓRIA. Neste capítulo vamos definir e classificar as ondas quanto à sua natureza e estudar alguns fenômenos ondulatórios.

ONDULATÓRIA. Neste capítulo vamos definir e classificar as ondas quanto à sua natureza e estudar alguns fenômenos ondulatórios. AULA 19 ONDULATÓRIA 1- INTRODUÇÃO Neste capítulo vamos definir e classificar as ondas quanto à sua natureza e estudar alguns fenômenos ondulatórios. 2- DEFINIÇÃO Onda é qualquer perturbação que se propaga

Leia mais

CAMPUS CENTRO 2ª CERTIFICAÇÃO - SÉRIE: 3ª TURMAS: 1301, 1303, 1305 E

CAMPUS CENTRO 2ª CERTIFICAÇÃO - SÉRIE: 3ª TURMAS: 1301, 1303, 1305 E ALUNO(A): COLÉGIO PEDRO II CAMPUS CENTRO 2ª CERTIFICAÇÃO - SÉRIE: 3ª TURMAS: 1301, 1303, 1305 E 1307 EXERCÍCIOS DE FÍSICA Lista Complementar de Ondas (Acústica) com gabarito comentado PROFESSOR: OSMAR

Leia mais

Lista de exercícios n 2 - Ondas Prof. Marco

Lista de exercícios n 2 - Ondas Prof. Marco o Lista de exercícios n 2 - Ondas Prof. Marco Ondas periódicas 1 Uma onda tem velocidade escalar igual a 240 m/s e seu comprimento de onda é 3,2 m. Quais são: (a) A freqüência; (b) O período da onda? [Resp.

Leia mais

1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C

1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C 1. (Fuvest 2012) A figura abaixo representa imagens instantâneas de duas cordas flexíveis idênticas, C 1 e C 2, tracionadas por forças diferentes, nas quais se propagam ondas. Durante uma aula, estudantes

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,

Leia mais

ACÚSTICA. Professor Paulo Christakis, M.Sc. 05/09/2016 1

ACÚSTICA. Professor Paulo Christakis, M.Sc. 05/09/2016 1 ACÚSTICA 05/09/2016 1 O QUE É ACÚSTICA? Acústica é o ramo da Física que estuda a propagação das ondas sonoras. O som é originado a partir da vibração da matéria em camadas de compressão e rarefação, sendo

Leia mais

3. Uma onda sonora produzida por uma fonte pontual dá origem a frentes de onda: a) esféricas. b) planas. c) cilíndricas. d) transversais.

3. Uma onda sonora produzida por uma fonte pontual dá origem a frentes de onda: a) esféricas. b) planas. c) cilíndricas. d) transversais. 1. Um bom projeto de uma sala de cinema deve contemplar materiais e formas, no teto e nas paredes, de modo que o som seja: a) absorvido. b) refletido. c) amplificado. d) difratado. 2. Quando aplicada na

Leia mais

Ondas Sonoras. Profo Josevi Carvalho

Ondas Sonoras. Profo Josevi Carvalho Ondas Sonoras Profo Josevi Carvalho INTRODUÇÃO É o ramo da Física que interpreta o comportamento das ondas sonoras audíveis frente aos diversos fenômenos ondulatórios. ONDA SONORA: Onda mecânica, longitudinal

Leia mais

ONDAS Ondas estacionárias Efeito Doppler - Eco

ONDAS Ondas estacionárias Efeito Doppler - Eco ONDAS 2016 Ondas estacionárias Efeito Doppler - Eco 1. (Fmp 2016) Um professor de física do ensino médio propôs um experimento para determinar a velocidade do som. Para isso, enrolou um tubo flexível de

Leia mais

Ensino Médio - Unidade São Judas Tadeu Professor (a): Leandro Aluno (a): Série: 2ª Data: / / LISTA DE FÍSICA II

Ensino Médio - Unidade São Judas Tadeu Professor (a): Leandro Aluno (a): Série: 2ª Data: / / LISTA DE FÍSICA II Ensino Médio - Unidade São Judas Tadeu Professor (a): Leandro Aluno (a): Série: 2ª Data: / / 2016. LISTA DE FÍSICA II Orientações: - A lista deverá ser respondida na própria folha impressa ou em folha

Leia mais

Tubos Sonoros. Assim como nas cordas vibrantes, nos ventres há interferência construtiva e nos nós ocorre interferência destrutiva.

Tubos Sonoros. Assim como nas cordas vibrantes, nos ventres há interferência construtiva e nos nós ocorre interferência destrutiva. Professor Caio Gomes Tubos Sonoros Considere um tubo de vidro onde uma fonte sonora passa a oscilar na extremidade aberta. Além do padrão de ondas estacionárias, devido as ondas incidentes e refletidas,

Leia mais

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Ondas Sonoras e Acústica

Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Ondas Sonoras e Acústica Sala de Estudos FÍSICA Lucas 3 trimestre Ensino Médio 1º ano classe: Prof.LUCAS Nome: nº Sala de Estudos: Ondas Sonoras e Acústica 1. (Unicamp 2007) O nível sonoro S é medido em decibéis (db) de acordo

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

Física. a) As intensidades da figura foram obtidas a uma distância r = 10 m da rodovia. Considere que a intensidade. do ruído sonoro é dada por I =

Física. a) As intensidades da figura foram obtidas a uma distância r = 10 m da rodovia. Considere que a intensidade. do ruído sonoro é dada por I = Física Revisão Prova bimestral 3 os anos Julio jun/11 Nome: Nº: Turma: 1. (Unicamp) O ruído sonoro nas proximidades de rodovias resulta, predominantemente, da compressão do ar pelos pneus de veículos que

Leia mais

1. (Ufmg 1997) Duas pessoas esticam um corda, puxando por suas. mesmo formato, mas estمo invertidos como mostra a figura.

1. (Ufmg 1997) Duas pessoas esticam um corda, puxando por suas. mesmo formato, mas estمo invertidos como mostra a figura. 1. (Ufmg 1997) Duas pessoas esticam um corda, puxando por suas extremidades, e cada uma envia um pulso na direçمo da outra. Os pulsos têm o mesmo formato, mas estمo invertidos como mostra a figura. Pode-se

Leia mais

ONDAS. Ondas Longitudinais: Ondas Transversais: Ondas Eletromagnéticas: Ondas Mecânicas:

ONDAS. Ondas Longitudinais: Ondas Transversais: Ondas Eletromagnéticas: Ondas Mecânicas: ONDAS Uma onda é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. Fisicamente, uma onda é um pulso energético que se propaga através do espaço ou através de um meio (líquido,

Leia mais

Observação: As ondas são as que antecedem, a perturbação formada de espumas, há o transporte de energia e a oscilação, não há o transporte da matéria.

Observação: As ondas são as que antecedem, a perturbação formada de espumas, há o transporte de energia e a oscilação, não há o transporte da matéria. ONDAS Para a Física, a onda é uma perturbação que se propaga no espaço ou em qualquer outro meio. Elas são classificadas em relação à natureza, direção e energia de propagação. Definição: As ondas são

Leia mais

A) interferência. B) refração. C) dispersão. D) difração. E) difusão.

A) interferência. B) refração. C) dispersão. D) difração. E) difusão. 02- (Simulado Hora do Enem adaptada) As borboletas azuis O brilhante azul metálico das asas das borboletas do gênero morpho não é resultado de pigmentação, mas provocado pela reflexão da luz em minúsculas

Leia mais

TC 4 Revisão UECE 1 a. fase Física Prof. João Paulo

TC 4 Revisão UECE 1 a. fase Física Prof. João Paulo . (Uepg 0) Pêndulo simples é um sistema físico constituído por uma partícula material, presa na extremidade de um fio ideal capaz de se mover, sem atrito, em torno de um eixo que passa pela outra extremidade.

Leia mais

INTRODUÇÃO À ONDULATÓRIA

INTRODUÇÃO À ONDULATÓRIA INTRODUÇÃO À ONDULATÓRIA Considerações Iniciais Considerações Iniciais: O que é ONDA??? Perturbação produzida: PULSO O PULSO se movimenta a partir da região onde foi gerado: ONDA A onda se movimenta transferindo

Leia mais

Ondas. Definição: Onda é uma perturbação de partículas de um meio ou cargas elétricas, sendo uma propagação de energia sem o transporte de matéria.

Ondas. Definição: Onda é uma perturbação de partículas de um meio ou cargas elétricas, sendo uma propagação de energia sem o transporte de matéria. Ondas Quando batemos na superfície da água formam-se ondas que se propagam em todas as direções. Ocorre o mesmo quando um alto falante bate no ar da atmosfera ou então quando batemos em uma corda. Essas

Leia mais

Professor: Gabriel Alves

Professor: Gabriel Alves Professor: Gabriel Alves Questão 01 - (FAMERP SP) Um forno de micro-ondas funciona fazendo com que as moléculas de água presentes nos alimentos vibrem, gerando calor. O processo baseia-se nos fenômenos

Leia mais

Boa Prova e... Aquele Abraço!!!!!!!! Virgílio.

Boa Prova e... Aquele Abraço!!!!!!!! Virgílio. PROVA DE FÍSICA 3 o TRIMESTRE DE 2015 PROF. VIRGÍLIO NOME Nº 9º ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o ano.

Leia mais

CAPÍTULO VII ONDAS MECÂNICAS

CAPÍTULO VII ONDAS MECÂNICAS CAPÍTULO VII ONDAS MECÂNICAS 7.1. INTRODUÇÃO As ondas mecânicas são fenómenos ondulatórios que necessitam de um meio material para se propagarem. Como exemplos destas ondas, vamos estudar neste capítulo

Leia mais

Aula-9 Ondas II parte 2. Física Geral IV - FIS503 1º semestre, 2017

Aula-9 Ondas II parte 2. Física Geral IV - FIS503 1º semestre, 2017 Aula-9 Ondas II parte 2 Física Geral IV - FIS503 1º semestre, 2017 Ondas estacionárias: tubos : Open : Closed Ondas estacionárias: tubos abertos λ= L= v f λ1 2 v f1 = 2L L = λ2 f2 = v = 2 f1 L 3 L = λ3

Leia mais

Definição de Onda. Propriedade fundamental das ondas

Definição de Onda. Propriedade fundamental das ondas Apostila 7 Setor B Aulas 33 a 35 Página 147 Ondulatória Definição de Onda Onda é qualquer perturbação que se propaga através de um meio. Propriedade fundamental das ondas Uma onda transmite energia, sem

Leia mais

Apostila 8 Setor B. Aulas 37 e 38. Página 150. G n o m o

Apostila 8 Setor B. Aulas 37 e 38. Página 150. G n o m o Apostila 8 Setor B Aulas 37 e 38 FENÔMENOS Página 150 ONDULATÓRIOS G n o m o Frentes de Onda a) Fonte pontual b) Fonte reta Reflexão 1ª lei: o raio incidente, a reta normal no ponto de incidência e o raio

Leia mais

Estudo das ondas. Modelo corpuscular de transferência de energia. v 1. v = 0. v 2. Antes do choque. Depois do choque

Estudo das ondas. Modelo corpuscular de transferência de energia. v 1. v = 0. v 2. Antes do choque. Depois do choque Estudo das ondas Estudo das ondas Modelo corpuscular de transferência de energia v = 0 v 1 v v 2 Antes do choque Depois do choque Estudo das ondas Modelo ondulatório A Pulso da onda B Modelo ondulatório

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Correção dos exercícios de ondas elásticas. Prof. Sérgio Talim

Correção dos exercícios de ondas elásticas. Prof. Sérgio Talim Correção dos exercícios de ondas elásticas Prof. Sérgio Talim 1) Talita produz ondas em uma piscina batendo com a mão na superfície da água. Na mesma piscina há uma rolha boiando a certa distância da mão

Leia mais

2ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM

2ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM 2ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LMAC, LEGM 1.a) A Figura 1 representa uma onda aproximadamente sinusoidal no mar e uma bóia para prender um barco, que efectua 10 oscilações por minuto.

Leia mais

Professor: Gabriel Alves

Professor: Gabriel Alves Professor: Gabriel Alves Questão 01 - (FM Petrópolis RJ/2016) Um professor de física do ensino médio propôs um experimento para determinar a velocidade do som. Para isso, enrolou um tubo flexível de 5,0

Leia mais

Ondulatória Parte 1. Física_9 EF. Profa. Kelly Pascoalino

Ondulatória Parte 1. Física_9 EF. Profa. Kelly Pascoalino Ondulatória Parte 1 Física_9 EF Profa. Kelly Pascoalino Nesta aula: Introdução; Ondas mecânicas; Ondas sonoras. INTRODUÇÃO Ondas de vários tipos estão presentes em nossas vidas. Lidamos com os mais diversos

Leia mais

Qualidades do som. Altura. Intensidade

Qualidades do som. Altura. Intensidade Acústica É a parte da Física que estuda o som e suas propriedades. Ondas sonoras As ondas sonoras apresentam as mesmas propriedades dos demais tipos de ondas: reflexão, refração, difração e interferência.

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Fuvest 2014) O Sr. Rubinato, um músico aposentado, gosta de ouvir seus velhos discos sentado em uma poltrona. Está ouvindo um conhecido solo de violino quando sua esposa Matilde afasta a caixa acústica

Leia mais

LISTA DE EXERCÍCIOS Nº 3

LISTA DE EXERCÍCIOS Nº 3 LISTA DE EXERCÍCIOS Nº 3 Questões 1) Na Figura 1, três longos tubos (A, B e C) são preenchidos com diferentes gases em diferentes pressões. A razão entre o módulo da elasticidade volumar e a densidade

Leia mais

CAPÍTULO I ONDAS MECÂNICAS

CAPÍTULO I ONDAS MECÂNICAS CAPÍTULO I ONDAS MECÂNICAS QUESTÕES 1. Suponha que o vento esteja soprando. Isso causa um efeito Doppler sobre um som que esteja se deslocando através do ar? É como uma fonte em movimento ou um observador

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Perguntas: 1. A figura 1a mostra um instantâneo de uma onda que se propaga no sentido

Leia mais

Ondas. A propagação de uma onda não transporta matéria e sim energia.

Ondas. A propagação de uma onda não transporta matéria e sim energia. Ondas Seja um meio material qualquer em que associamos, a cada um de seus pontos, uma ou mais grandezas físicas. Quando alteramos pelo menos uma dessas grandezas, dizemos que o meio está sofrendo uma perturbação.

Leia mais

FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010.

FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010. FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010. 1) (Halliday) A densidade linear de uma corda vibrante é 1,3 x 10-4 kg/m. Uma onda transversal propaga-se na corda e é descrita pela equação:

Leia mais

b) átomos do dielétrico absorvem elétrons da placa negativa para completar suas camadas eletrônicas externas;

b) átomos do dielétrico absorvem elétrons da placa negativa para completar suas camadas eletrônicas externas; GOIÂNIA, _28 / 10 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016 No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente

Leia mais

Ondas. Denomina-se onda o movimento causado por uma perturbação que se propaga através de um meio.

Ondas. Denomina-se onda o movimento causado por uma perturbação que se propaga através de um meio. Ondas Ondas Denomina-se onda o movimento causado por uma perturbação que se propaga através de um meio. Uma onda transmite energia sem o transporte de matéria. Classificação Quanto à natureza Ondas mecânicas:

Leia mais

Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 2ª série EM A Data: Nome do aluno Nº Turma

Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 2ª série EM A Data: Nome do aluno Nº Turma Processo Avaliativo AVP - 4º Bimestre/2016 Disciplina: Física 2ª série EM A Data: Nome do aluno Nº Turma Atividade Avaliativa: entregar a resolução de todas as questões. 1. (Fuvest 2013) A tabela traz

Leia mais

Física 3. Cap 21 Superposição

Física 3. Cap 21 Superposição Física 3 Cap 21 Superposição Interferência entre ondas Duas ou mais ondas se combinam formando uma única onda resultante cujo deslocamento é dado pelo princípio da superposição: Dres = D1 + D2 + = Σi Di

Leia mais

PROVA DE FÍSICA 2 o TRIMESTRE DE 2015

PROVA DE FÍSICA 2 o TRIMESTRE DE 2015 PROVA DE FÍSICA 2 o TRIMESTRE DE 2015 PROF. VIRGÍLIO NOME Nº 9º ANO Olá, caro(a) aluno(a). Segue abaixo uma série de exercícios que têm, como base, o que foi trabalhado em sala de aula durante todo o ano.

Leia mais

Correção da Trabalho de Grupo 1 Física e Química do 8ºAno

Correção da Trabalho de Grupo 1 Física e Química do 8ºAno Correção da Trabalho de Grupo 1 Física e Química do 8ºno no Letivo:2013/2014 Data: Janeiro 2014 Professora: Neide Pimentel 1- Classifica as afirmações seguintes em verdadeiras (V) ou falsas (F). Corrige

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1 ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez. 2015 Versão 1 11º Ano Turma A e B Duração da prova: 90 minutos. Este teste é constituído por 10 páginas e termina na palavra FIM Nome:

Leia mais

(RASCUNHO) 4 O F24 Tarde C 17/11/2009. Esta prova contém 4 questões.

(RASCUNHO) 4 O F24 Tarde C 17/11/2009. Esta prova contém 4 questões. 4 O F24 Tarde C 17/11/2009 Esta prova contém 4 questões. INSTRUÇÕES: Verifique se sua prova está completa. Preencha corretamente todos os dados solicitados no cabeçalho. Resoluções e respostas somente

Leia mais

O que são s o ondas sonoras? Ondas? Mecânicas? Longitudinais? O que significa?

O que são s o ondas sonoras? Ondas? Mecânicas? Longitudinais? O que significa? Movimento Ondulatório Fisíca Aplicada a Imaginologia - 115 O que são s o ondas sonoras? São ondas mecânicas, longitudinais que podem se propagar em sólidos, líquidos e gases. Ondas? Mecânicas? Longitudinais?

Leia mais

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI)

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) 1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) a) Quais são a velocidade e a direção de deslocamento da onda? b) Qual é o deslocamento vertical da corda em t=0, x=0,100

Leia mais

Lista Aula 24. É (são) verdadeira(s): a) todas b) nenhuma c) somente II d) II e III e) somente III

Lista Aula 24. É (são) verdadeira(s): a) todas b) nenhuma c) somente II d) II e III e) somente III 1. (Uece 2015) Dentre as fontes de energia eletromagnéticas mais comumente observadas no dia a dia estão o Sol, os celulares e as antenas de emissoras de rádio e TV. A característica comum a todas essas

Leia mais

FÍSICA II. 02. Uma das extremidades de um fio de comprimento 3,0 m é presa a um diapasão elétrico; a outra passa por

FÍSICA II. 02. Uma das extremidades de um fio de comprimento 3,0 m é presa a um diapasão elétrico; a outra passa por FÍSICA II Esta prova tem por finalidade verificar seus conhecimentos das leis que regem a natureza. Interprete as questões do modo mais simples e usual. Não considere complicações adicionais por fatores

Leia mais

Ondas sonoras. Qualidades fisiológicas de uma onda sonora

Ondas sonoras. Qualidades fisiológicas de uma onda sonora Ondas sonoras As ondas mecânicas que propiciam o fenômeno da audição aos seres vivos são chamadas de ondas sonoras. Como todas as ondas mecânicas, as ondas sonoras podem se propagar nos mais diversos meios,

Leia mais

As principais formas de oscilação são: Massa - mola Pêndulo Ondas em uma superfície.

As principais formas de oscilação são: Massa - mola Pêndulo Ondas em uma superfície. Tudo ao nosso redor oscila!!! As principais formas de oscilação são: Ondas Massa - mola Pêndulo Ondas em uma superfície. O que é um pêndulo? Um corpo suspenso por um fio, afastado da posição de equilíbrio

Leia mais

Ondas. Onda é uma perturbação em movimento

Ondas. Onda é uma perturbação em movimento Ondas Onda é uma perturbação em movimento Um meio em equilíbrio é perturbado e essa perturbação é transmitida, com atraso, aos pontos vizinhos As ondas não transportam matéria, mas sim energia. Uma onda

Leia mais

Física para Engenharia II - Prova P2-2012

Física para Engenharia II - Prova P2-2012 430196 Física para Engenharia II - Prova P - 01 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis

Leia mais

ONDAS. é solução da equação de propagação de onda

ONDAS. é solução da equação de propagação de onda ONDAS 1. Uma estação de rádio emite a uma frequência de 760 khz. A velocidade das ondas de rádio é igual a 3 10 8 m/s. Determine o respectivo comprimento de onda (c.d.o.). 2. Um diapasão oscila com a frequência

Leia mais

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II ONDAS DA CORDA AO SOM

RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS Física Experimental II ONDAS DA CORDA AO SOM UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE FÍSICA RELATÓRIO DE PRÁTICA EXPERIMENTAL FIS01260 - Física Experimental II ONDAS DA CORDA AO SOM Porto Alegre, 28 de Maio de 2015. Nome: Vítor de

Leia mais

Ondas Estacionárias em uma Corda

Ondas Estacionárias em uma Corda Ondas Estacionárias em uma Corda INTRODUÇÃO Ondas estacionárias em uma corda finita Em uma corda uniforme de densidade linear de massa, submetida a uma tensão T, a velocidade de propagação v de um pulso

Leia mais

TEXTO INTRODUTÓRIO. Luz e Ondas Eletromagnéticas ONDAS: Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz

TEXTO INTRODUTÓRIO. Luz e Ondas Eletromagnéticas ONDAS: Licenciatura em Ciências USP/ Univesp. Luiz Nunes de Oliveira Daniela Jacobovitz 1 ONDAS: CONCEITOS BÁSICOS Luiz Nunes de Oliveira Daniela Jacobovitz TEXTO INTRODUTÓRIO Licenciatura em Ciências USP/ Univesp Licenciatura em Ciências USP/Univesp Módulo 1 2 Para compreender a natureza

Leia mais

7,9g / cm. e a do alumínio é

7,9g / cm. e a do alumínio é 1. (Unicamp 015) O primeiro trecho do monotrilho de São Paulo, entre as estações Vila Prudente e Oratório, foi inaugurado em agosto de 014. Uma das vantagens do trem utilizado em São Paulo é que cada carro

Leia mais

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico

Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico Sala de Estudos FÍSICA - Lucas 2 trimestre Ensino Médio 3º ano classe: Prof.LUCAS Nome: nº Sala de Estudos Força Elástica e Trabalho Mecânico 1. (Uern 2013) A tabela apresenta a força elástica e a deformação

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

O Som O som é uma onda mecânica, pois necessita de um meio material para se propagar. O Som. Todos os sons resultam de uma vibração (ou oscilação).

O Som O som é uma onda mecânica, pois necessita de um meio material para se propagar. O Som. Todos os sons resultam de uma vibração (ou oscilação). O Som Todos os sons resultam de uma vibração (ou oscilação). O Som O som é uma onda mecânica, pois necessita de um meio material para se propagar. As ondas sonoras são longitudinais. Resultam de compressões

Leia mais

Cordas Vibrantes. 1. Objetivos. 2. Introdução

Cordas Vibrantes. 1. Objetivos. 2. Introdução Cordas Vibrantes 1. Objetivos Objetivamos averiguar o efeito de ressonância em um fio tensionado e, a partir desse estudo, determinar uma expressão empírica que estabeleça uma conexão entre as frequências

Leia mais

GABARITO SIMULADO DISCURSIVO 2 3ª SÉRIE 2014

GABARITO SIMULADO DISCURSIVO 2 3ª SÉRIE 2014 GABARITO SIMULADO DISCURSIVO 3ª SÉRIE 014 1) Os peixes da família Toxotidae, pertencentes à ordem dos Perciformes, naturais da Ásia e da Austrália, são encontrados em lagoas e no litoral. Eles são vulgarmente

Leia mais

ONDAS SONORAS. Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos:

ONDAS SONORAS. Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos: ONDAS SONORAS Nesta aula estudaremos ondas sonoras e nos concentraremos nos seguintes tópicos: Velocidade das ondas sonoras. Relação entre a amplitude do deslocamento e a pressão. Interferência de ondas

Leia mais

2ª Lista de exercícios de Fenômenos Ondulatórios

2ª Lista de exercícios de Fenômenos Ondulatórios 2ª Lista de exercícios de Fenômenos Ondulatórios Prof. Renato 1. Dada uma onda em uma corda como função de x e t. No tempo igual a zero essa onda é representada na figura seguir (y em função de x): 0,6

Leia mais

Fís. Leonardo Gomes (Caio Rodrigues)

Fís. Leonardo Gomes (Caio Rodrigues) Semana 14 Leonardo Gomes (Caio Rodrigues) Este conteúdo pertence ao Descomplica. Está vedada a cópia ou a reprodução não autorizada previamente e por escrito. Todos os direitos reservados. 17 Exercícios

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

FIS01183 Prova 3 Semestre 2010/1 Turma H/HH. Em todas as questões explicite seu raciocínio e os cálculos realizados. Boa prova!

FIS01183 Prova 3 Semestre 2010/1 Turma H/HH. Em todas as questões explicite seu raciocínio e os cálculos realizados. Boa prova! FIS01183 Prova 3 Semestre 2010/1 Turma H/HH Nome: Matrícula: Em todas as questões explicite seu raciocínio e os cálculos realizados. Boa prova! 1. O experimento de ondas na corda realizado em laboratório

Leia mais

CIÊNCIAS 9 ANO PROF.ª GISELLE PALMEIRA PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL

CIÊNCIAS 9 ANO PROF.ª GISELLE PALMEIRA PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL CIÊNCIAS 9 ANO PROF.ª MÁRCIA MACIEL ENSINO FUNDAMENTAL PROF.ª GISELLE PALMEIRA REVISÃO Unidade IV Ser humano e saúde 2 REVISÃO Aula 24.1 Revisão e Avaliação 3 REVISÃO 1 A Ciência do movimento Vamos observar

Leia mais

SOM. Para ouvir um som são necessários os seguintes elementos: PROPAGAÇÃO DO SOM

SOM. Para ouvir um som são necessários os seguintes elementos: PROPAGAÇÃO DO SOM SOM O som corresponde à vibração de partículas constituintes de um meio material elástico (onda sonora). Para termos uma sensação sonora é necessário que se produzam, pelo menos, vinte vibrações por segundo

Leia mais

Prof. Dr. Lucas Barboza Sarno da Silva

Prof. Dr. Lucas Barboza Sarno da Silva Prof. Dr. Lucas Barboza Sarno da Silva Superposição de ondas harmônicas Um importante aspecto do comportamento das ondas é o efeito combinado de duas ou mais ondas que se propagam num mesmo meio. Princípio

Leia mais

IX Olimpíada Ibero-Americana de Física

IX Olimpíada Ibero-Americana de Física 1 IX Olimpíada Ibero-Americana de Física Salvador, Setembro de 2004 Questão 1 - Sensores Hall (10 pontos) H * H 8 0 Figura 1: Chapinha de material semicondutor atravessada por uma corrente I colocada em

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Física B Extensivo V. 5 Exercícios 0) B Porque o que se transporta é a perturbação, e não matéria. 0) E Uma onda é uma pertubação que se propaga através de um meio e que, durante sua propagação, transmite

Leia mais

Ficha de Trabalho 3 Física e Química do 8ºAno

Ficha de Trabalho 3 Física e Química do 8ºAno Ficha de Trabalho 3 Física e Química do 8ºAno Ano Letivo:2013/2014 Data: janeiro de 2014 Som e Luz Professora: Neide Pimentel 1- Classifica as afirmações seguintes em verdadeiras (V) ou falsas (F). Corrige

Leia mais

Lista Básica Aulas 22 e 23 Frente 3

Lista Básica Aulas 22 e 23 Frente 3 TEXTO PARA A PRÓXIMA QUESTÃO: Considere os dados abaixo para resolver a(s) questão(ões), quando for necessário. Constantes físicas Aceleração da gravidade próximo à superfície da Terra: Aceleração da gravidade

Leia mais

Introdução às Medidas em Física 11 a Aula *

Introdução às Medidas em Física 11 a Aula * Introdução às Medidas em Física 11 a Aula * http://fge.if.usp.br/~takagui/fap0152_2010/ Marcia Takagui Ed. Ala 1 * Baseada em Suaide/ Munhoz 2006 sala 216 ramal 6811 1 Cordas vibrantes Parte 1! Objetivos:

Leia mais

Polarização de Ondas

Polarização de Ondas Polarização de Ondas 1. polarização de Ondas. Considere uma onda transversal se propagando numa corda, na qual as direções de oscilação são totalmente aleatórias. Após a passagem da onda pela fenda, a

Leia mais

Modos Normais de Vibração. Ressonância num Tubo Fechado

Modos Normais de Vibração. Ressonância num Tubo Fechado Modos Normais de Vibração. Ressonância num Tubo Fechado Prof. Niels Fontes Lima Instituto Federal de Educação, Ciência e Tecnologia da Bahia Determinação da resposta de um tubo fechado em ambas extremidades

Leia mais

Exercícios de Física Movimento Harmônico Simples - MHS

Exercícios de Física Movimento Harmônico Simples - MHS Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o

Leia mais

MARATONA PISM 3 PROFESSOR ALEXANDRE SCHMITZ

MARATONA PISM 3 PROFESSOR ALEXANDRE SCHMITZ MARATONA PISM 3 PROFESSOR ALEXANDRE SCHMITZ TÓPICO 1 - ELETROMAGNETISMO FORÇA ELÉTRICA ELETROSTÁTICA CAMPO ELÉTRICO ELETRICIDADE ELETRODINÂMICA POTENCIAL ELÉTRICO MAGNETISMO ELETROMAGNETISMO EXEMPLO 1

Leia mais

IJSO Preparação de Física (Lista 03) Aluno: Código:

IJSO Preparação de Física (Lista 03) Aluno: Código: IJSO Preparação de Física (Lista 03) Aluno: Código: Dados: g = 10 m /s 2 1 atm = 1,0.10 5 Pa Parte I: Questões (valor: 8,5) 01. (1,0) Dois trens I e II, cujas frentes distam A metros entre si no instante

Leia mais

F 228 Primeiro semestre de 2010 Lista 6 Ondas II. 2) Uma onda sonora senoidal é descrita pelo deslocamento

F 228 Primeiro semestre de 2010 Lista 6 Ondas II. 2) Uma onda sonora senoidal é descrita pelo deslocamento F 228 Primeiro semestre de 2010 Lista 6 Ondas II 1) Basicamente, os terremotos são ondas sonoras que se propagam através da Terra. Elas são chamadas de ondas sísmicas longitudinais e transversais. Essas

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Objetivo Geral: Determinar a velocidade de propagação do som no ar através da interpretação do padrão de ondas estacionárias formadas em um tubo sonoro fechado. *Anote a incerteza dos instrumentos de medida

Leia mais

Exercícios de ondas 4 Período de Engenharia Civil UNIPAC TO Professor Arnon Rihs Acesse: Canal youtube: Arnon Rihs

Exercícios de ondas 4 Período de Engenharia Civil UNIPAC TO Professor Arnon Rihs Acesse:  Canal youtube: Arnon Rihs Exercícios de ondas 4 Período de Engenharia Civil UNIPAC TO Professor Arnon Rihs Acesse: www.professorarnon.com Canal youtube: Arnon Rihs Seis defeitos devem ser evitados por um homem que busca a prosperidade

Leia mais

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física

COLÉGIO SHALOM. Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física COLÉGIO SHALOM Trabalho de recuperação Ensino Médio 2º Ano Profº: Wesley da Silva Mota Física Entrega na data da prova Aluno (a) :. No. 01-(Ufrrj-RJ) A figura a seguir mostra um atleta de ginástica olímpica

Leia mais

As figuras acima mostram as linhas de indução de um campo magnético uniforme B r

As figuras acima mostram as linhas de indução de um campo magnético uniforme B r 1) No sistema mostrado abaixo, as roldanas e os fios são ideais e o atrito é considerado desprezível. As roldanas A, B, e C são fixas e as demais são móveis sendo que o raio da roldana F é o dobro do raio

Leia mais

Parte 2 - PF de Física I NOME: DRE Teste 1

Parte 2 - PF de Física I NOME: DRE Teste 1 Parte 2 - PF de Física I - 2017-1 NOME: DRE Teste 1 Nota Q1 Questão 1 - [2,5 ponto] Um astronauta está ligado a uma nave no espaço através de uma corda de 120 m de comprimento, que está completamente estendida

Leia mais

1. (Ufrgs 2007) Considere as seguintes afirmações a respeito de ondas sonoras.

1. (Ufrgs 2007) Considere as seguintes afirmações a respeito de ondas sonoras. 8º lista-qualidades do som 1. (Ufrgs 007) Considere as seguintes afirmações a respeito de ondas sonoras. I - A onda sonora refletida em uma parede rígida sofre inversão de fase em relação à onda incidente.

Leia mais

Exercícios de Revisão Global 3º Bimestre

Exercícios de Revisão Global 3º Bimestre Exercícios de Revisão Global 3º Bimestre 1. Um aluno está olhando de frente para uma superfície metálica totalmente polida. Explique como o aluno se enxerga e qual o nome deste fenômeno? A explicação está

Leia mais

Aula-6 Ondas IΙ. Física Geral IV - FIS503 1º semestre, 2017

Aula-6 Ondas IΙ. Física Geral IV - FIS503 1º semestre, 2017 Aula-6 Ondas IΙ Física Geral IV - FIS503 1º semestre, 2017 Interferência Duas ondas de amplitudes (A) iguais: y1 (x, t ) = Asin(kx ωt ) y2 (x, t ) = Asin(kx ωt + φ ) y(x, t ) = y1 (x, t ) + y2 (x, t )

Leia mais