Verificação de Qualidade de Imagens de Fundo de Olho a Partir de Descritores Baseados em Histogramas. Marina Silva Fouto - Reconhecimento de Padrões

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Verificação de Qualidade de Imagens de Fundo de Olho a Partir de Descritores Baseados em Histogramas. Marina Silva Fouto - Reconhecimento de Padrões"

Transcrição

1 Verificação de Qualidade de Imagens de Fundo de Olho a Partir de Descritores Baseados em Histogramas Marina Silva Fouto - Reconhecimento de Padrões

2 Tópicos Importância Trabalhos Relacionados Imagens e tratamento prévio Geração dos histogramas e descritor Classificação Conclusão Referências

3 Importância A clareza das imagens de retina é extremamente importante para o correto diagnóstico de doenças; Parametros necessários para corretude: foco e claridade, definição de campo, visibilidade da mácula, visibilidade do disco óptico e artefatos; Artefatos podem ser gerados por poeira, oclusão parcial por cílios, má iluminação em regiões de interesse, piscar total do olho, entre outras coisas.

4 Importância A qualidade da imagem pode depender do tipo de doença que se deseja diagnosticar regiões escuras podem ser ruins para identificar algumas doenças e úteis para identificar outras; Este trabalho foca em classificar imagens como possuindo qualidade boa ou ruim em geral, sem levar em conta doenças específicas.

5 Trabalhos Relacionados Niemeijer et al. 2006; Utiliza bases proprietárias, dividindo conjuntos de testes independentes com 1000 amostras, 500 de imagens boas, 500 de imagens ruins; Criação de cluster para reduzir a quantidade de características da aplicação de um conjunto de filtros multi escala a cada pixel das imagens; Classifica a imagem utilizando SVM, KNN, classificador de discriminante quadrático e linear e dentre eles, o SVM foi o classificador que obteve melhores resultados.

6 Trabalhos Relacionados Lalonde et al. 2001; Utiliza histogramas de distribuição de magnitude de borda e distribuição local de intensidade dos pixels, gerando um histograma ótimo gerado a partir de um conjunto considerado ótimo de imagens (retiradas da base Messidor); A classificação é feita comparando-se os histogramas das imagens analisadas com o histograma ótimo. Além disso, são gerados histogramas de regiões de interesse da imagem e este é comparado ao histograma da mesma região da imagem ótima; O resultado esperado é que a média de pixels da imagem analisada seja próxima a média de pixels da imagem ótima para ela ser considerada boa.

7 Trabalhos Relacionados Pires et al Utiliza vários atributos das imagens para criação do descritor cor foco contraste iluminação Avaliação final feita com classificadores SVM, KNN e redes neurais; Classificação em gradable e ungradable, obtendo resultados próximos de 100% de especifidade e sensitividade

8 Base de Imagens A base de imagens foi criada utilizando imagens da base Messidor e imagens retiradas do Retina Image Bank Base Messidor = imagens boas Retina Image Bank = imagens ruins A base foi criada de acordo com a quantidade de imagens de qualidade ruim obtida, de forma que as imagens tivessem aparência o mais uniforme possível entre si, com relação a tamanho e formato. Imagens borradas foram geradas a partir de imagens da base Messidor e apesar de ter qualidade ruim para localizar vasos e outras regiões, foram consideradas como uma classe separada

9 Exemplos de imagens da base Exemplos das imagens existentes na base: boa, borrada, ruim. As imagens foram redimensionadas e somente a banda verde foi utilizada.

10 Geração dos histogramas e descritor Foram gerados histogramas normalizados para todas as imagens, trazendo 256 características para cada uma; Estes foram salvo em um arquivo onde cada linha representa uma imagem e cada uma das 256 características representam a quantidade de tons de cinza que aparecem na imagem; Além do arquivo do descritor, também foi criado um arquivo que contem os rótulos de cada amostra, de acordo com a ordem em que aparecem no descritor.

11 Comparação de histogramas Exemplo de histograma normalizado de imagens boas

12 Comparação de histogramas Exemplo de histograma normalizado de imagens degradadas por filtro de Fourier

13 Comparação de histogramas Exemplo de histograma normalizado de imagens ruins

14 Classificação Para fazer a classificação, foi utilizada a biblioteca Scikit-learn do Python Ferramenta open source específica para aprendizado de máquina Tomando por base a revisão bibliográfica, foram escolhidos os classificadores SVM com kernel linear e KNN com k=3. Testes foram realizados com o descritor em tamanho original e com dimensionalidade reduzida utilizando PCA, reduzindo a 4 características

15 Redução de dimensionalidade com PCA Redução de 256 características para 2, para visualização da distribuição dos elementos

16 Classificação A redução com PCA não trouxe muitos ganhos, e foi feita por ser conhecido que o classificador SVM pode trazer resultados ruins caso o número de características seja muito maior que o de amostras; O SVM com kernel linear foi escolhido por ser o que melhor trabalha com descritores multi-classes, implementando a estratégia um contra o resto

17 Classificação O método utilizado para a classificação foi gerar aleatoriamente os conjuntos de treinamento e teste nas primeiras iterações e salvar os que dessem bons resultados; O arquivo era então utilizado como treinamento sempre e mudava-se os arquivos de testes para analisar a qualidade dos resultados obtidos.

18 Classificação Resultados obtidos com os classificadores para os descritores de tamanho original e reduzidos com PCA

19 Conclusão Apesar de ter obtido bons resultados, a base utilizada para a execução do trabalho ainda é muito pequena e possui imagens alteradas manualmente; O próximo passo é aplicar estas técnicas a uma base privada, muito maior e não classificada e observar os resultados obtidos; Estuda-se utilizar classificações intermediárias como primeiro passo, conforme visto no levantamento bibliográfico, bem como gerar descritores baseados em regiões específicas da imagem.

20 Referências ARIC Grading Protocol (http://www.epi.ophth.wisc.edu/content/aric) Niemeijer, M., Abramoff, M. D., and van Ginneken, B. (2006). Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Medical image analysis, 10(6): Lalonde, M., Gagnon, L., and Boucher, M.-C. (2001). Automatic visual quality assessment in optical fundus images. Proceedings of Vision Interface 2001 Fleming, A. D., Philip, S., Goatman, K. A., Sharp, P. F., and Olson, J. A. (2012). Automated clarity assessment of retinal images using regionally based structural and statistical measures. Medical engineering and physics, 34(7): Pires Dias, J. M., Oliveira, C. M., and da Silva Cruz, L. A. (2012). Retinal image quality assessment using generic image quality indicators. Information Fusion. Giancardo, L., Abramoff, M., Chaum, E., Karnowski, T., Meriaudeau, F., and Tobin, K. (2008). Elliptical local vessel density: a fast and robust quality metric for retinal images. pages

21 Verificação de Qualidade de Imagens de Fundo de Olho a Partir de Descritores Baseados em Histogramas Marina Silva Fouto - Reconhecimento de Padrões

Análise do uso de diferentes bandas de cores na detecção do disco óptico em imagens de retina

Análise do uso de diferentes bandas de cores na detecção do disco óptico em imagens de retina Análise do uso de diferentes bandas de cores na detecção do disco óptico em imagens de retina Fernando A. Sousa, Luckas M. R. dos Santos e Rodrigo de M. S. Veras 1 Departamento de Computação Universidade

Leia mais

Luckas Santos. Rodrigo Veras, Fátima Medeiros Departamento de Computação Universidade Federal do Piauí Teresina, Piauí, Brasil

Luckas Santos. Rodrigo Veras, Fátima Medeiros Departamento de Computação Universidade Federal do Piauí Teresina, Piauí, Brasil ANÁLISE DO USO DE DIFERENTES BANDAS DE CORES NA DETECÇÃO DO DISCO ÓPTICO EM IMAGENS DE RETINA Luckas Santos Fernando Assunção Rodrigo Veras, Fátima Medeiros Departamento de Computação Universidade Federal

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Русский Tipo Data Cor Semana Classifi cado conforme o tipo de arquivo (por exemplo, imagem, vídeo ou voz) Classifi cado conforme a seqüência de datas registradas. Classifi cado conforme a cor

Leia mais

Trabalho 2 Fundamentos de computação Gráfica

Trabalho 2 Fundamentos de computação Gráfica Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho

Leia mais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Wesley B. Dourado, Renata N. Imada, Programa de Pós-Graduação em Matemática Aplicada e Computacional, FCT, UNESP,

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS Executar as principais técnicas utilizadas em processamento de imagens, como contraste, leitura de pixels, transformação IHS, operações aritméticas

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Algoritmo k Means Mestrado/Doutorado em Informática (PPGIa) Pontifícia Universidade Católica do Paraná (PUCPR) 2 Problema do Agrupamento Seja x = (x 1, x 2,,

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

29/08/2011. Radiologia Digital. Princípios Físicos da Imagem Digital 1. Mapeamento não-linear. Unidade de Aprendizagem Radiológica

29/08/2011. Radiologia Digital. Princípios Físicos da Imagem Digital 1. Mapeamento não-linear. Unidade de Aprendizagem Radiológica Mapeamento não-linear Radiologia Digital Unidade de Aprendizagem Radiológica Princípios Físicos da Imagem Digital 1 Professor Paulo Christakis 1 2 Sistema CAD Diagnóstico auxiliado por computador ( computer-aided

Leia mais

Figura 01: Aplicações do Filtro Espacial Passa-Baixa.

Figura 01: Aplicações do Filtro Espacial Passa-Baixa. 791 IMPLEMENTAÇÃO DE TÉCNICAS DE PRÉ-PROCESSAMENTO E PROCESSAMENTO DE IMAGENS PARA RADIOGRAFIAS CARPAIS Rafael Lima Alves 1 ; Michele Fúlvia Angelo 2 Bolsista PROBIC, Graduando em Engenharia de Computação,

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

Segmentação de Imagens

Segmentação de Imagens Segmentação de Imagens (Processamento Digital de Imagens) 1 / 36 Fundamentos A segmentação subdivide uma imagem em regiões ou objetos que a compõem; nível de detalhe depende do problema segmentação para

Leia mais

Extração de Características de Imagens da Retina pelo uso do SURF e LBP para Detecção Automática do Glaucoma

Extração de Características de Imagens da Retina pelo uso do SURF e LBP para Detecção Automática do Glaucoma Extração de Características de Imagens da Retina pelo uso do SURF e LBP para Detecção Automática do Glaucoma Wallinson L. Silva 1, Maíla L. Claro 1, Leonardo M. Santos 1, Flávio H. D. Araújo 1 1 Campus

Leia mais

Reconhecimento de Padrões Utilizando Filtros Casados

Reconhecimento de Padrões Utilizando Filtros Casados Detecção e estimação de sinais Reconhecimento de Padrões Utilizando Filtros Casados Aline da Rocha Gesualdi Mello, José Manuel de Seixas, Márcio Portes de Albuquerque, Eugênio Suares Caner, Marcelo Portes

Leia mais

2 Classificação de Imagens de Sensoriamento Remoto

2 Classificação de Imagens de Sensoriamento Remoto 2 Classificação de Imagens de Sensoriamento Remoto 2.1. Processamento Digital de Imagens Processamento Digital de Imagens entende-se como a manipulação de uma imagem por computador de modo que a entrada

Leia mais

Aula 5 - Classificação

Aula 5 - Classificação AULA 5 - Aula 5-1. por Pixel é o processo de extração de informação em imagens para reconhecer padrões e objetos homogêneos. Os Classificadores "pixel a pixel" utilizam apenas a informação espectral isoladamente

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto.

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto. Respostas Estudo Dirigido do Capítulo 12 Image Segmentation" 1 Com suas palavras explique quais os problemas que podem ocorrer em uma segmentação global baseada em níveis de cinza da imagem. Que técnicas

Leia mais

Processamento de histogramas

Processamento de histogramas REALCE DE IMAGENS BASEADO EM HISTOGRAMAS Processamento de histogramas O que é um histograma? É uma das ferramentas mais simples e úteis para o PDI; É uma função que mostra a frequência com que cada nível

Leia mais

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP Caio Augusto de Queiroz Souza caioaugusto@msn.com Éric Fleming Bonilha eric@digifort.com.br Gilson Torres Dias gilson@maempec.com.br Luciano

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 6 CLASSIFICAÇÃO DE IMAGENS Obter uma imagem temática a partir de métodos de classificação de imagens multi- espectrais 1. CLASSIFICAÇÃO POR PIXEL é o processo de extração

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF 2 OBJETIVOS Conhecer

Leia mais

Implementação de Algoritmo em PHP para Detecção de Faces em Imagens Estáticas

Implementação de Algoritmo em PHP para Detecção de Faces em Imagens Estáticas Implementação de Algoritmo em PHP para Detecção de Faces em Imagens Estáticas Helmiton Filho, Mikaelle Oliveira, Carlos Danilo Miranda Regis Instituto Federal de Educação, Ciência e Tecnologia da Paraíba

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 03 - operações no domínio espacial Antonio Oliveira Ricardo Marroquim 1 / 38 aula de hoje operações no domínio espacial overview imagem digital operações no

Leia mais

Operações Pontuais. Guillermo Cámara-Chávez

Operações Pontuais. Guillermo Cámara-Chávez Operações Pontuais Guillermo Cámara-Chávez Um modelo simples de formação de uma imagem Para que a imagem de uma cena real possa ser processada ou armazenda na forma digital deve passar por dois processos

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Apresentação do Curso e da Área de Processamento de Imagem Digital

Apresentação do Curso e da Área de Processamento de Imagem Digital Apresentação do Curso e da Área de Processamento de Imagem Digital Instituto de Computação - UNICAMP afalcao@ic.unicamp.br Introdução Este curso abordará conceitos e técnicas de processamento de imagem

Leia mais

Classificador de cédulas de Real: Duas abordagens, linear e não-linear

Classificador de cédulas de Real: Duas abordagens, linear e não-linear Classificador de cédulas de Real: Duas abordagens, linear e não-linear Lais C. R. S. Lopes 1 1 Instituto de Informática Universidade Federal de Goiás (UFG) Abstract. Real notes classification problem is

Leia mais

(b) Domínio espacial Reescalamento dos níveis de cinza Integração Diferenciação

(b) Domínio espacial Reescalamento dos níveis de cinza Integração Diferenciação TÉCNICAS DE REALCE (IMAGE ENHANCEMENT) Objetivo São projetadas para manipular a imagem com base em características psico-físicas do SVH, podendo até distorcer a imagem através do processo de retirar informações

Leia mais

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Luiz Maurílio da Silva Maciel 1, Marcelo Bernardes Vieira 1 1 Departamento de Ciência da Computação

Leia mais

Avaliação do uso de agrupamento semissupervisionado na segmentação do disco óptico em imagens de retina

Avaliação do uso de agrupamento semissupervisionado na segmentação do disco óptico em imagens de retina Avaliação do uso de agrupamento semissupervisionado na segmentação do disco óptico em imagens de retina Luis G. T. dos Santos 1, Marcos A. de S. Frazão 1, Rodrigo de M. S. Veras 1 1 Departamento de Computação,

Leia mais

ABERTURA DO BANCO DE DADOS. Felipe Correa Prof. Waterloo Pereira Filho

ABERTURA DO BANCO DE DADOS. Felipe Correa Prof. Waterloo Pereira Filho Tutorial Básico de Processamento de Imagens no Spring 4.3.3 Abertura do banco de dados Composição cor verdadeira Composição falsa-cor Ampliação linear de contraste Classificação não-supervisionada Classificação

Leia mais

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial Filtragem espacial é uma das principais ferramentas usadas em uma grande variedade de aplicações; A palavra filtro foi emprestada

Leia mais

CONTROLAR O PONTEIRO DO MOUSE UTILIZANDO O MOVIMENTO DE UM OLHO CAPTURADO ATRAVÉS DE UMA CÂMERA INFRAVERMELHA FIXA

CONTROLAR O PONTEIRO DO MOUSE UTILIZANDO O MOVIMENTO DE UM OLHO CAPTURADO ATRAVÉS DE UMA CÂMERA INFRAVERMELHA FIXA CONTROLAR O PONTEIRO DO MOUSE UTILIZANDO O MOVIMENTO DE UM OLHO CAPTURADO ATRAVÉS DE UMA CÂMERA INFRAVERMELHA FIXA Eduardo Henrique Sasse Acadêmico Paulo César Rodacki Gomes - Orientador Introdução Roteiro

Leia mais

Classificação de Imagens de Sensoriamento Remoto usando SVM

Classificação de Imagens de Sensoriamento Remoto usando SVM Raphael Belo da Silva Meloni Classificação de Imagens de Sensoriamento Remoto usando SVM Dissertação de Mestrado Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa

Leia mais

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha Filtragem As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem

Leia mais

Processamento de Imagem. Prof. Herondino

Processamento de Imagem. Prof. Herondino Processamento de Imagem Prof. Herondino Sensoriamento Remoto Para o Canada Centre for Remote Sensing - CCRS (2010), o sensoriamento remoto é a ciência (e em certa medida, a arte) de aquisição de informações

Leia mais

Profa. Dra. Soraia Raupp Musse Thanks to Prof. Dr. Cláudio Rosito Jung

Profa. Dra. Soraia Raupp Musse Thanks to Prof. Dr. Cláudio Rosito Jung Introdução ao Processamento de Imagens Profa. Dra. Soraia Raupp Musse Thanks to Prof. Dr. Cláudio Rosito Jung Introdução Processamento de Imagens: processamento de sinais bidimensionais (ou n-dimensionais).

Leia mais

Cap IV Cor. Aplicação de Algoritmos de Visão Computacional à Inspeção Industrial de Maçãs

Cap IV Cor. Aplicação de Algoritmos de Visão Computacional à Inspeção Industrial de Maçãs Cap IV Cor Aplicação de Algoritmos de Visão Computacional à Inspeção Industrial de Maçãs Disciplina: Tópicos em Engenharia de Computação VI Prof. Léo Pini Magalhães Apresentação por: Celso Henrique Cesila

Leia mais

VISUALIZAÇÃO E MANIPULAÇÕES SIMPLES DE IMAGENS GEOCOVER NO ArcGIS 9.x

VISUALIZAÇÃO E MANIPULAÇÕES SIMPLES DE IMAGENS GEOCOVER NO ArcGIS 9.x VISUALIZAÇÃO E MANIPULAÇÕES SIMPLES DE IMAGENS GEOCOVER NO ArcGIS 9.x TUTORIAL /2005 Elizete Domingues Salvador SUREG-SP elizete@sp.cprm.gov.br ÍNDICE 1. Adicionar imagem Geocover na área de trabalho do

Leia mais

Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de. Imagens de Teste do Sistema DTCOURO

Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de. Imagens de Teste do Sistema DTCOURO Desenvolvimento do Módulo de Pré-processamento e Geração de Imagens de Teste do Sistema DTCOURO Willian Paraguassu Amorim 27 de julho de 2005 1 Título Desenvolvimento do Módulo de Pré-processamento e Geração

Leia mais

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron.

PALAVRAS-CHAVE: Massas Nodulares, Classificação de Padrões, Redes Multi- Layer Perceptron. 1024 UMA ABORDAGEM BASEADA EM REDES PERCEPTRON MULTICAMADAS PARA A CLASSIFICAÇÃO DE MASSAS NODULARES EM IMAGENS MAMOGRÁFICAS Luan de Oliveira Moreira¹; Matheus Giovanni Pires² 1. Bolsista PROBIC, Graduando

Leia mais

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação.

A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. Limiarização A limiarização é uma das abordagens mais importantes de segmentação de imagens. A limiarização é um caso específico de segmentação. O princípio da limiarização consiste em separar as regiões

Leia mais

Comparação da avaliação automatizada do Phantom Mama em imagens digitais e digitalizadas

Comparação da avaliação automatizada do Phantom Mama em imagens digitais e digitalizadas Comparação da avaliação automatizada do Phantom Mama em imagens digitais e digitalizadas Priscila do Carmo Santana 1,2,3, Danielle Soares Gomes 3, Marcio Alves Oliveira 3 e Maria do Socorro Nogueira 3

Leia mais

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens Fundamentos de Imagens Digitais Aquisição e Serão apresentadas as principais características de uma imagem digital: imagem do ponto de vista matemático processo de aquisição e digitalização de uma imagem

Leia mais

Detecção em tempo real de movimentos de olhos e boca em um vídeo em cores

Detecção em tempo real de movimentos de olhos e boca em um vídeo em cores Detecção em tempo real de movimentos de olhos e boca em um vídeo em cores Daniel Ponciano dos Santos Barboza, Programa de Engenharia de Sistemas e Computação - PESC/COPPE Universidade Federal do Rio de

Leia mais

Controlando o trabalho impresso 1

Controlando o trabalho impresso 1 Controlando o trabalho impresso 1 O seu driver da impressora fornece a melhor qualidade de saída para vários tipos de necessidades de impressão. No entanto, você pode desejar ter mais controle sobre a

Leia mais

Tratamento da Imagem Transformações (cont.)

Tratamento da Imagem Transformações (cont.) Universidade Federal do Rio de Janeiro - IM/DCC & NCE Tratamento da Imagem Transformações (cont.) Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Tratamento de Imagens - Sumário Detalhado Objetivos Alguns

Leia mais

Análise da Influência de Diferentes Condições de Iluminação na Classificação de Faces Humanas em Imagens Digitais

Análise da Influência de Diferentes Condições de Iluminação na Classificação de Faces Humanas em Imagens Digitais REVISTA DE TECNOLOGIA DA INFORMAÇÃO E COMUNICAÇÃO, VOL. 3, NÚMERO 2, DEZEMBRO DE 2013. 9 Análise da Influência de Diferentes Condições de Iluminação na Classificação de Faces Humanas em Imagens Digitais

Leia mais

W. R. Silva Classificação de Mamografias pela densidade do tecido mamário

W. R. Silva Classificação de Mamografias pela densidade do tecido mamário Classificação de Mamografias pela densidade do tecido mamário Welber Ribeiro da Silva Universidade Federal de Ouro Preto Campus Universitário, Ouro Preto MG Brazil 19 de Abril de 2012 Definição Câncer

Leia mais

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores

Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Classificação de Imagens Tomográficas de Ciência dos Solos Utilizando Redes Neurais e Combinação de Classificadores Fabricio Aparecido Breve Prof. Dr. Nelson Delfino d Ávila Mascarenhas Apresentação Objetivos

Leia mais

Google Earth Search Engine: Classificação de imagens Aéreas

Google Earth Search Engine: Classificação de imagens Aéreas Google Earth Search Engine: Classificação de imagens Aéreas Susana Costa Orientada por: Prof. Doutor Hugo Proença Departamento de Informática Universidade da Beira Interior Covilhã, Portugal 18 de julho

Leia mais

Visão humana. Guillermo Cámara-Chávez

Visão humana. Guillermo Cámara-Chávez Visão humana Guillermo Cámara-Chávez Cor e visão humana Como uma imagem é formada? Uma imagem é formada a partir da quantidade de luz refletida ou emitida pelo objeto observado. Cor e visão humana Cor

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas. Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha

Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas. Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha Classificação em Imagens de Satélite e o Monitoramento de Hidrelétricas Mestrando: Rafael Walter de Albuquerque Orientador: José Alberto Quintanilha Introdução Mapeamento da cobertura e uso do solo: importante

Leia mais

Desenvolvimento de um Sistema Híbrido para Rastreamento

Desenvolvimento de um Sistema Híbrido para Rastreamento Desenvolvimento de um Sistema Híbrido para Rastreamento de Objetos aplicado ao Futebol de Robôs Eduardo W. Basso 1, Diego M. Pereira 2, Paulo Schreiner 2 1 Laboratório de Robótica Inteligente Instituto

Leia mais

5 Processamento e Análise Digital de Imagens

5 Processamento e Análise Digital de Imagens 52 5 Processamento e Análise Digital de Imagens A área de processamento digital de imagens vem evoluindo continuamente ao longo dos anos, com um aumento significativo de estudos envolvendo morfologia matemática,

Leia mais

Redes neurais aplicadas na identificação de variedades de soja

Redes neurais aplicadas na identificação de variedades de soja Redes neurais aplicadas na identificação de variedades de soja Fábio R. R. Padilha Universidade Regional do Noroeste do Estado do Rio Grande do Sul - UNIJUÍ Rua São Francisco, 5 - Sede Acadêmica, 987-,

Leia mais

APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO

APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO APLICAÇÕES PRÁTICAS DE PROCESSAMENTO DE IMAGENS EM SENSORIAMENTO REMOTO ESTÁGIO DOCÊNCIA ALUNA: ADRIANA AFFONSO (PROGRAMA DE PÓS- GRADUAÇÃO NO INPE MESTRADO EM SENSORIAMENTO REMOTO) ORIENTADOR: PROF. DR.

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

Relatório. José Jasnau Caeiro. Docente. Gildo Soares e Hugo Brás. Discentes. Tecnologias Biométricas. Mestrado em Engenharia da Segurança Informática

Relatório. José Jasnau Caeiro. Docente. Gildo Soares e Hugo Brás. Discentes. Tecnologias Biométricas. Mestrado em Engenharia da Segurança Informática Relatório José Jasnau Caeiro Docente Gildo Soares e Hugo Brás Discentes Tecnologias Biométricas Mestrado em Engenharia da Segurança Informática Junho 2012 Conteúdo Índice Geral......................................

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS

GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO DE IMAGENS LONDRINA PR 2014 GABRIEL FILLIPE CENTINI CAMPOS RECONHECIMENTO DE MARMOREIO DE CARNE BASEADO EM SEGMENTAÇÃO

Leia mais

RECONHECIMENTO DE FACES COM IMAGENS INFRAVERMELHAS

RECONHECIMENTO DE FACES COM IMAGENS INFRAVERMELHAS POLITÉCNICA RECONHECIMENTO DE FACES COM IMAGENS INFRAVERMELHAS Trabalho de Conclusão de Curso Engenharia da Computação Teógenes Eufrásio Bezerra Orientador: Prof. Bruno José Torres Fernandes TEÓGENES EUFRÁSIO

Leia mais

FOTOGRAFIA NA MONTANHA - Dicas

FOTOGRAFIA NA MONTANHA - Dicas FOTOGRAFIA NA MONTANHA - Dicas Tirar fotos não é apenas uma ação de apontar a máquina e apertar o botão (a menos que essa seja sua intenção artística). É necessário saber o que vai retratar e como vai

Leia mais

4 Avaliação Experimental

4 Avaliação Experimental 4 Avaliação Experimental Este capítulo apresenta uma avaliação experimental dos métodos e técnicas aplicados neste trabalho. Base para esta avaliação foi o protótipo descrito no capítulo anterior. Dentre

Leia mais

BACKUP 101: PLANEJAMENTOS E FERRAMENTAS

BACKUP 101: PLANEJAMENTOS E FERRAMENTAS BACKUP 101: PLANEJAMENTOS E FERRAMENTAS Jerônimo Medina Madruga (UFPel) Resumo: Em um mundo onde quase todo serviço conta informações digitais, a garantia da segurança desses dados muitas vezes é uma das

Leia mais

Scale-Invariant Feature Transform

Scale-Invariant Feature Transform Scale-Invariant Feature Transform Renato Madureira de Farias renatomdf@gmail.com Prof. Ricardo Marroquim Relatório para Introdução ao Processamento de Imagens (COS756) Universidade Federal do Rio de Janeiro,

Leia mais

Dokmee Page Counter. 2011 Office Gemini

Dokmee Page Counter. 2011 Office Gemini 2 Table of Contents Part I 1 Visão geral 2 Realizando uma Contagem Visualizando os resultados 4 Salvando o resultados 4 5 Removendo os Resultados 4 6 Inscrição 4 7 Seleção de Idioma 5 Part II Usando o

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO DEPARTAMENTO DE INFORMÁTICA PÓS GRADUAÇÃO EM INFORMÁTICA

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO DEPARTAMENTO DE INFORMÁTICA PÓS GRADUAÇÃO EM INFORMÁTICA PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO DEPARTAMENTO DE INFORMÁTICA PÓS GRADUAÇÃO EM INFORMÁTICA INF2608 FUNDAMENTOS DE COMPUTAÇÃO GRÁFICA RELATÓRIO: IMAGENS SÍSMICAS VISUALIZAÇÃO E DETECÇÃO

Leia mais

É um agente físico capaz de sensibilizar os nossos órgãos visuais.

É um agente físico capaz de sensibilizar os nossos órgãos visuais. É um agente físico capaz de sensibilizar os nossos órgãos visuais. Dispersão da luz Luz Branca v Prisma Vermelho Laranja Amarelo Verde Azul Anil Violeta COR Luz: As Primárias São: Vermelho, Verde e Azul

Leia mais

Protótipo tipo de um Ambiente para Processamento de Imagens Raster 2D

Protótipo tipo de um Ambiente para Processamento de Imagens Raster 2D Protótipo tipo de um Ambiente para Processamento de Imagens Raster 2D Adriana Fornazari Prof. Dalton Solano dos Reis Orientador Roteiro Introdução Ambientes de processamento de imagens Arquivos gráficos

Leia mais

Sistema de Controle de Acesso Baseado no Reconhecimento de Faces

Sistema de Controle de Acesso Baseado no Reconhecimento de Faces Sistema de Controle de Acesso Baseado no Reconhecimento de Faces Access Control System Based on Face Recognition Tiago A. Neves, Welton S. De Oliveira e Jean-Jacques De Groote Faculdades COC de Ribeirão

Leia mais

5 Resultados. 5.1. Avaliação Baseada na Taxa de Igual Erro

5 Resultados. 5.1. Avaliação Baseada na Taxa de Igual Erro 5 Resultados Neste capitulo discutem-se os resultados obtidos no desenvolvimento desta pesquisa segundo a metodologia descrita no capitulo anterior. A avaliação de acurácia para tarefas de verificação

Leia mais

Técnicas de Clustering: Algoritmos K-means e Aglomerative

Técnicas de Clustering: Algoritmos K-means e Aglomerative Técnicas de Clustering: Algoritmos K-means e Aglomerative Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 9 de outubro de 2012 Danilo Oliveira, Matheus Torquato

Leia mais

O software EVP Plus fornece o processamento mais recente de imagens para os sistemas CR e DR

O software EVP Plus fornece o processamento mais recente de imagens para os sistemas CR e DR O software EVP Plus fornece o processamento mais recente de imagens para os sistemas CR e DR Introdução Os técnicos de radiografia esperam um grau alto de automação e eficiência na tecnologia que eles

Leia mais

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica CBPF Centro Brasileiro de Pesquisas Físicas Nota Técnica Aplicação de Física Médica em imagens de Tomografia de Crânio e Tórax Autores: Dário Oliveira - dario@cbpf.br Marcelo Albuquerque - marcelo@cbpf.br

Leia mais

2 Trabalhos Relacionados

2 Trabalhos Relacionados 2 Trabalhos Relacionados O desenvolvimento de técnicas de aquisição de imagens médicas, em particular a tomografia computadorizada (TC), que fornecem informações mais detalhadas do corpo humano, tem aumentado

Leia mais

2. O que é Redundância de código ou informação? Como a compressão Huffman utiliza isso? Você conhece algum formato de imagem que a utiliza?(1.

2. O que é Redundância de código ou informação? Como a compressão Huffman utiliza isso? Você conhece algum formato de imagem que a utiliza?(1. Respostas do Estudo Dirigido Cap. 26 - Reducing the information:... ou Image Compression 1. Para que serve comprimir as imagens? Que aspectos estão sendo considerados quando se fala de: Compression Rate,

Leia mais

Capítulo 5 Filtragem de Imagens

Capítulo 5 Filtragem de Imagens Capítulo 5 Filtragem de Imagens Capítulo 5 5.1. Filtragem no Domínio da Frequência 5.2. Filtragem no Domínio Espacial 2 Objetivo Melhorar a qualidade das imagens através da: ampliação do seu contraste;

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO DUPLA DE ISTVÁN CSEKE PROJETO DE UMA RÁPIDA SEGMENTAÇÃO PARA

Leia mais

Visão computacional. Juliana Patrícia Detroz Orientador: André Tavares Silva

Visão computacional. Juliana Patrícia Detroz Orientador: André Tavares Silva Visão computacional Juliana Patrícia Detroz Orientador: André Tavares Silva Visão computacional Tentativa de replicar a habilidade humana da visão através da percepção e entendimento de uma imagem; Fazer

Leia mais

Shutter: É o tempo de exposição da foto. Pode ser fixo ou automático.

Shutter: É o tempo de exposição da foto. Pode ser fixo ou automático. TREINAMENTO ITSCAM Ajustes de imagens Shutter: É o tempo de exposição da foto. Pode ser fixo ou automático. Ganho: Amplificador analógico conectado ao sensor de imagem. Pode ser fixo ou automático. Auto

Leia mais

CLASSIFICAÇÃO AUTOMÁTICA DE MACERAIS DE CARVÃO

CLASSIFICAÇÃO AUTOMÁTICA DE MACERAIS DE CARVÃO CLASSIFICAÇÃO AUTOMÁTICA DE MACERAIS DE CARVÃO Aluno: Annita da Costa Fidalgo Orientador: Sidnei Paciornik Co-Orientador: Marcos Henrique de Pinho Mauricio Introdução O carvão é um dos materiais mais antigos

Leia mais

FACEID - Sistema de Reconhecimento de Faces

FACEID - Sistema de Reconhecimento de Faces FACEID - Sistema de Reconhecimento de Faces 1 R.Q. Feitosa, 2 C.V.Pereira, 1 Pontifícia Universidade Católica do Rio de Janeiro, Depto Eng. Elétrica 1,2 Universidade do Estado do Rio de Janeiro, Depto

Leia mais

INTRODUÇÃO AOS MODELOS PONTUAIS DE DISTRIBUIÇÃO E SUA UTILIZAÇÃO NA SEGMENTAÇÃO E RECONHECIMENTO DE OBJECTOS EM IMAGENS

INTRODUÇÃO AOS MODELOS PONTUAIS DE DISTRIBUIÇÃO E SUA UTILIZAÇÃO NA SEGMENTAÇÃO E RECONHECIMENTO DE OBJECTOS EM IMAGENS Congreso de Métodos Numéricos en Ingeniería 2005 Granada, 4 a 7 de Julio, 2005 SEMNI, España 2005 INTRODUÇÃO AOS MODELOS PONTUAIS DE DISTRIBUIÇÃO E SUA UTILIZAÇÃO NA SEGMENTAÇÃO E RECONHECIMENTO DE OBJECTOS

Leia mais

Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect

Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect Segmentação de imagens tridimensionais utilizando o sensor Microsoft Kinect Lucas Viana Barbosa 1 ; Wanderson Rigo 2 ; Manassés Ribeiro 3 INTRODUÇÃO Os sistemas de visão artificial vêm auxiliando o ser

Leia mais

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Reconhecimento de marcas de carros utilizando Inteligência Artificial André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Motivação Análise estatística das marcas de carros em

Leia mais

REALCE DE MICROCALCIFICAÇÕES EM IMAGENS DE MAMOGRAFIA UTILIZANDO FILTROS PASSA-ALTA

REALCE DE MICROCALCIFICAÇÕES EM IMAGENS DE MAMOGRAFIA UTILIZANDO FILTROS PASSA-ALTA REALCE DE MICROCALCIFICAÇÕES EM IMAGENS DE MAMOGRAFIA UTILIZANDO FILTROS PASSA-ALTA Caio Cesar Amorim Borges e Danilo Rodrigues de Carvalho Universidade Federal de Goiás, Escola de Engenharia Elétrica

Leia mais

ESTUDOS DE ILHA DE CALOR URBANA POR MEIO DE IMAGENS DO LANDSAT 7 ETM+: ESTUDO DE CASO EM SÃO CARLOS (SP)

ESTUDOS DE ILHA DE CALOR URBANA POR MEIO DE IMAGENS DO LANDSAT 7 ETM+: ESTUDO DE CASO EM SÃO CARLOS (SP) ESTUDOS DE ILHA DE CALOR URBANA POR MEIO DE IMAGENS DO LANDSAT 7 ETM+... 273 ESTUDOS DE ILHA DE CALOR URBANA POR MEIO DE IMAGENS DO LANDSAT 7 ETM+: ESTUDO DE CASO EM SÃO CARLOS (SP) Ricardo Victor Rodrigues

Leia mais

Estrutura do OLHO HUMANO:

Estrutura do OLHO HUMANO: ÓPTICA DA VISÃO Estrutura do OLHO HUMANO: É um fino tecido muscular que tem, no centro, uma abertura circular ajustável chamada de pupila. Ajustam a forma do cristalino. Com o envelhecimento eles perdem

Leia mais

3.2. Experimentações: o processo de produção Iluminação de três pontos

3.2. Experimentações: o processo de produção Iluminação de três pontos Página 1 de 5 3 - estética e a técnica na ambientação 3.2. Experimentações: o processo de produção Iluminação de três pontos iluminação de três pontos é composta por três refletores, cada qual com função

Leia mais

4 Experimentos. 4.4 detalha os experimentos com os algoritmos V-Wrapper e NCE. 4.1

4 Experimentos. 4.4 detalha os experimentos com os algoritmos V-Wrapper e NCE. 4.1 4 Experimentos A estratégia V-Wrapper descrita por Zheng et. al (ZSW07), resumida no Capítulo 2, foi implementada com a finalidade de comparar um método baseado em atributos visuais com o algoritmo proposto

Leia mais

Renzo Joel Flores Ortiz e Ilka Afonso Reis

Renzo Joel Flores Ortiz e Ilka Afonso Reis ESTIMAÇÃO DE POPULAÇÕES HUMANAS VIA IMAGENS DE SATÉLITE: COMPARANDO ABORDAGENS E MODELOS Renzo Joel Flores Ortiz e Ilka Afonso Reis Laboratório de Estatística Espacial (LESTE) Departamento de Estatística

Leia mais

Engenharia Biomédica - UFABC

Engenharia Biomédica - UFABC Engenharia de Reabilitação e Biofeedback Deficiência Visual Professor: Pai Chi Nan 1 Anatomia do olho 2 1 Anatomia do olho Córnea Proteção Focalização 3 Íris e pupila Anatomia do olho Controle da quantidade

Leia mais

Manual de utilização do programa

Manual de utilização do programa PCIToGCode Manual de utilização do programa PCIToGCode O PCITOGCODE é um aplicativo desenvolvido para converter imagem de uma placa de circuito impresso em um arquivo de códigos G. Com o arquivo de códigos

Leia mais