Scale-Invariant Feature Transform

Tamanho: px
Começar a partir da página:

Download "Scale-Invariant Feature Transform"

Transcrição

1 Scale-Invariant Feature Transform Renato Madureira de Farias Prof. Ricardo Marroquim Relatório para Introdução ao Processamento de Imagens (COS756) Universidade Federal do Rio de Janeiro, Brasil, Resumo O objetivo deste trabalho foi implementar o algoritmo conhecido como Scale-Invariant Feature Transform, ou SIFT [1][2]. Este algoritmo busca identificar os pontos chave de uma imagem e descrevê-los através de uma estrutura, chamada de feature vector, que seja invariante a translação, rotação, e (parcialmente) iluminação. Posteriormente, os feature vectors de duas imagens podem ser comparados afim de encontrar correspondências. 2. Algoritmo O algoritmo consiste numa série de passos: 1) Gerar espaço de escalas; 2) Calcular Difference of Gaussians (DoGs); 3) Encontrar pontos extremos (máximos e mínimos); 4) Identificar orientação principal dos extremos; e 5) Criar descritores. Todos os passos são detalhados abaixo. A entrada do algoritmo é uma imagem em tons de cinza na qual deve ser aplicado um filtro Gaussiano inicial. Usamos σ = 1.0 para este borramento inicial Gerar espaço de escalas. O primeiro passo é gerar o espaço de escalas da imagem. O espaço de escalas consiste num certo número de oitavas, sendo que cada oitava contém um certo número de escalas. As imagens dentro de uma oitava sofrem borramentos (através do filtro Gaussiano) progressivamente maiores. As imagens de cada oitava têm metade do tamanho das imagens da oitava anterior, sendo que a primeira oitava começa com o dobro do tamanho da imagem original. Então, a segunda oitava possui o tamanho da imagem original, a terceira oitava possui metade do tamanho da imagem original, etc. Neste trabalho, usamos 4 oitavas com 5 escalas cada, conforme a sugestão do autor do

2 algoritmo [1]. O σ inicial de uma oitava é 1.6, e a cada escala o multiplicamos 2. Note que a primeira escala de cada oitava (a partir da segunda) é na verdade a terceira escala da oitava anterior (com metade do tamanho). Isso é porque o autor sugere que o borramento da escala de uma oitava deve ser o dobro da escala equivalente da oitava anterior Calcular Difference of Gaussians (DoGs). O segundo passo consiste em subtrair os pares de escalas adjacentes de cada uma das oitavas. As imagens resultantes, representando a diferença entre uma aplicação do filtro Gaussiano e o próximo, são chamadas de Difference of Gaussians. Obviamente, cada oitava possui um número de DoGs igual ao número de escalas menos 1. Figura 1: Espaço de escalas e Difference of Gaussians. Fonte: [1] Encontrar pontos extremos (máximos e mínimos). No terceiro passo, procuramos nas DoGs do passo anterior pontos que descrevem bem a imagem. Consideramos que, para um ponto descrever bem a imagem, ele precisa ter sobrevivido nas várias escalas, e ser o máximo ou mínimo dentre seus 26 vizinhos (8 vizinhos da mesma escala, 9 vizinhos da escala de cima, e 9 vizinhos da escala de baixo). Os pontos encontrados neste passo são guardados, junto com informação sobre em qual oitava, escala, e posição foram encontrados. Note que extremos não podem ser encontrados no primeiro e último DoGs, já que 3 escalas são necessárias para a busca.

3 Figura 2: Um extremo precisa ser maior (ou menor) do que seus 26 vizinhos. Fonte: [1] Identificar orientação principal dos extremos. No quarto passo, encontramos a orientação principal dos pontos do passo anterior. Fazemos isso construindo um histograma dos gradientes e suas magnitudes em torno do ponto, usando as imagens do espaço de escalas. O tamanho da janela em torno do ponto que consideramos para construir o histograma é igual ao tamanho do kernel do filtro Gaussiano com o σ (multiplicado por 1.5) usado nesta escala. As orientações são divididas em 36 caixas, cada uma representando uma faixa de 10o (a primeira contém a soma das magnitudes das orientações de 0o-9o, a segunda de 10o-19o, e assim por diante). Uma vez feito isso, procuramos no histograma a caixa com maior magnitude. Usando esta magnitude e as magnitudes das caixas adjacentes como se fossem 3 pontos no plano XY, encaixamos uma parábola invertida neles de forma a encontrar o melhor valor desta orientação. Esta orientação gera um ponto chave da imagem que será usada no último passo. Note que este processo se repete para magnitudes que tenham pelo menos 80% do valor da maior magnitude. Em outras palavras, um ponto extremo gera no mínimo um ponto chave, mas pode gerar mais se possui mais do que uma orientação dominante Criar descritores. O quinto e último passo consiste em criar os descritores da imagem para cada ponto chave do último passo. Um descritor guarda a posição de um ponto na imagem original, e um feature vector que descreve sua vizinhança. Usamos uma janela 16x16 em torno do ponto, dividida em quatro janelas 4x4.

4 Para cada janela 4x4, criamos um histograma, como no passo anterior, porém com 8 caixas em vez de 36, e usamos um filtro Guassiano com σ igual a metade da dimensão da janela (nesse caso, 8) para pesar as magnitudes. O resultado é um vetor que guarda todos os 16 histogramas, cada um com 8 caixas, para um total de 128 posições. Este vetor é o feature vector. Figura 3: Exemplo visual da construção da janela, considerada aqui como sendo 8x8 dividida em 4 janelas 4x4, em vez de 16x16 dividida em 16 janelas 4x4. Fonte: [1]. Note que a orientação principal deve ser subtraída de cada orientação da janela, para que as orientações do histograma fiquem relativas à orientação principal. Pelo mesmo motivo, as coordenadas dos pontos da janela precisam ser rotacionadas em torno do ponto chave usando uma matriz de rotação com a orientação principal. Essas duas ações visam obter invariância à rotação. Uma vez que temos o feature vector calculado, normalizamos seus valores, depois reduzimos a 0.2 qualquer valor acima de 0.2, e normalizamos o vetor de novo. Isso visa obter invariância à iluminação na imagem. 3. Comparação Uma vez que se tenha os feature vectors de duas imagens, uma comparação entre elas pode ser feita. O método de comparação que usamos é bastante simples, e consiste em simplesmente calcular a distância Euclideana entre os vetores, em 128D. Comparamos todos os feature vectors de uma imagem com todos da outra imagem; uma correspondência existe quando um ponto da primeira imagem encontra outro da segunda imagem como vizinho mais próximo, e vice versa. Para verificar as correspondências visualmente, usamos o algoritmo clássico de Bresenham para desenhar uma linha entre os dois pontos, lembrando que temos a posição dos pontos guardados no descritor que também possui o feature vector.

5 4. Resultados Figura 4: A segunda imagem sofreu um pequeno crop em relação à primeira. Figura 5: A segunda imagem sofreu uma redução de tamanho em relação à primeira. Figura 6: As duas imagens sofreram crops em lugares diferentes.

6 Figura 7: A segunda imagem foi invertida na vertical. 5. Conclusão A implementação resultante apresentou resultados razoáveis, como se pode ver na seção anterior. A invariância a translação foi facilmente alcançada. Já a invariância a rotação foi parcialmente alcançada, e foi a parte mais demorada da implementação. O algoritmo ainda apresenta um número significativo de erros ao comparar os feature vectors de duas imagens idênticas, sendo uma delas invertida na vertical. A invariância a iluminação não foi testada com o conjunto de imagens teste usado neste trabalho. 6. Trabalhos Futuros A invariância a rotação ainda é uma área do trabalho que pode ser melhorada. O método de comparação também não é muito esperto, podendo render falsos positivos pelo simples fato de que pontos chave acabam encontrando um vizinho mais próximo na maior parte do tempo, mesmo que não sejam tão próximos. Talvez um limiar possa ser desenvolvido para rejeitar certas correspondências, como as de pontos que só existem numa imagem.

7 7. Referências [1] Lowe, David G Distinctive Image Features from Scale-Invariant Keypoints. [2] Lowe, David G Object Recognition from Local Scale-Invariant Features. [3] Sinha, Utkarsh. O site tem uma série de tutorials sobre o SIFT que ajudaram muito a compreensão do algoritmo.

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 03 - operações no domínio espacial Antonio Oliveira Ricardo Marroquim 1 / 38 aula de hoje operações no domínio espacial overview imagem digital operações no

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço

FILTRAGEM ESPACIAL. Filtros Digitais no domínio do espaço FILTRAGEM ESPACIAL Filtros Digitais no domínio do espaço Definição Também conhecidos como operadores locais ou filtros locais Combinam a intensidade de um certo número de piels, para gerar a intensidade

Leia mais

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial Filtragem espacial é uma das principais ferramentas usadas em uma grande variedade de aplicações; A palavra filtro foi emprestada

Leia mais

Trabalho 2 Fundamentos de computação Gráfica

Trabalho 2 Fundamentos de computação Gráfica Trabalho 2 Fundamentos de computação Gráfica Processamento de Imagens Aluno: Renato Deris Prado Tópicos: 1- Programa em QT e C++ 2- Efeitos de processamento de imagens 1- Programa em QT e C++ Para o trabalho

Leia mais

2.1.2 Definição Matemática de Imagem

2.1.2 Definição Matemática de Imagem Capítulo 2 Fundamentação Teórica Este capítulo descreve os fundamentos e as etapas do processamento digital de imagens. 2.1 Fundamentos para Processamento Digital de Imagens Esta seção apresenta as propriedades

Leia mais

Encontrando a Linha Divisória: Detecção de Bordas

Encontrando a Linha Divisória: Detecção de Bordas CAPÍTULO 1 Encontrando a Linha Divisória: Detecção de Bordas Contribuíram: Daniela Marta Seara, Geovani Cássia da Silva Espezim Elizandro Encontrar Bordas também é Segmentar A visão computacional envolve

Leia mais

Maurício Correia Lemes Neto 1 João Fernando Custódio da Silva 2 Victor Blasechi 3 RESUMO

Maurício Correia Lemes Neto 1 João Fernando Custódio da Silva 2 Victor Blasechi 3 RESUMO EXTRAÇÃO DE PONTOS-CHAVEPELO ALGORITMO SIFT E CORRESPONDÊNCIA ENTRE DOIS PARES DE IMAGENS ESTEREOSCÓPICAS OBTIDAS POR UM SISTEMA FOTOGRAMÉTRICO TERRESTRE Maurício Correia Lemes Neto 1 João Fernando Custódio

Leia mais

Tratamento da Imagem Transformações (cont.)

Tratamento da Imagem Transformações (cont.) Universidade Federal do Rio de Janeiro - IM/DCC & NCE Tratamento da Imagem Transformações (cont.) Antonio G. Thomé thome@nce.ufrj.br Sala AEP/133 Tratamento de Imagens - Sumário Detalhado Objetivos Alguns

Leia mais

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis

Transformada de Hough. Cleber Pivetta Gustavo Mantovani Felipe Zottis Transformada de Hough Cleber Pivetta Gustavo Mantovani Felipe Zottis A Transformada de Hough foi desenvolvida por Paul Hough em 1962 e patenteada pela IBM. Originalmente, foi elaborada para detectar características

Leia mais

Nuvens de pontos e modelos tridimensionais a partir de fotografias

Nuvens de pontos e modelos tridimensionais a partir de fotografias Nuvens de pontos e modelos tridimensionais a partir de fotografias José Alberto Gonçalves, jagoncal@fc.up.pt Colaboração de: Nelson Pires, Sérgio Madeira Workshop em Fotogrametria e Varrimento por Laser

Leia mais

CALIBRAGEM VISUAL DE MANIPULADORES ROBÓTICOS COM USO DE INVARIANTES SIFT

CALIBRAGEM VISUAL DE MANIPULADORES ROBÓTICOS COM USO DE INVARIANTES SIFT CALIBRAGEM VISUAL DE MANIPULADORES ROBÓTICOS COM USO DE INVARIANTES SIFT MIGUEL A.G. PINTO, MARCO A. MEGGIOLARO, RICARDO TANSCHEIT Dept. de Engenharia Elétrica e Engenharia Mecânica, PUC-Rio Rua Marquês

Leia mais

Processamento de Imagens Digitais

Processamento de Imagens Digitais Processamento de Imagens Digitais Redução de Ruídos - Filtros Espaciais "Passa-Baixa" Glaucius Décio Duarte Instituto Federal Sul-rio-grandense Engenharia Elétrica 1 de 7 Ruído em Imagens Digitais As imagens

Leia mais

Atributos de Ponto de Interesse e Casamento de Modelos para Contagem de Insetos-Praga em Cultura de Soja. Diogo Soares da Silva

Atributos de Ponto de Interesse e Casamento de Modelos para Contagem de Insetos-Praga em Cultura de Soja. Diogo Soares da Silva Atributos de Ponto de Interesse e Casamento de Modelos para Contagem de Insetos-Praga em Cultura de Soja Diogo Soares da Silva Pós -GRADUAÇÃO DA UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL DA FACULDADE

Leia mais

Casamento de padrões em imagens e vídeos usando características de imagens

Casamento de padrões em imagens e vídeos usando características de imagens Casamento de padrões em imagens e vídeos usando características de imagens Kassius Vinicius Sipolati Bezerra DCEL / CEUNES / UFES São Mateus, ES, Brazil Edilson de Aguiar DCEL / CEUNES / UFES São Mateus,

Leia mais

Fabio Nascimento Brandão. Segmentação de Íris utilizando Bag of Keypoints

Fabio Nascimento Brandão. Segmentação de Íris utilizando Bag of Keypoints Fabio Nascimento Brandão Segmentação de Íris utilizando Bag of Keypoints São Paulo 2011 Fabio Nascimento Brandão Segmentação de Íris utilizando Bag of Keypoints Este trabalho tem como objetivo principal

Leia mais

Segmentação de Imagens

Segmentação de Imagens Segmentação de Imagens (Processamento Digital de Imagens) 1 / 36 Fundamentos A segmentação subdivide uma imagem em regiões ou objetos que a compõem; nível de detalhe depende do problema segmentação para

Leia mais

COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL

COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL COMPARAÇÃO DE TÉCNICAS DE VISÃO COMPUTACIONAL NA IDENTIFICAÇÃO DE CABEÇOTES FUNDIDOS USANDO WEBCAM PARA GUIAR UM ROBÔ INDUSTRIAL Victor Hugo Bueno Preuss, victor.preuss@gmail.com 1 Ramon Cascaes Semim,

Leia mais

Estudo e proposta de adaptação do algoritmo SIFT em relação ao problema de iluminação em imagens

Estudo e proposta de adaptação do algoritmo SIFT em relação ao problema de iluminação em imagens Estudo e proposta de adaptação do algoritmo SIFT em relação ao problema de iluminação em imagens Machado, W. R. S. 1,2, Louro, A. H. F. 2, Gonzaga, A. 2, Boaventura, M. 3 1 Pontifícia Universidade Católica

Leia mais

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DA COMPUTAÇÃO. Indexação de Faces em Estruturas de Dados Métricas

UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DA COMPUTAÇÃO. Indexação de Faces em Estruturas de Dados Métricas UNIVERSIDADE FEDERAL DE ITAJUBÁ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DA COMPUTAÇÃO Indexação de Faces em Estruturas de Dados Métricas Rodrigo Lúcio dos Santos Silva Itajubá, novembro de 2012

Leia mais

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP

RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS ATRAVÉS DE CÂMERAS IP Caio Augusto de Queiroz Souza caioaugusto@msn.com Éric Fleming Bonilha eric@digifort.com.br Gilson Torres Dias gilson@maempec.com.br Luciano

Leia mais

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com

Introdução ao processamento de imagens e OCTAVE. Julio C. S. Jacques Junior juliojj@gmail.com Introdução ao processamento de imagens e OCTAVE Julio C. S. Jacques Junior juliojj@gmail.com Octave www.gnu.org/software/octave/ Linguagem Interpretada (similar ao MATLAB... portabilidade) Voltada para

Leia mais

Processamento de histogramas

Processamento de histogramas REALCE DE IMAGENS BASEADO EM HISTOGRAMAS Processamento de histogramas O que é um histograma? É uma das ferramentas mais simples e úteis para o PDI; É uma função que mostra a frequência com que cada nível

Leia mais

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior

Simulação Gráfica. Morfologia Matemática. Julio C. S. Jacques Junior Simulação Gráfica Morfologia Matemática Julio C. S. Jacques Junior Morfologia Palavra denota uma área da biologia que trata com a forma e a estrutura de animais e plantas. No contexto de Morfologia Matemática:

Leia mais

Que imagens têm ou não têm simetria?

Que imagens têm ou não têm simetria? O mundo da simetria Que imagens têm ou não têm simetria? Isometrias Isometria: Transformação geométrica que preserva as distâncias; as figuras do plano são transformadas noutras geometricamente iguais.

Leia mais

Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo

Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo Explorando Dicionários Visuais para Recuperação de Imagem por Conteúdo Bruno Miranda Sales¹ e Rodrigo Tripodi Calumby¹ ¹Departamento de Ciências Exatas Universidade Estadual de Feira de Santana (UEFS)

Leia mais

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto.

Chow&Kaneko buscam as modas da imagem para separar os objetos. Admite que os tons na vizinhança de cada moda são do mesmo objeto. Respostas Estudo Dirigido do Capítulo 12 Image Segmentation" 1 Com suas palavras explique quais os problemas que podem ocorrer em uma segmentação global baseada em níveis de cinza da imagem. Que técnicas

Leia mais

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno

SEGEMENTAÇÃO DE IMAGENS. Nielsen Castelo Damasceno SEGEMENTAÇÃO DE IMAGENS Nielsen Castelo Damasceno Segmentação Segmentação Representação e descrição Préprocessamento Problema Aquisição de imagem Base do conhecimento Reconhecimento e interpretação Resultado

Leia mais

Avaliação de métodos de casamento de imagens para mosaico de imagens orbitais

Avaliação de métodos de casamento de imagens para mosaico de imagens orbitais Avaliação de métodos de casamento de imagens para mosaico de imagens orbitais Emiliano Ferreira Castejon 1 Carlos Henrique Quartucci Forster Leila Maria Garcia Fonseca 1 Etore Marcari Junior 1 1 Instituto

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2015 Roteiro 1 Morfologia Matemática Fundamentos Matemáticos Operadores

Leia mais

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching"

Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching Respostas do Estudo Dirigido do Capítulo 14 Classical pattern recognition and image matching" 1 Com suas palavras explique o que é Reconhecimento de Padrões- RP. Quais são os fases clássicas que compõem

Leia mais

Análise e Processamento de Sinal e Imagem. V - Introdução ao Reconhecimento de Padrões

Análise e Processamento de Sinal e Imagem. V - Introdução ao Reconhecimento de Padrões V - Introdução ao Reconhecimento de Padrões António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Reconhecimento de Padrões 1. Caracterização de Sinais e Imagem 2. Técnicas

Leia mais

IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS

IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS IDENTIFICAÇÃO DE MARCADORES DE PAVIMENTAÇÃO NA ORIENTAÇÃO DE CEGOS André Zuconelli¹, Manassés Ribeiro² Instituto Federal de Educação, Ciência e Tecnologia Catarinense - Campus Videira Rodovia SC, Km 5

Leia mais

Processamento de Imagens COS756 / COC603

Processamento de Imagens COS756 / COC603 Processamento de Imagens COS756 / COC603 aula 10 - sugestões de trabalhos Antonio Oliveira Ricardo Marroquim 1 / 1 aula de hoje exemplos de projetos panorâmica (mosaico) deteção de faces extração de características

Leia mais

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga

Aula 6 - Segmentação de Imagens Parte 2. Prof. Adilson Gonzaga Aula 6 - Segmentação de Imagens Parte 2 Prof. Adilson Gonzaga 1 Motivação Extração do Objeto Dificuldades Super segmentação over-segmentation 1) Segmentação por Limiarização (Thresholding Global): Efeitos

Leia mais

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados

Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Reconhecimento de ações humanas utilizando histogramas de gradiente e vetores de tensores localmente agregados Luiz Maurílio da Silva Maciel 1, Marcelo Bernardes Vieira 1 1 Departamento de Ciência da Computação

Leia mais

5 Resultados experimentais

5 Resultados experimentais 5. Resultados experimentais 60 5 Resultados experimentais Experimentos forma conduzidos com uma série de imagens de teste, mostradas na Figura 19, pertencentes ao USC-SIPI image database [19] e ao Ohio-state

Leia mais

Reconhecimento de Objectos

Reconhecimento de Objectos Dado um conjunto de características, relativas a uma região (objecto), pretende-se atribuir uma classe essa região, seleccionada de um conjunto de classes cujas características são conhecidas O conjunto

Leia mais

Transformações 3D. Soraia Raupp Musse

Transformações 3D. Soraia Raupp Musse Transformações 3D Soraia Raupp Musse 1 Translação Coord. Homogêneas x y 1 t x 1 t y 1 x y x y x + t x y + t y t p p r r r + ' 2 x y x + t x y + t y + y Escala Coord. Homogêneas x y s x s y 1 x y x y s

Leia mais

COMPUTAÇÃO GRÁFICA. Rasterização e Preenchimento de Regiões. MARCO ANTONIO GARCIA DE CARVALHO Fevereiro de 2009. Computação Gráfica

COMPUTAÇÃO GRÁFICA. Rasterização e Preenchimento de Regiões. MARCO ANTONIO GARCIA DE CARVALHO Fevereiro de 2009. Computação Gráfica COMPUTAÇÃO GRÁFICA Rasterização e Preenchimento de Regiões Objetivos Conhecer os fundamentos da construção de linhas e círculos Conhecer o modelo scan-line modelo de sementes para preenchimento de polígonos

Leia mais

Capítulo 5 Filtragem de Imagens

Capítulo 5 Filtragem de Imagens Capítulo 5 Filtragem de Imagens Capítulo 5 5.1. Filtragem no Domínio da Frequência 5.2. Filtragem no Domínio Espacial 2 Objetivo Melhorar a qualidade das imagens através da: ampliação do seu contraste;

Leia mais

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha

Filtragem. pixel. perfil de linha. Coluna de pixels. Imagem. Linha. Primeiro pixel na linha Filtragem As técnicas de filtragem são transformações da imagem "pixel" a "pixel", que dependem do nível de cinza de um determinado "pixel" e do valor dos níveis de cinza dos "pixels" vizinhos, na imagem

Leia mais

Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT. Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1

Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT. Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1 Identificação de objetos móveis com uso de imagens aéreas obtidas por VANT Rodrigo Augusto Rebouças 1 Matheus Habermann 1 Elcio Hideiti Shiguemori 1 1 Instituto de Estudos Avançados IEAv/DCTA São José

Leia mais

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller

Reconhecimento de marcas de carros utilizando Inteligência Artificial. André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Reconhecimento de marcas de carros utilizando Inteligência Artificial André Bonna Claudio Marcelo Basckeira Felipe Villela Lourenço Richard Keller Motivação Análise estatística das marcas de carros em

Leia mais

Frederico Damasceno Bortoloti. Adaptado de: Claudio Esperança Paulo Roma Cavalcanti

Frederico Damasceno Bortoloti. Adaptado de: Claudio Esperança Paulo Roma Cavalcanti Fundamentos de Representação Gráfica Frederico Damasceno Bortoloti Adaptado de: Claudio Esperança Paulo Roma Cavalcanti Estrutura do Curso Avaliação através de Prova Estudo / Seminário Nota parcial NP

Leia mais

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica

CBPF Centro Brasileiro de Pesquisas Físicas. Nota Técnica CBPF Centro Brasileiro de Pesquisas Físicas Nota Técnica Aplicação de Física Médica em imagens de Tomografia de Crânio e Tórax Autores: Dário Oliveira - dario@cbpf.br Marcelo Albuquerque - marcelo@cbpf.br

Leia mais

Operações Algébricas e Lógicas. Guillermo Cámara-Chávez

Operações Algébricas e Lógicas. Guillermo Cámara-Chávez Operações Algébricas e Lógicas Guillermo Cámara-Chávez Operações Aritméticas São aquelas que produzem uma imagem que é a soma, diferença, produto ou quociente pixel a pixel Operações Aritméticas Fig A

Leia mais

Computação Gráfica (Draw) Aula 01

Computação Gráfica (Draw) Aula 01 1 O que é o OpenOffice Draw? Computação Gráfica (Draw) Aula 01 2 Qual a Diferença entre o OpenOffice Draw e o Corel Draw? 3 Qual Barra iremos utilizar diretamente para criar nossos desenhos? 4 Qual a extensão

Leia mais

Operações Pontuais. Guillermo Cámara-Chávez

Operações Pontuais. Guillermo Cámara-Chávez Operações Pontuais Guillermo Cámara-Chávez Um modelo simples de formação de uma imagem Para que a imagem de uma cena real possa ser processada ou armazenda na forma digital deve passar por dois processos

Leia mais

Filtragem de imagens fixas usando Matlab

Filtragem de imagens fixas usando Matlab Televisão digital EEC5270 Relatório Filtragem de imagens fixas usando Matlab Bruno Filipe Sobral de Oliveira - ee01084@fe.up.pt Filipe Tiago Alves de Magalhães - ee01123@fe.up.pt Porto, 20 de Novembro

Leia mais

Aula 4 - Processamento de Imagem

Aula 4 - Processamento de Imagem 1. Contraste de Imagens Aula 4 - Processamento de Imagem A técnica de realce de contraste tem por objetivo melhorar a qualidade das imagens sob os critérios subjetivos do olho humano. É normalmente utilizada

Leia mais

UM MÉTODO HÍBRIDO PARA LOCALIZAÇÃO AUTOMÁTICA DE PONTOS HOMÓLOGOS EM PARES DE IMAGENS ESTEREOSCÓPICAS

UM MÉTODO HÍBRIDO PARA LOCALIZAÇÃO AUTOMÁTICA DE PONTOS HOMÓLOGOS EM PARES DE IMAGENS ESTEREOSCÓPICAS UM MÉTODO HÍBRIDO PARA LOCALIZAÇÃO AUTOMÁTICA DE PONTOS HOMÓLOGOS EM PARES DE IMAGENS ESTEREOSCÓPICAS MARCELO TEIXEIRA SILVEIRA RAUL QUEIROZ FEITOSA KARSTEN JACOBSEN 2 JORGE LUÍS NUNES E SILVA BRITO 3

Leia mais

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS

UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS UFGD FCA PROF. OMAR DANIEL BLOCO 4 PROCESSAMENTO DE IMAGENS Executar as principais técnicas utilizadas em processamento de imagens, como contraste, leitura de pixels, transformação IHS, operações aritméticas

Leia mais

Descritores de Imagem

Descritores de Imagem Descritores de Imagem André Tavares da Silva 25 de março de 2014 1 Descritores de imagem Excelentes pesquisas sobre descritores podem ser encontradas nos trabalhos de Tuytelaars e Mikolajczyk (2008), Rui

Leia mais

Visão Computacional e Realidade Aumentada. Trabalho 3 Reconstrução 3D. Pedro Sampaio Vieira. Prof. Marcelo Gattass

Visão Computacional e Realidade Aumentada. Trabalho 3 Reconstrução 3D. Pedro Sampaio Vieira. Prof. Marcelo Gattass Visão Computacional e Realidade Aumentada Trabalho 3 Reconstrução 3D Pedro Sampaio Vieira Prof. Marcelo Gattass 1 Introdução Reconstrução tridimensional é um assunto muito estudado na área de visão computacional.

Leia mais

Filtros de Correlação e Características Invariantes à Escala para o Reconhecimento de Faces

Filtros de Correlação e Características Invariantes à Escala para o Reconhecimento de Faces XXX SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT 2, 3-6 DE SETEMBRO DE 202, BRASÍLIA, DF Filtros de Correlação e Características Invariantes à Escala para o Reconhecimento de Faces Rodrigo L. Prates,

Leia mais

PROJECTOS DE INVESTIGAÇÃO CIENTÍFICA E DESENVOLVIMENTO TECNOLÓGICO

PROJECTOS DE INVESTIGAÇÃO CIENTÍFICA E DESENVOLVIMENTO TECNOLÓGICO PROJECTOS DE INVESTIGAÇÃO CIENTÍFICA E DESENVOLVIMENTO TECNOLÓGICO Clip-art Retrieval using Sketches PTDC/EIA-EIA/108077/2008 Deliverable: D3 Feature Extraction Library (Vectors) Task: T3 Feature Extraction

Leia mais

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445)

Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Processamento e Análise de Imagens (MC940) Análise de Imagens (MO445) Prof. Hélio Pedrini Instituto de Computação UNICAMP 2º Semestre de 2014 Roteiro 1 Registro de Imagens Transformadas Geométricas Transformações

Leia mais

Classificação de Imagens

Classificação de Imagens Universidade do Estado de Santa Catarina Departamento de Engenharia Civil Classificação de Imagens Profa. Adriana Goulart dos Santos Extração de Informação da Imagem A partir de uma visualização das imagens,

Leia mais

Aula 02 Excel 2010. Operações Básicas

Aula 02 Excel 2010. Operações Básicas Aula 02 Excel 2010 Professor: Bruno Gomes Disciplina: Informática Básica Curso: Gestão de Turismo Sumário da aula: 1. Operações básicas; 2. Utilizando Funções; 3. Funções Lógicas; 4. Gráficos no Excel;

Leia mais

PARA A CONSTRUÇÃO DOS GRÁFICOS

PARA A CONSTRUÇÃO DOS GRÁFICOS 1 PARA A CONSTRUÇÃO DOS GRÁFICOS Apresentamos dois materiais feitos por estudantes do Curso de Psicologia da Faculdade de Ciências Humanas e da Saúde para construção de gráficos. As instruções das páginas

Leia mais

Gráficos tridimensionais. Introdução ao MATLAB p.1/31

Gráficos tridimensionais. Introdução ao MATLAB p.1/31 Gráficos tridimensionais Introdução ao MATLAB p1/31 Introdução Existe uma grande variedade de funções para exibir dados em três dimensões Podemos utilizar curvas em três dimensões, superfícies em retalhos

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

TOPOLOGIA DA IMAGEM DIGITAL

TOPOLOGIA DA IMAGEM DIGITAL Faculdade de Computação Universidade Federal de Uberlândia TOPOLOGIA DA IMAGEM DIGITAL Sumário Vizinhança de um pixel O que é conectividade? Algoritmo para rotular componentes conectadas Relação de adjacência

Leia mais

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões

Classificação da imagem (ou reconhecimento de padrões): objectivos Métodos de reconhecimento de padrões Classificação de imagens Autor: Gil Gonçalves Disciplinas: Detecção Remota/Detecção Remota Aplicada Cursos: MEG/MTIG Ano Lectivo: 11/12 Sumário Classificação da imagem (ou reconhecimento de padrões): objectivos

Leia mais

Clip-art Retrieval using Sketches PTDC/EIA-EIA/108077/2008

Clip-art Retrieval using Sketches PTDC/EIA-EIA/108077/2008 PROJECTOS DE INVESTIGAÇÃO CIENTÍFICA E DESENVOLVIMENTO TECNOLÓGICO Clip-art Retrieval using Sketches PTDC/EIA-EIA/108077/2008 Deliverable: D1 - Clip-art Simplification Tool Task: T1 - Clip-art Simplification

Leia mais

Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem

Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem ARTIGO Medição da Altura das Cunhas de Fricção dos Vagões Utilizando Processamento Digital de Imagem Leonardo Borges de Castro 1 *, Dr. João Marques Salomão 2 e Me. Douglas Almonfrey 2 1 VALE - Engenharia

Leia mais

PROCESSAMENTO DIGITAL DE IMAGENS

PROCESSAMENTO DIGITAL DE IMAGENS PROCESSAMENTO DIGITAL DE IMAGENS Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF FILTRAGEM ESPACIAL

Leia mais

Álgebra Linear I Solução da 5ª Lista de Exercícios

Álgebra Linear I Solução da 5ª Lista de Exercícios FUNDAÇÃO EDUCACIONAL SERRA DOS ÓRGÃOS CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS Centro de Ciências e Tecnologia Curso de Graduação em Engenharia de Produção Curso de Graduação em Engenharia Ambiental e Sanitária

Leia mais

ANÁLISE DA INFLUÊNCIA DA ILUMINAÇÃO NA CLASSIFICAÇÃO DE FACES EM IMAGENS DIGITAIS

ANÁLISE DA INFLUÊNCIA DA ILUMINAÇÃO NA CLASSIFICAÇÃO DE FACES EM IMAGENS DIGITAIS ANÁLISE DA INFLUÊNCIA DA ILUMINAÇÃO NA CLASSIFICAÇÃO DE FACES EM IMAGENS DIGITAIS Dielly de Oliveira VIANA¹; Eanes Torres PEREIRA². ¹Aluno do curso de Computação; ²Professor do curso de Computação; Departamento

Leia mais

4 Avaliação Experimental

4 Avaliação Experimental 4 Avaliação Experimental Este capítulo apresenta uma avaliação experimental dos métodos e técnicas aplicados neste trabalho. Base para esta avaliação foi o protótipo descrito no capítulo anterior. Dentre

Leia mais

5 Resultados. 5.1. Avaliação Baseada na Taxa de Igual Erro

5 Resultados. 5.1. Avaliação Baseada na Taxa de Igual Erro 5 Resultados Neste capitulo discutem-se os resultados obtidos no desenvolvimento desta pesquisa segundo a metodologia descrita no capitulo anterior. A avaliação de acurácia para tarefas de verificação

Leia mais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais

Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Comparação entre a Máscara de Nitidez Cúbica e o Laplaciano para Realce de Imagens Digitais Wesley B. Dourado, Renata N. Imada, Programa de Pós-Graduação em Matemática Aplicada e Computacional, FCT, UNESP,

Leia mais

Operações Geométricas com Imagens

Operações Geométricas com Imagens Introdução ao PID Processamento de Imagens Digitais Operações Geométricas com Imagens Glaucius Décio Duarte Instituto Federal Sul-rio-grandense : Campus Pelotas Engenharia Elétrica Atualizado em 17mar2015

Leia mais

FEN- 06723 Processamento Digital de Imagens. Projeto 2 Utilização de máscaras laplacianas

FEN- 06723 Processamento Digital de Imagens. Projeto 2 Utilização de máscaras laplacianas FEN- 06723 Processamento Digital de Imagens Projeto 2 Utilização de máscaras laplacianas Marcelo Musci Mestrado Geomática/UERJ-2004 Abstract The Laplacian is also called as second difference function,

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS QUIXADÁ BACHARELADO EM SISTEMAS DE INFORMAÇÃO SAMUEL SANCHES DE FREITAS

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS QUIXADÁ BACHARELADO EM SISTEMAS DE INFORMAÇÃO SAMUEL SANCHES DE FREITAS UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS QUIXADÁ BACHARELADO EM SISTEMAS DE INFORMAÇÃO SAMUEL SANCHES DE FREITAS DETERMINAÇÃO DO VALOR TOTAL DE MOEDAS EM IMAGENS DIGITAIS QUIXADÁ 2014 SAMUEL SANCHES DE FREITAS

Leia mais

3.1. Representação de Velocidade de um Corpo Rígido:

3.1. Representação de Velocidade de um Corpo Rígido: 3. CINEMÁTICA DIFERENCIAL Neste capítulo abordamos a descrição do movimento do robô manipulador sem levar em conta os esforços que o produzem. Um importante problema cinemático associado ao movimento do

Leia mais

Esopo, castanhas... e viva a sopa de letrinhas!

Esopo, castanhas... e viva a sopa de letrinhas! Reforço escolar M ate mática Esopo, castanhas... e viva a sopa de letrinhas! Dinâmica 1 2ª Série 4º Bimestre Professor DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 1ª Algébrico-Simbólico Sistemas

Leia mais

CLASSIFICAÇÃO DE IMAGENS DE PORNOGRAFIA E PORNOGRAFIA INFANTIL UTILIZANDO RECUPERAÇÃO DE IMAGENS BASEADA EM CONTEÚDO ITAMAR ALMEIDA DE CARVALHO

CLASSIFICAÇÃO DE IMAGENS DE PORNOGRAFIA E PORNOGRAFIA INFANTIL UTILIZANDO RECUPERAÇÃO DE IMAGENS BASEADA EM CONTEÚDO ITAMAR ALMEIDA DE CARVALHO UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA CLASSIFICAÇÃO DE IMAGENS DE PORNOGRAFIA E PORNOGRAFIA INFANTIL UTILIZANDO RECUPERAÇÃO DE IMAGENS BASEADA EM CONTEÚDO

Leia mais

Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens

Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens Universidade Federal de Goiás Instituto de Informática Processamento Digital de Imagens Prof Fabrízzio Alphonsus A M N Soares 2012 Capítulo 2 Fundamentos da Imagem Digital Definição de Imagem: Uma imagem

Leia mais

Aritmética Binária e. Bernardo Nunes Gonçalves

Aritmética Binária e. Bernardo Nunes Gonçalves Aritmética Binária e Complemento a Base Bernardo Nunes Gonçalves Sumário Soma e multiplicação binária Subtração e divisão binária Representação com sinal Sinal e magnitude Complemento a base. Adição binária

Leia mais

Rastreamento de Objetos Usando Descritores Estatísticos

Rastreamento de Objetos Usando Descritores Estatísticos UNIVERSIDADE DO VALE DO RIO DOS SINOS CIÊNCIAS EXATAS E TECNOLÓGICAS. PROGRAMA INTERDISCIPLINAR DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA Leandro Lorenzett Dihl Rastreamento de Objetos Usando Descritores

Leia mais

Aprendizagem automática Mapas auto-organizativos (SOMs)

Aprendizagem automática Mapas auto-organizativos (SOMs) Aprendizagem automática Mapas auto-organizativos (SOMs) 1 Redes neuronais de Kohonen self-organizing maps (SOMS) Visão algébrica dum conjunto de informação (valores, sinais, magnitudes,...) vs. Visão topológica

Leia mais

Rastreamento de Áreas Planas em Cenas Reais para Propósitos de Realidade Aumentada

Rastreamento de Áreas Planas em Cenas Reais para Propósitos de Realidade Aumentada Rastreamento de Áreas Planas em Cenas Reais para Propósitos de Realidade Aumentada Luis Felipe A. Zeni 1, Wilson P. Gavião Neto 1 1 Faculdade de Informática Centro Universitário Ritter dos Reis (UNIRITTER)

Leia mais

Reconhecimento das Configurações de Mão da LIBRAS a Partir de Malhas 3D

Reconhecimento das Configurações de Mão da LIBRAS a Partir de Malhas 3D Reconhecimento das Configurações de Mão da LIBRAS a Partir de Malhas 3D Andres Jessé Porfirio Orientador: Prof. Dr. Daniel Weingaertner Universidade Federal do Paraná Sumário Introdução Abordagem Baseada

Leia mais

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens

Fundamentos de Imagens Digitais. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens. Aquisição e Digitalização de Imagens Fundamentos de Imagens Digitais Aquisição e Serão apresentadas as principais características de uma imagem digital: imagem do ponto de vista matemático processo de aquisição e digitalização de uma imagem

Leia mais

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática

Restauração de Imagens. Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática Restauração de Imagens Tsang Ing Ren George Darmiton da Cunha Cavalcanti UFPE - Universidade Federal de Pernambuco CIn - Centro de Informática 1 Tópicos Introdução Modelo de degradação/restauração Modelo

Leia mais

PCIM 2013-2014. Laboratório 0, parte visual: Iniciação ao tratamento de imagem, vídeo e áudio no MATLAB

PCIM 2013-2014. Laboratório 0, parte visual: Iniciação ao tratamento de imagem, vídeo e áudio no MATLAB PCIM 2013-2014 Laboratório 0 - parte visual: Iniciação à manipulação de imagem, vídeo e áudio com o MATLAB 1. Processamento de imagem O MatLab possui diversos comandos específicos para manipular imagens

Leia mais

Técnicas de Suavização de Imagens e Eliminação de Ruídos

Técnicas de Suavização de Imagens e Eliminação de Ruídos 21 Técnicas de Suavização de Imagens e Eliminação de Ruídos Carlos H. Sanches 1, Paulo J. Fontoura 1, Phillypi F. Viera 1, Marcos A. Batista 1 1 Instituto de Biotecnologia Universidade Federal do Goiás

Leia mais

INTERPRETAÇÃO DE OBJETOS EM CONTEXTO

INTERPRETAÇÃO DE OBJETOS EM CONTEXTO INTERPRETAÇÃO DE OBJETOS EM CONTEXTO MARIANA C. SPERANDIO 1, FELLIPE A. S. SILVA 1, PAULO E. SANTOS 2. 1. Centro Universitário da FEI Av. Humberto de Alencar Castelo Branco 3972, 09850-908 São Bernardo

Leia mais

Morfologia Matemática Binária

Morfologia Matemática Binária Morfologia Matemática Binária Conceitos fundamentais: (Você precisa entender bem esses Pontos básicos para dominar a área! Esse será nosso game do dia!!! E nossa nota 2!!) Morfologia Matemática Binária

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Inspeção Visual Automática em Problemas Industriais

Inspeção Visual Automática em Problemas Industriais Inspeção Visual Automática em Problemas Industriais Luis Miguel Morais Martins Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica Júri Presidente: Prof. Mário Manuel Gonçalves da Costa

Leia mais

Uma Metodologia para Detectar e Reconhecer Placas de Sinalização de Trânsito

Uma Metodologia para Detectar e Reconhecer Placas de Sinalização de Trânsito Uma Metodologia para Detectar e Reconhecer Placas de Sinalização de Trânsito Francisco Assis da Silva 1,2, Almir Olivette Artero 3, Maria Stela Veludo de Paiva 2, Ricardo Luís Barbosa 4 1 Faculdade de

Leia mais

MORFOLOGIA MATEMÁTICA APLICADA A RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS

MORFOLOGIA MATEMÁTICA APLICADA A RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS MORFOLOGIA MATEMÁTICA APLICADA A RECONHECIMENTO DE PLACAS DE AUTOMÓVEIS Paulo Madruga UNIBRATEC Av. Beira Mar, 220, Ap 111 Piedade J. dos Guararapes - PE madruga@unibratec.com.br Sérgio de Sá Leitão Paiva

Leia mais

INTERPRETAÇÃO DE OBJETOS EM CONTEXTO

INTERPRETAÇÃO DE OBJETOS EM CONTEXTO INTERPRETAÇÃO DE OBJETOS EM CONTEXTO MARIANA C. SPERANDIO 1, FELLIPE A. S. SILVA 1, PAULO E. SANTOS 2. 1. Centro Universitário da FEI Av. Humberto de Alencar Castelo Branco 3972, 09850-908 São Bernardo

Leia mais

Informática Aplicada a Imagens MCP - 5840

Informática Aplicada a Imagens MCP - 5840 Serviço de Informática Instituto do Coração HC FMUSP Informática Aplicada a Imagens Médicas MCP - 5840 Marco Antonio Gutierrez Email: marco.gutierrez@incor.usp.br usp Motivação: Visualização D e 3D Seqüências

Leia mais

Agenda. Detecção e Análise de Movimento em Vídeos. Detecção e Análise de Movimentos: Introdução. Detecção e Análise de Movimentos: Introdução

Agenda. Detecção e Análise de Movimento em Vídeos. Detecção e Análise de Movimentos: Introdução. Detecção e Análise de Movimentos: Introdução Agenda Detecção e Análise de Movimento em Vídeos Alceu de Souza Britto Jr. Alessandro L. Koerich InviSys Sistemas de Visão Computacional Ltda Programa de Pós-Graduação em Informática (PPGIa PUCPR) Introdução

Leia mais

5 Transformações Lineares e Matrizes

5 Transformações Lineares e Matrizes Nova School of Business and Economics Prática Álgebra Linear 5 Transformações Lineares e Matrizes 1 Definição Função de em Aplicação que faz corresponder a cada elemento de um conjunto (domínio), denominado

Leia mais