UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS CURSO DE ENGENHARIA MECÂNICA

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS CURSO DE ENGENHARIA MECÂNICA"

Transcrição

1 UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS CURSO DE ENGENHARIA MECÂNICA Alan César Cadore Metodologia de custeio de peças torneadas com base no volume de material removido Panambi, 2016

2 2 Alan César Cadore Metodologia de custeio de peças torneadas com base no volume de material removido Trabalho de Conclusão de Curso apresentado à banca avaliadora do curso de Engenharia Mecânica da Universidade Regional do Noroeste do Estado do Rio Grande do Sul UNIJUÍ, como requisito parcial para a obtenção do título de Engenheiro Mecânico. Orientador: Felipe Tusset, MEng. Panambi/RS 2016

3 3 Alan César Cadore Metodologia de custeio de peças torneadas com base no volume de material removido Banca examinadora Felipe Tusset MEng. - Orientador Membro da Banca Examinadora Panambi 01 de junho de 2016.

4 4 AGRADECIMENTOS Durante 6 anos percorrendo 90 km diariamente de Ijuí à Panambi, conciliando horários de trabalho e faculdade, meu agradecimento inicial é a Deus, que me concedeu ânimo, força, proteção e persistência durante esta etapa da minha vida. Aos meus pais, que nos momentos de minha exaustão me incentivaram a não desistir e seguir com dedicação. Obrigado Mãe, pelos puxões de orelha no início da faculdade que não me permitiram desistir. Obrigado Pai, pela preocupação quanto ao andamento do meu curso, pelo incentivo, apoio e pelo auxilio financeiro. Ao meu irmão Alisson, também professor, que na existência da minha dificuldade em algumas matérias, quando esteve perto, me ajudou com os cálculos, quando longe me auxiliou por aulas via Skype. Obrigado pelo teu incentivo, tua preocupação e teu apoio durante toda a minha trajetória acadêmica. Ao meu professor orientador Felipe Tusset, pela sua paciência, correções e contribuições. Obrigado pelo companheirismo, pela tua orientação e pela disponibilidade de toda terça-feira. E em especial a minha namorada Caroline que sempre me deu apoio e me incentivou a não desistir de meus sonhos. Obrigado por se fazer presente em vários finais de semanas, até de madrugada, me ajudando a estruturar e organizar meu trabalho. Te amo!

5 5 RESUMO A usinagem faz parte do processo de fabricação de peças e é de extrema importância que o seu custo seja calculado adequadamente, pois possibilita a formação correta do preço de venda, controle de custos e tomada de decisão. Sendo assim, o objetivo deste estudo é investigar a viabilidade da utilização do modelo de cálculo de custo baseado no volume de material removido no processo de usinagem. Para tanto, utilizou-se uma modelagem baseada nos parâmetros do processo. A metodologia utilizada se baseia na análise do volume de material removido em cm³, que representa uma técnica prática de cálculo de custeio. Os resultados apontam com exatidão os custos do processo de usinagem, sendo que esta metodologia apresenta diferenciais positivos se comparada ao método contábil tradicional para cálculo de custo. Neste estudo constatou-se a viabilidade da utilização do método apresentado para o cálculo dos custos referentes aos processos de usinagem. Ademais, apresenta-se a vantagem deste método em evidenciar de maneira clara, prática e simplificada todo e qualquer tempo e custo envolvido no processo de fabricação de uma determinada peça. Por fim, esse modelo serve como base para o planejamento da produção, pois apresenta características versáteis que proporcionam a realização de testes referentes aos custos durante a produção. PALAVRAS CHAVE: Usinagem; Custo de produção; Volume de material removido.

6 6 ABSTRACT The machining is part of the manufacturing process of spare parts and is of utmost importance that its cost is calculated properly, since it affords to the right analyses of the selling price, cost control and taking final decisions. Thus, the aim of this study is to investigate the feasibility of using based costing model in the volume of material removed in the machining process. For this purpose, was used a modeling based on the process parameters. The methodology used is based on the analysis of the volume of removed material in cm 3, which is a practical technique to attain the price cost. The results show correctly the costs of the machining process, and this approach has positive advantages compared to the traditional method for cost calculation. In this study was found the feasibility of using the method presented for the calculation of costs relating to machining processes. In addition, it presents the advantage of showing in a practical way, simplified any time and cost involved in one particular spare part during the manufacturing process. Finally, this model acts as a basis model for production planning, because it offers versatile features that provide conducting tests related to costs during the manufacturing process. KEYWORS: Machining; Production costs; Volume of removed material.

7 7 Lista de figuras Figura 1 - Torneamento cilíndrico externo Figura 2 - Torneamento cilíndrico interno Figura 3 - Representação da vida da ferramenta segundo modelo de Taylor.. 22 Figura 4 - Tempo de fabricação por peça em função da velocidade de corte.. 26 Figura 5 - Representação gráfica de máxima eficiência Figura 6 - Indicação esquemática do volume removido do material Figura 7 - Indicação do volume de material removido ( ) de cada operação. 35 Figura 8 - Detalhamento da peça usinada

8 8 Lista de tabelas Tabela 1 - Valores hora/máquina fornecidos por empresas de usinagem Tabela 2 - Parâmetros padrões de cada tipo de máquina Tabela 3 - Valores padrões definidos para um modelo de máquina Tabela 4 - Demonstrativo dos tempos de abastecimento da máquina manual. 40 Tabela 5 - Valores orçados para a Peça Tabela 6 - Resultados calculado... 50

9 9 Lista de siglas Profundidade de corte [mm] Custo ferramental por peça [R$] CAD Computer Aided Desing; CNC Comando Numérico Computadorizado; Diâmetro de corte [mm] Diâmetro da peça [mm] Área ocupada pela máquina [m²] Avanço de corte [mm/rotação] Altura do filete de rosca [mm] H Quantidade de horas trabalhada por ano [horas] Taxa de juros por ano [%] Custo do m² da área [R$/ano] Custo de manutenção da máquina [R$/anos] Custo de produção [R$] Custo pago no inserto [R$] Custo das ferramentas [R$] Custo ferramental total [R$] Custo da máquina [R$] Custo da mão-de-obra [R$] Custo matéria-prima [R$] Comprimento da rosca [mm] Comprimento da rosca [mm] Comprimento de corte [mm] Vida prevista para a máquina [anos] Idade da máquina [anos] Número de passadas para rosca [unidade] Vida do porta-ferramenta em quantidade de aresta de corte [unidade] Número de arestas cortantes do inserto [unidade] n t Número de trocas ou afiações da ferramenta [unidade] P Passo da rosca [mm]

10 10 Taxa de remoção de material [cm³/min] - Salário e encargos do operador [R$/hora] Tempo de corte efetivo da rosca [min] Tempo de vida da ferramenta [min] Tempo de abastecimento [min] Tempo de afiação da ferramenta [min] Tempo de corte efetivo [min] Tempo de vida do suporte-ferramenta [arestas] Tempo total [min] Tempo total da operação por peça [min] Tempo de vida da ferramenta [unidade] Tempo de aproximação e afastamento da ferramenta [min] Tempo de corte [min] Tempo de afiação da ferramenta [min] Tempo de troca de ferramenta [min] Tempo de preparo da máquina [min] Tempo secundário de usinagem [min] Tempo total de confecção por peça [min] Vida da ferramenta para máxima produção; [min] Velocidade de corte [m/min] Velocidade de avanço [mm/min] Valor pago pela máquina [R$] Velocidade de máxima produção [m/min] Velocidade de mínima produção; [m/min] Volume removido de material [cm³] Valor pago pelo porta-ferramenta [R$] Quantidade de peças [unidade] Quantidade de arestas cortantes [unidade] Número de peças usinadas por vida T da ferramenta [unidade] z T Número de peças usinadas durante a vida T de uma ferramenta [unidade] Diâmetro final [mm] Diâmetro inicial [mm]

11 11 $f Preço do suporte-ferramenta [R$] $i Preço do inserto [R$]

12 12 SUMÁRIO 1 INTRODUÇÃO OBJETIVOS FORMULAÇÃO DO PROBLEMA OBJETIVO GERAL OBJETIVOS ESPECÍFICOS JUSTIFICATIVA REVISÃO DA LITERATURA TEORIA DE BASE USINAGEM TORNEAMENTO VELOCIDADE DE USINAGEM VIDA DA FERRAMENTA CURVA DE VIDA DA FERRAMENTA FATORES ECONÔMICOS AVANÇO, PROFUNDIDADE DE CORTE E TAXA DE REMOÇÃO DE CAVACO VELOCIDADE DE CORTE PARA MÁXIMA PRODUÇÃO CUSTOS DO PROCESSO CUSTO DE MÃO-DE-OBRA CUSTO DA MÁQUINA CUSTO DA FERRAMENTA INTERVALO DE MÁXIMA EFICIÊNCIA MÉTODOS DE CUSTEIO METODOLOGIA DEFINIÇÕES VOLUME REMOVIDO MÁQUINAS-FERRAMENTAS APLICADAS NO ESTUDO BANCO DE DADOS METODOLOGIA DE CÁLCULO PARA A TAXA DE REMOÇÃO METODOLOGIA DE CÁLCULO PARA O TEMPO DE CORTE EFETIVO CÁLCULO CUSTO FERRAMENTA POR PEÇA CÁLCULO DO TEMPO TOTAL DE OPERAÇÃO CÁLCULO DO CUSTO MÁQUINA CÁLCULO DO CUSTO DA MATÉRIA-PRIMA CÁLCULO DO CUSTO DE PRODUÇÃO ERRO ADMISSÍVEL ESTUDO DE CASO DADOS DE ENTRADA DA SIMULAÇÃO MEMORIAL DE CÁLCULOS... 44

13 ANÁLISE DOS RESULTADOS CONCLUSÃO REFERÊNCIAS BIBLIOGRÁFICAS APÊNDICES... 54

14 14 1 INTRODUÇÃO A importância da criação de projetos inovadores e tecnológicos auxiliam a sociedade e o mundo na construção de um futuro melhor. Tais projetos devem ser viáveis e com capacidade de produção avançada nas indústrias. Com isso, tem-se a preocupação com base na importância da definição do custo em fabricar uma peça na hora de projetá-la e desenvolve-la, sem desperdiçar tempo. Cada vez mais os engenheiros de produto se dedicam em controles de custos de fabricação durante a criação de seu produto, tornando-o viável financeiramente. Pois para que na hora de definir o preço de venda, este seja competitivo com o mercado atual. Com a demanda de produção elevada, as indústrias do ramo de usinagem vêm investindo cada vez mais no controle de custos de manufatura e produção. Com a concorrência aumentando cada vez mais, as empresas disputam a necessidade de baixar o custo de fabricação. Por isso, se dedicam em investigar formas rentáveis e de softwares de simulação de operações de usinagem. O trabalho a seguir está divido em quatro partes: a primeira apresenta o problema a ser resolvido com objetivos específicos e parâmetros inerentes ao processo de torneamento para investigar a viabilidade do produto na sua fabricação. A segunda parte divide-se na revisão bibliográfica, a qual tem por objetivo mencionar formas de calcular os custos pertinentes ao processo de torneamento. Nesta parte será usado o método de custeio por volume removido de material em cm³, baseando-se em livros de autores capacitados no assunto, evidenciando formas viáveis de reduzir o custo de fabricação no processo de torneamento. Juntamente, com gráficos demonstrativos de custo máximo e mínimo de fabricação em um intervalo de máxima eficiência de produção. A terceira parte demonstra a metodologia a ser utilizada para a definição dos cálculos de custos dos processos pertinentes a fabricação da peça usinada. Além do banco de dados definido com valores padrões obtidos de pesquisas com fabricantes de máquinas de usinagem e de ferramentas de usinagem. Finalmente, a quarta parte aborda as definições e simulações de custos dos processos, juntamente com os resultados obtidos e posterior comparação nas análises calculadas com os valores orçados com empresas que terceirizam usinagem.

15 OBJETIVOS 1.2 Formulação do problema Com o aumento da competitividade no mercado, tem-se cada vez mais procurado a minimização de custos de manufatura e mantendo a qualidade do produto. A tecnologia vem aumentando cada vez mais com o passar dos anos, e com ela cresce as estratégicas técnicas para criar um produto novo no mercado. Este produto tem de ser necessariamente viável financeiramente à sua fabricação, ou seja, quanto menor o custo para fabricá-lo, maior é o rendimento da empresa. Determinar com precisão esse custo é um desafio para os engenheiros de produto e processo. Nas operações de usinagem a determinação desse custo é fundamental para viabilizar ou não um produto. Para a usinagem de peças prismáticas a metodologia de custeio já está definida e é facilmente aplicada, porém para as operações de torneamento, a determinação do tempo de corte efetivo é mais complexa, visto que a medida que o diâmetro de corte efetivo é alterado, alteram-se todas as variáveis de cálculo. Essa condição torna o processo de cálculo de custo para o processo de torneamento muito complexo e demorado, impedindo uma rápida análise, além de demandar pessoas com sólidos conhecimentos na área de usinagem. Partindo dessas condições, o que pode ser feito para simplificar a modelagem de custos para o processo de torneamento, permitindo que esse custo possa ser calculado ainda na fase de projeto? 1.3 Objetivo geral O objetivo principal deste trabalho é investigar a viabilidade da utilização do método de cálculo de tempo de corte efetivo baseado no volume de material removido para cálculo de custos inerentes a um processo de usinagem por torneamento. Para tal, utilizou-se uma modelagem baseada nos parâmetros do processo.

16 Objetivos específicos Para o alcance do objetivo principal deste projeto de pesquisa, será necessária a busca pelos objetivos específicos listados a seguir: Aprofundamento dos estudos envolvendo a influência dos parâmetros de corte na definição dos custos de um processo de usinagem; Desenvolvimento de um banco de dados de parâmetros de corte para aplicação em operações de torneamento orientado para as capacidades dos equipamentos de usinagem onde será desenvolvido o processo; Desenvolver uma rotina de cálculos baseada na determinação de custos totais de cada operação do processo de torneamento; Observar o efeito da aplicação da metodologia. 1.5 Justificativa Atualmente, a competição global entre empresas concorrentes por fornecedores, clientes e por destaque no mercado, vêm exigindo atenção constante de empresários e administradores. Jacobsen (2010) afirma que cada vez mais os competidores apresentam tecnologia avançada e atualizada oriunda de pesquisa e desenvolvimento; processos operacionais administrativos e/ou comerciais mais eficazes; bem como sistemas de informações que auxiliam de forma moderna, veloz e abrangente; ou então maior e melhor relacionamento com mercados financeiros, custos menores, facilidades de negociações, prazo e riscos menores. A partir deste contexto é possível destacar diversos motivos que influenciam e destacam os competidores empresários. Neste sentido, surge à necessidade de aprimorar processos operacionais e produtivos, na busca pela otimização de custos e paralelamente o aperfeiçoamento da qualidade de produção. Mendes (2006) afirma que o cenário competitivo tem influenciado as diversas organizações a aprimorar a qualidade de seus processos, serviços e produtos, considerando a compatibilidade dos níveis de excelência com os custos mais apropriados possíveis. Desta maneira, a competição induz as organizações a utilizar técnicas não triviais de planejamento e melhoria da qualidade. O processo competitivo de mercado, de acordo com Mendes (2006) atinge diversas empresas e

17 17 setores dos mais variados ramos, inclusive o setor metal-mecânico que assim como os demais, deve buscar alternativas viáveis de otimização de custos, bem como a melhoria da qualidade. Jacobsen (2010) argumenta que para a redução de custos o foco está no alvo correto, diferentemente de cortar e reduzir gastos de forma incontrolável. O objetivo desta otimização de custo está em insistir no aumento da relação entre benefício e custo. Isto implica em dizer que as organizações devem objetivar em otimização dos custos sem deixar de observar a qualidade do serviço ou produto ofertado. Conforme a pesquisa de Mendes (2006) realizada através da metodologia de superfície de resposta no processo de usinagem, observou-se que quanto menor o tempo de fabricação de uma peça obtém-se a diminuição das filas de produtos em processo e aumento de produtividade. Desta maneira, otimiza-se os custos que fazem parte do processo.

18 18 2 REVISÃO DA LITERATURA 2.1 Teoria de base No processo mecânico de torneamento, devido à dificuldade de coletar alguns parâmetros e a complexidade de cálculos de custos, muitas empresas estimam o custo do serviço/produto de torneamento através de uma média das outras empresas ou até mesmo da própria experiência no ramo. Desta maneira, muitas vezes não se tem o custo real do processo e se estima determinado valor como sendo lucro. No entanto, essa etapa é feita sem saber realmente quanto de lucro ou até mesmo de prejuízo a empresa está tendo em um determinado serviço/produto a ser vendido. 2.2 Usinagem De acordo com Ferraresi (2013) operação de usinagem é a conferência da peça a forma, da dimensão ao acabamento e da combinação destes itens. Nesses procedimentos é normalmente produzido cavaco, que consiste no material removido e de forma geométrica irregular durante o processo de usinagem. Para Peixoto et al. (2012) a formação de cavaco envolve alguns fenômenos como recalque, aresta postiça de corte, craterização e formação periódica do cavaco. Dutra (2011) ressalta que o termo usinagem significa todo processo mecânico onde a peça final é o resultado da retirada de material na forma de cavaco, com a ação de uma máquina ou ferramenta. Conforme o dicionário da Língua Portuguesa (2004, p. 730), usinagem significa: Estabelecimento que dispensa a utilização de ferramentas que trabalhem em contato com a peça. Que na prática significa submeter o material bruto a uma ação de uma máquina e/ou ferramenta para ser trabalhado e transformado no produto final/acabado. De acordo com Ferraresi (2013), o processo mecânico de usinagem está dividido em várias classificações, tais como: torneamento,

19 19 aplainamento, furação, alargamento, rebaixamento, fresamento, roscamento entre outros. Para Ferraresi: Aplainamento é o processo mecânico de usinagem destinado à obtenção de superfícies regradas, geradas por um movimento retilíneo alternativo da peça ou da ferramenta; Furação é o processo mecânico de usinagem destinado à obtenção de um furo geralmente cilíndrico numa peça, com o auxilio de uma ferramenta geralmente multicortante; Alargamento é o processo mecânico de usinagem destinado ao desbaste ou ao acabamento de furos cilíndricos ou cônicos, com o auxílio de ferramenta geralmente multicortante; Rebaixamento é o processo mecânico de usinagem destinado à obtenção de uma forma qualquer na extremidade de um furo; Fresamento é o processo mecânico de usinagem destinado à obtenção de superfícies quaisquer com o auxílio de ferramentas geralmente multicortantes; Roscamento é o processo de usinagem destinado à obtenção de filetes, por meio da abertura de um ou vários sulcos helicoidais de passo uniforme, em superfícies cilíndricas ou cônicas de revolução. (2013, p. 29 a 35). 2.3 Torneamento De acordo com o que afirma Ferraresi (2013), este processo mecânico de usinagem, é destinado à obtenção de superfícies cilíndricas com auxílio de uma ou mais ferramenta monocortantes. A peça gira no centro do eixo principal de rotação da máquina e a ferramenta cortante se desloca até a aresta da peça para dá inicio ao torneamento. Figura 1 - Torneamento cilíndrico externo. Fonte: Ferraresi (2013, p.27)

20 20 Para Silva (2010) o torneamento é a operação na qual um material indefinido é feito girar ao centro do eixo da máquina que faz o trabalho de usinagem. Isso ocorre ao mesmo tempo em que uma ferramenta de corte se aproxima retirando o material perifericamente do sólido fixado no centro do eixo. Deste modo, modificando-o para uma peça definida, em relação à forma e as dimensões. Figura 2 - Torneamento cilíndrico interno. Fonte: Silva (2010, p.02) O processo de torneamento de uma peça é dividido em dois estágios, o processo de desbaste e o processo de acabamento. O desbaste consiste em vários passes da ferramenta removendo o máximo de material possível, sem comprometer a ferramenta, a máquina ou a peça sendo torneada. O acabamento nada mais é que um único passe da ferramenta contornando a peça depois de quase todo sobremetal ter sido removido no processo de desbaste. O principal objetivo do processo de acabamento é que a peça fique com a rugosidade e o acabamento superficial desejado. Saravanan et al. (2003) Ainda Saravanan et al. (2003) afirmam que no processo de torneamento os parâmetros que devem ser otimizados são a velocidade de corte ( ), o avanço ( ) e a profundidade de corte ( ). 2.4 Velocidade de usinagem Segundo Ferraresi (2013), deve-se diferenciar no processo de usinagem a velocidade de corte ( ), que é a velocidade exata no ponto de partida na aresta que

21 21 é cortada tendo direção e sentido de corte; avanço de corte ( ) que é a velocidade exata da ferramenta tendo direção e sentido de avanço; e a velocidade efetiva de corte que é a velocidade exata de corte quando em contato da aresta cortante tendo direção efetiva de corte. Para obter uma boa condição econômica de usinagem, Ferraresi (2013) afirma que se deve basear principalmente em que quanto maior a velocidade ou avanço de corte, menor será o tempo de máquina, consequentemente, reduz a parte do custo de fabricação devido à máquina. Mas diminui gradativamente a vida útil da ferramenta, com isso, aumentando o custo relacionado à ferramenta. Desta forma, necessita-se trabalhar no intervalo de máxima eficiência, como irá ser mostrado no decorrer do trabalho, onde o custo total de fabricação seja o menor possível. 2.5 Vida da ferramenta Para Novaski (1991) a vida da ferramenta é determinada pelo ponto no qual a ferramenta não satisfaz economicamente mais peças, ou seja, é o tempo efetivo que a mesma trabalha sem minimizar a capacidade de corte dentro de alguns fatores. Ferraresi (2013) afirma que por motivos desses fatores a substituição da ferramenta acontece quando há aumento excessivo das forças de usinagem. Neste ponto, a ferramenta atinge alto nível de desgaste, o acabamento superficial acaba não sendo satisfatórias, as tolerâncias dimensionais ficam fora do padrão desejado e quando o desgaste da saída da ferramenta alcança temperaturas elevadas pode ocorrer quebra do gume cortante, necessitando de substituição. 2.6 Curva de vida da ferramenta Segundo Novaski (1991), também citado em Ferraresi (2013), a curva de vida da ferramenta está diretamente relacionado à velocidade de corte ( ). Porém, como dentro da usinagem a velocidade pode mudar dependendo do processo a ser feito com a mesma ferramenta, necessita-se construir gráficos auxiliares que nos mostram os desgastes para diferentes tempos de trabalho e velocidades. A

22 22 vida da ferramenta (T) é dada em minutos, de acordo com o que afirma Ferraresi (2013), mas em alguns casos é preferível defini-la em metros na equação 1: [1] Para a execução das curvas de vida da ferramenta os gráficos auxiliares citados anteriormente nos fornecem os desgastes da ferramenta para diferentes velocidades e tempos de trabalho, em determinadas condições de usinagem. Depois disto, é necessária a execução de ábacos que dão vida a ferramenta em função da velocidade de corte ( ) mostrada na Figura 3. Como se percebe, quanto maior for à velocidade, menor é a vida útil da ferramenta. Porém, o intervalo de máxima eficiência mostra em qual velocidade operar sem aumentar muito o custo de produção e sem reduzir muito o tempo de produção em minutos. Figura 3 - Representação da vida da ferramenta segundo modelo de Taylor. Fonte: Novaski (1991, p. 73) Em análise dilogarítimica, a curva de vida da ferramenta T = f(v) é dada pela equação 2: [2] Deduzido por Taylor, os valores de x e k variam com o material da peça e da ferramenta, fluído de corte e fatores de fim da vida da ferramenta e área de corte.

23 23 Com a equação 2 consegue-se determinar a velocidade de corte para a máxima produção, ou seja, velocidade de mínimo custo. 2.7 Fatores econômicos Ferraresi (2013) afirma que os primeiros estudos sobre usinagem dos metais foram feitos por Taylor nos EUA e Schlesinger na Alemanha onde Leyensetter publicou o artigo A velocidade econômica de corte em Nesse artigo o autor afirma que a velocidade mais econômica de corte é quando usina-se o máximo volume de cavaco em um curto período de tempo. Porém, essa ideia foi excluída visto que se trata da velocidade de corte para a máxima produção ( ), e não para o menor custo. Posteriormente, foi definido que a velocidade econômica de corte é aquela que o custo de fabricação na indústria é o mínimo. O principal fator de custo-benefício no processo de usinagem é a velocidade de corte ( ). Por meio desta, consegue-se obter o mínimo custo e a velocidade de corte para a máxima produção ( ). Estes parâmetros ajudam na tomada de decisões quanto à máxima produção em tempo de grande volume de peças e quanto à mínima produção em período de redução de serviço. 2.8 Avanço, profundidade de corte e taxa de remoção de cavaco A pressão específica de corte reduzirá ao admitir a área da seção de corte constante, com um aumento no avanço ( ) e reduzindo a profundidade de corte ( ) na mesma escala de proporção. Além disso, usando uma mesma área de seção de corte para a mesma potência de corte, ocorre uma maximização na velocidade de corte ( ), provocando uma maior retirada de material no processo. Já em relação ao desgaste da ferramenta, é sabido que o avanço ( ) influência mais do que a profundidade de corte ( ). Desta forma, onde ocorre um acréscimo de produção de cavaco ocorrerá um desgaste maior na ferramenta por causa do aumento do avanço e diminuição da profundidade de corte junto com aumento da velocidade de corte. Além disso, Ferraresi (2013) afirma que quanto

24 24 maior for o avanço, maior é o desgaste da ferramenta, consequentemente reduzirá a qualidade obtida no acabamento da superfície da peça usinada. A equação 3 permite o cálculo da taxa de remoção ( ) de material em cm³/min para o processo de torneamento cilíndrico, tanto externo quanto interno. [3] Já a equação 4 permite o cálculo da taxa de remoção ( ) também em cm³/min para o processo de furação. [4] 2.9 Velocidade de corte para máxima produção Velocidade de corte para máxima produção ( ) é o alcance do menor tempo total de usinagem de uma peça, afirma Ferraresi (2013). Para torneamentos cilíndricos externos e internos usa-se: [5] Onde para calcular a rotação da peça usa-se: [6] Portanto, para saber o tempo efetivo de corte ( ) em peças cilíndricas usa-se a equação 7: [7]

25 25 Com a equação de Taylor, obtém-se para determinada profundidade de corte ( ) e avanço ( ) a equação 8: ou também [8] Sendo k e x constantes do material obtidas no próprio processo produtivo. Ferraresi (2013) diz que em um lote de Z peças, os tempos de usinagem são os tempos gastos em todas as fases da usinagem, onde são: a) Fixação do material bruto na máquina-ferramenta; b) O posicionamento da ferramenta para o começo do corte; c) O corte; d) O recuo ou afastamento da ferramenta; e) Conferência e remoção da peça usinada; f) Preparação da máquina-ferramenta para o inicio de produção de um lote Z peças; g) Retirada da ferramenta do suporte da máquina para a substituição ou afiação; h) Recolocação da ferramenta no suporte da máquina e ajuste. Para obter a máxima produção, deve-se diminuir o tempo de confecção por peça, sendo para Ferraresi (2013) dada pela equação [9]: [9] Para calcular o número de trocas de ferramenta em um lote de z peças, usa-se a equação 10: [10] Para calcular a velocidade de corte para a máxima produção, ou seja, o menor tempo de confecção por peça utiliza-se a equação 11: * + ( ) [ ] [11]

26 26 Portanto, percebe-se que o tempo total na usinagem de uma peça pode ser dividas em tempo efetivo de corte; tempo referente a conferência da peça; retirada da peça; aproximação; afastamento da ferramenta; e o tempo relacionado com a troca de ferramenta. Aqui é importante salientar que quanto maior velocidade de corte, menor será a vida útil da ferramenta e maior o tempo de paradas para substituição da mesma, sendo assim, maior o custo de produção em relação a ferramenta. Figura 4 - Tempo de fabricação por peça em função da velocidade de corte. Fonte: Ferraresi (2013, p.651) Sendo x e k variáveis de avanço e profundidade de corte. Conclui-se que o tempo total necessário para usinar uma peça é dado pela velocidade de corte, do avanço e da profundidade como se pode observar na equação [12]: [12] Adotando-se e constantes, para a produção máxima a velocidade de corte é dada somente quando a derivada de em relação a for nula. [13]

27 27 14: Sendo assim, a velocidade para máxima produção ( ) é dada pela equação [14] 15: Para calcular a vida da ferramenta para a máxima produção usa-se a equação [15] Assim obtendo o tempo de troca de ferramenta ( ferramenta para a máxima produção. ), pode-se calcular a vida da 2.10 Custos do processo O estudo de custos, de acordo com Leone (2008) surgiu nos Estados Unidos paralelamente ao surgimento das atividades industriais, sendo uma técnica independente e sistemática que objetivava estudar os problemas de mão-de-obra e repercussão no custo industrial. Com o passar do tempo, o estudo foi se tornando menos empírico e passou a se preocupar com o custo de material consumido nas operações, com despesas de fabricação fixas e variáveis. Posteriormente, foram detectados métodos e critérios de solucionar e aprimorar esta prática. A meta de toda e qualquer entidade sob qualquer sistema econômico, de acordo com Novaski (1991), é a produção de bens e serviços, os quais deverão satisfazer as necessidades dos consumidores inseridos ao seu redor. Portanto, assim como o consumidor procura produtos que lhe satisfaçam, a empresa procura fatores de produção ou recursos. Isso ocorre de modo que lhe proporcionam a possibilidade de produzir os bens desejados com boa qualidade e custo adequado. Isso influencia diretamente na formação de preço de venda, bem como na determinação da margem de lucro que a empresa deseja obter na comercialização deste bem ou serviço.

28 28 Leone (2008) determina custo como um conjunto de procedimentos adotados para a determinação do valor de determinado produto e das várias atividades relacionadas à sua fabricação e/ou produção. Isso objetiva em auxiliar no planejamento e na mensuração de desempenho, e os classifica em diversas categorias de custos, sendo algumas destas: custos diretos e indiretos, custos imputados, custos próprios, custos rateados, custos comuns, custos funcionais, custos estimados, entre outros. No entanto, os tradicionais custos apurados no controle de produção são os custos fixos e variáveis, diretos e indiretos. Quanto a classificação dos custos como diretos e indiretos, Leone (2008) faz uma simples definição, estabelecendo que o custo direto compreende todo e qualquer custo identificável de forma diretamente relacionado à produção. Já o custo indireto compreende todo e qualquer custo que depende do emprego de recursos para ser identificado, dependendo de métodos de rateio, parâmetros e comportamentos. Padoveze (2003) identifica a classificação dos custos como diretos e indiretos como a mais utilizada e mais antiga forma de classificação relacionada ao objeto do custo. O custo direto caracterizado por ter ligação direta com o produto final, sendo de fácil identificação e visualização. Um custo claro e objetivamente específico do produto final e não se confunde com outros produtos. O custo indireto é identificado pela difícil alocação de forma direta aos produtos, e em consequência desta impossibilidade de identificação, os custos indiretos são rateados aos produtos por meio de critérios de distribuição, como rateios, alocação e apropriação. Segundo Novaski (1991) custos de fabricação se dividem em custos fixos e variáveis, os quais estão ligados com a parte produtiva da empresa. Os custos variáveis oscilam diretamente com a quantidade de material produzido, é o custo que incide e se modifica com o processo de produção, cujos exemplos mais apropriados são a matéria prima e mão-de-obra direta. Já os custos fixos não variam de acordo com a produção, permanecem iguais, independente de volume de produção. Esses podem ser também denominados de custos invariáveis. Os custos variáveis, de acordo com Padoveze (2003) sempre serão custos diretos, e podem ser definidos de forma clara e diretamente ligado a unidade de produto, serviço ou atividade. Já os custos indiretos, são geralmente, custos fixos, e só se interligam aos custos dos produtos, por meio de critérios de distribuição ou rateio.

29 29 Leone (2008) classifica os custos como dependentes de algum parâmetro ou comportamento que os defina. Nos custos variáveis define comportamento determinado em relação às unidades produzidas, por exemplo, o comportamento através do material direto utilizado no processo de produção. Neste caso, considerase um custo variável em função de que seu parâmetro está relacionado às unidades produzidas. A partir da definição do custo variável, sabe-se que os custos que não variam conforme o volume de produção é definido como custos fixos, também determinados de custos constantes, como a depreciação que é definida através de um modelo fiscal de cálculo, contabilizada mensalmente a valor fixo. Kiritsis et al (1999) estima a importância do custo de uma atividade em um cálculo, considerando que este, é capaz de predizer o custo de determinado conjunto de atividades, em tempo anterior ao acontecimento do mesmo. Nas operações de usinagem ou de atividades associadas à estimação do custo ocorre através do planejamento prévio para a fabricação da peça, momento este onde pode ser determinado até 70% dos custos. Para obtenção do custo de produção ( ), precisa-se classificar o custo das ferramentas ( ), custo de ocupação das máquinas e dos operadores ( ), e os custos indiretamente ligados ao processo. Portanto, pode-se dizer que o custo de produzir uma peça, em reais (R$), pode ser dado pela equação 16: [16] 2.11 Custo de mão-de-obra Com a equação 17, calcula-se o custo de mão-de-obra: [17] 2.12 Custo da máquina Com a equação 18 calcula-se o custo da máquina:

30 30 ( ) [18] 2.13 Custo da ferramenta O custo da ferramenta para insertos intercambiáveis usa-se a equação 19: [19] Para calcular o custo da ferramenta por peça ( ) usa-se a equação 20: [20] 2.14 Intervalo de máxima eficiência Na Figura 5 é representada a curva do custo total de usinagem por peça ( ) e do tempo total de confecção ( ). Segundo Ferraresi (2013), intervalo de máxima eficiência é o intervalo dado entre ( ) e ( ). É de suma importância que se utiliza os valores de velocidade de corte que pertença neste intervalo, pois em velocidades menores que, tem-se aumento do custo de produção e redução do processo ocorrendo queda na produção. Já para valores à cima da gera-se um aumento no custo da produção e o tempo de fabricação chega mais próximo do mínimo, porém aumentando o custo. Em outras palavras, pode-se dizer que diminuindo a velocidade de corte ( ) não necessariamente haverá redução do custo ( ), ou que aumentando a mesma não terá aumento na produção em hora de peças. No entanto, para conseguir a máxima eficiência no processo, necessariamente precisa trabalhar no intervalo de velocidade que os custos são relativamente baixos.

31 31 Figura 5 - Representação gráfica de máxima eficiência. Fonte: Ferraresi (2013, p.673) 2.15 Métodos de custeio De acordo com Padoveze (2003), a ferramenta de custos de produção tem enfoque gerencial, sem cunho fiscal e legal dentro de uma empresa. Porém, a informação gerada pela contabilidade de custos é de extrema importância quanto a sua utilização efetiva e eficaz dentro das organizações. O método de custeamento, conforme Padoveze (2003) é definido a partir dos gastos que fazem parte do processo de custo unitário do bem ou serviço e também a partir do que define os modelos empresarias da entidade em questão, para definição da metodologia de custeio a ser utilizada. Leone (2008) afirma que o objetivo dos sistemas ou métodos de custeio, independente de qual seja o escolhido pela entidade, é determinar o custo da produção. Porém, o método de custeio deve ser definido de acordo com os interesses da entidade. Se a necessidade é a apuração do custo para o controle e tomada de decisões com enfoque gerencial, deve-se utilizar do método de custeio variável. Já se a necessidade da empresa é a apuração do custo contábil, deve utilizar do método de custeio por absorção. O custeio variável conforme Padoveze (2003) utiliza somente de custos e despesas variáveis de cada bem ou produto, sejam estes, diretos ou indiretos, e não

32 32 utiliza de nenhum conceito de cálculo médio. Este método é caracterizado por ter enfoque de previsão, auxiliando no processo de tomada de decisão. Para Leone (2008) a escolha pelo método do custeamento variável é seletiva, pois só poderão participar deste método, os custos que predizem as condições de serem custos variáveis diretamente ligados à produção. Sendo assim, os custos de produção avaliados por este método, não absorverão os custos indiretos e fixos. O objetivo da escolha do custeamento pelo método variável, segundo Leone (2008), objetiva em determinar a margem de contribuição, que é a diferença entre a receita oriunda da venda do produto ou serviço, e seus custos diretos e variáveis. A margem de contribuição determina quanto à entidade pagará de seus custos diretos e variáveis com relação à quantidade vendida. Neste sentido, pode-se analisar se a margem de contribuição de determinado bem ou serviço, é positiva ou negativa, o que implica na tomada de decisões. O custeio por absorção, de acordo com Padoveze (2003), é o método utilizado pelo setor contábil da entidade, pois é o único método que obedece aos princípios fundamentais da contabilidade e que está em acordo com o que estabelece a legislação. Esse modelo é realizado com base no custo total de produção dos bens e serviços, sendo estes custos, os variáveis e os fixos, diretos e indiretos, e despesas fixas e variáveis de produção, apenas excluindo desta apuração as despesas administrativas, comerciais e financeiras, que fazem parte da venda, e não da produção. Leone (2008) caracteriza o custeio por absorção como aquele que faz debitar o custo da produção, englobando os custos diretos ou indiretos, fixos ou variáveis. Desta forma, determinando que cada produto absorva parcela dos custos diretos e indiretos de produção. Afirma Padoveze (2003) que o processo de apuração de custos pode ser utilizado de forma gerencial para controle, para tomada de decisão, para avaliação de desempenho, dentre outros. Para tanto, é necessário avaliar de forma correta o custo que determinado bem ou serviço está gerando na entidade. Para que assim, seja possível avaliar fatores que poderão ser aperfeiçoados para otimizar o custo, sem comprometer a qualidade do bem ou produto comercializado.

33 33 3 METODOLOGIA Este capítulo apresenta todas as etapas do desenvolvimento da solução proposta para problema apresentado no capítulo 1. É apresentado o equacionamento básico que será aplicado em uma planilha eletrônica de cálculo ou software, que auxilia a determinação do custo de produção de usinagem por processo de torneamento. 3.1 Definições O cálculo do tempo efetivo de corte ( ) é fundamental para determinação da parcela referente ao custo da ferramenta ( ), como para a parcela do customáquina ( ), que são componentes do custo de produção ( ). No processo de torneamento o tempo efetivo de corte é complexo de ser determinado, pois a velocidade de avanço ( ) será variável em cada profundidade de corte que a ferramenta irá atuar. Para simplificar esse cálculo o presente trabalho adotou o cálculo do tempo das operações de desbaste, acabamento e furação, pelo critério da taxa de remoção (Q). Para as operações de rosqueamento, cortes ou canais, será utilizado o critério do comprimento de corte ( ) dividido pela velocidade de avanço ( ) da ferramenta conforme a equação 24. Para fins de simplificação o valor da hora-máquina ( ), (preço cobrado pelo prestador de serviço por uma hora trabalhada em máquina-ferramenta), contempla neste trabalho, o valor investido para compra, pagamento de juros e demais custos, mais a parcela correspondente ao valor pago para a mão-de-obra envolvida na programação e operação do equipamento. Os dados de corte, vida útil estimada do inserto ( ), preço do inserto ( ) e do porta-ferramentas ( ), foram definidos com base em informações dos fabricantes de ferramentas, e estão dispostos em uma tabela que compõe o banco de dados correspondente ao tipo do equipamento que se aplicam. As máquinas-ferramenta foram definidas de acordo com um padrão de tamanho adotado pelos fabricantes de máquinas CNC para a indústria, tendo por base o diâmetro máximo de volteio sobre o barramento, o comprimento torneável

34 34 entre pontos, o diâmetro da placa de fixação e quantidade estações para ferramentas. Como o intuito dessa metodologia é simplificar a análise de custos de um processo de torneamento, e normalmente na fase de análise de um projeto ou produto ainda não se tem a demanda de produção concebida. Desta forma, foi desconsiderado neste estudo o tamanho de lote de fabricação, o que por sua vez impede a obtenção da parcela de tempo correspondente à preparação do equipamento (tempo de setup). 3.2 Volume removido Para permitir o cálculo do tempo de corte efetivo ( ) baseado na taxa de remoção (Q), é necessária a determinação do volume de material removido ( ) em cm³, para cada operação onde essa variável será requerida. O volume de material removido pode ser obtido em software de CAD, através da subtração do volume da peça bruta pelo volume final de cada característica (feature) de usinagem. A Figura 6 apresenta o desenho de uma peça esquemática, indicando o volume removido. Figura 6 - Indicação esquemática do volume removido do material. Fonte: Autor Porém, para cada operação, (a) desbaste, (b) acabamento e (c) furação, o volume removido a ser informado para fins de cálculo, é o volume individual de cada

35 35 uma das características. Logo, na Figura 7 está exemplificado o volume considerado para cada operação. Figura 7 - Indicação do volume de material removido ( ) de cada operação. (a) desbaste; (b) acabamento; (c) furação. Fonte: Autor 3.3 Máquinas-ferramentas aplicadas no estudo Para contemplar os valores padrões que serão aplicados nas equações de cálculo de custos de cada operação, foram identificados parâmetros máximos e mínimos de cada tipo de máquina, conforme dispostos na tabela 1. Valores padrões contidos na tabela 2 foram extraídos de catálogos de fabricantes de máquinas de usinagem tendo como base valores médios usados para fins de estudos e estratégia de cálculos de possíveis fabricações com esse tipo de máquina. Os valores adotados como custo hora-máquina ( ) foram obtidos por pesquisa de mercado com mais de uma prestadora de serviço de usinagem da região, e estão dispostos na tabela 1. Porém, nesta apuração não foi possível conseguir detalhes de como essas empresas chegaram neste valor, mas, foi possível mencionar esses valores para cada tipo de máquina como uma média. Tabela 1 - Valores hora/máquina ( ) fornecidos por empresas de usinagem. Fornecedor Máquina P1 P2 P3 MÉDIA P R$ 78,00 R$ 82,00 R$ 80,00 R$ 80,00 M R$ 110,00 R$ 130,00 R$ 120,00 R$ 120,00 G R$ 180,00 R$ 150,00 R$ 210,00 R$ 180,00 Fonte: Autor Os tempos de troca automática de ferramentas (taf) foram obtidos através da pesquisa feita nos fabricantes de máquinas de usinagem. Este tempo é dado desde

36 36 o instante que uma ferramenta conclui a operação e se afasta da região de corte para posicionamento de uma nova ferramenta, até o momento em que essa nova ferramenta entre em contato com a peça, ou simplificando, é o tempo de cavaco a cavaco. Tabela 2 - Parâmetros padrões de cada tipo de máquina. Característica da Máquina P M G Ø torneável Ø 260 mm Ø 350 mm Ø 560 mm Ø placa até 6" 8" à 10" 12" à cima Comprimento torneável 360 mm 560 mm 715 mm Avanço rápido transversal 24 à 30 m/min 20 à 24 m/min 20 à 24 m/min Potência 15 HP ou 11 KW 15 HP ou 11 KW 25 HP ou 18 KW Tempo troca automática ferramenta ( ) 5 segundos 7 segundos 9 segundos R$ 80,00 R$ 120,00 R$ 180,00 Fonte: Autor 3.4 Banco de dados O banco de dados está estruturado com valores padrões para cada processo de fabricação em função do material da peça, onde utilizou-se a classificação ISO adotada pelos fabricantes de ferramentas de corte, que dispõe dados e informações para aços em geral (P), aço inoxidável (M) e ferro fundido (K). O banco de dados contempla a velocidade de corte ( ), profundidade de corte ( ), avanço de corte ( ) definido pelos fabricantes de ferramentas de usinagem com base em informações retiradas de catálogos. O tempo de vida da ferramenta ( ) é dado em minutos de contato efetivo, essa informação contida no banco de dados consiste em um tempo previamente definido por fabricantes de ferramentas para cada operação e tipo de material. Para cada operação de usinagem a vida útil do suporte-ferramenta ( ), é atrelada à um número de arestas utilizadas por este suporte, esse dados foram coletados de informações dos fabricantes de ferramentas de corte. Os custos dos insertos ( ) e

37 37 dos suportes-ferramentas ( ) são utilizados os mesmos pesquisados com fabricantes, podendo variar de um para outro. Dependendo do projeto da peça, muitas vezes no produto final o custo da matéria-prima ( ) é maior do que o custo de fabrica-la ( ), por isso precisa-se investigar fornecedores com preços viáveis para a produção. Conforme a pesquisa de mercado será usada preço/kg médio do mercado atual na região. A tabela 3 exemplifica a composição de um dos bancos de dados que estão dispostos nos anexos A, B e C deste trabalho. Tabela 3 - Valores padrões definidos para um modelo de máquina. Material Prç/kg Operação Vc(m/min) ap(mm) fn(mm/min) TL [min] Tf[arestas] Zc[pontas] $ i $ f AÇO R$ 3,00 DESB-P 300 2,5 0, R$ 32,00 R$ 200,00 AÇO R$ 3,00 ACAB-P 350 0,5 0, R$ 36,00 R$ 200,00 AÇO R$ 3,00 FUR-P , R$ 72,00 R$ 800,00 AÇO R$ 3,00 CANAL-P , R$ 60,00 R$ 530,00 AÇO R$ 3,00 ROSCA-P 125 0, R$ 82,00 R$ 600,00 Fofo R$ 5,43 DESB-K 250 2,5 0, R$ 32,00 R$ 200,00 Fofo R$ 5,43 ACAB-K 280 0,5 0, R$ 36,00 R$ 200,00 Fofo R$ 5,43 FUR-K 35 1,25 0, R$ 72,00 R$ 800,00 Fofo R$ 5,43 CANAL-K , R$ 60,00 R$ 530,00 Fofo R$ 5,43 ROSCA-K 100 0, R$ 82,00 R$ 600,00 INOX R$ 4,78 DESB-M 230 2,5 0, R$ 32,00 R$ 200,00 INOX R$ 4,78 ACAB-M 250 0,5 0, R$ 36,00 R$ 200,00 INOX R$ 4,78 FUR-M , R$ 72,00 R$ 800,00 INOX R$ 4,78 CANAL-M , R$ 60,00 R$ 530,00 INOX R$ 4,78 ROSCA-M 70 0, R$ 82,00 R$ 600,00 Fonte: Autor 3.5 Metodologia de cálculo para a taxa de remoção A taxa de remoção de material consiste no volume de material removido por minuto de contato efetivo da ferramenta com a peça de trabalho. O cálculo da taxa de remoção (Q), é dado para as operações de torneamento de desbaste e acabamento pela equação [3], disposta no capítulo 2 deste trabalho. Para a operação de furação, o cálculo da taxa de remoção é dado pela equação 4, também disposta no capítulo 2 deste trabalho. As informações ou parâmetros para o cálculo da taxa de remoção das operações acima citadas são oriundas do banco de dados disposto nos anexos A, B e C dependendo da solicitação.

38 Metodologia de cálculo para o tempo de corte efetivo A determinação do tempo de corte efetivo ( ) é demonstrada pela equação 21, que considera o volume removido ( ) dividido pela taxa de remoção ( ) de material da operação em questão. Essa equação é válida para as operações de desbaste, acabamento e furação. [21] Para o cálculo do tempo de corte efetivo da operação de rosqueamento ( ), utiliza-se a equação 7. Porém, para determinar o comprimento de corte ( ), faz-se necessário o cálculo do número de passadas que a ferramenta de rosca irá realizar para formar o filete da rosca. Aplicando a equação 22, encontra-se a altura do filete ( ): [22] De posse dessa informação, para determinar o comprimento de corte ( ), aplica-se a equação 23, que possibilita o cálculo do tempo de corte efetivo do processo de rosqueamento ( ). [23] Conforme a equação 24 e com base nos parâmetros obtidos no banco de dados do anexos A, B e C pode-se calcular o tempo de corte efetivo para o rosqueamento. [24] Para o cálculo do tempo de corte efetivo do canal usa-se a equação 25, que leva em consideração a profundidade de corte ( ), rotação ( ) e o avanço de corte ( ):

39 39 [25] 3.7 Cálculo custo ferramenta por peça Para cada peça fabricada, tem-se uma parcela correspondente ao custo do suporte-ferramenta e do(s) inserto(s) aplicado(s) em cada operação. Com isso aplica-se um método de rateio do custo de aquisição desses insumos, baseado na sua diluição em função da vida útil. Aplicando a equação 26, são considerados o preço do inserto ( ), o preço do porta-ferramenta ( ), o tempo de vida da ferramenta ( ), as quantidades de arestas cortantes ( ) e o tempo de vida do suporte ferramenta ( ) que são diluídos em função do tempo de corte efetivo ( ) de cada operação. ( ) ( ) [26] Para o cálculo do custo total de ferramenta por peça ( ) usa-se o somatório de todos os custos ferramentas ( ) de cada operação, conforme equação 27: [27] 3.8 Cálculo do tempo total de operação Para o cálculo do tempo total de operação ( ), é necessária a consideração dos tempos de troca automática de ferramenta ( ) e do tempo de abastecimento ( ) que consiste no tempo de troca entre a peça usinada e uma nova peça bruta para a usinagem. Esse tempo médio de carga e descarga da máquina é dado conforme a tabela 4.

40 40 Tabela 4 - Demonstrativo dos tempos de abastecimento da máquina manual. Máquina P M G Tempo de abastecimento [ ] (minutos) 0,8 1 1,5 Fonte: Autor Para se calcular o tempo total de cada operação do processo de torneamento, aplica-se a equação 28, visto que para cada operação haverá uma troca automática de ferramenta. [28] Para determinação do tempo total do processo de torneamento, aplica-se a equação 29, que contempla o somatório dos tempos totais das operações que compõe o processo, mais o tempo de abastecimento (carga/descarga) do equipamento. [29] 3.9 Cálculo do custo máquina Para o cálculo do custo máquina ( ) usa-se a equação 30, que se trata do tempo total do processo ( ) multiplicado pela hora-máquina e dividido por 60 min. [30] 3.10 Cálculo do custo da matéria-prima O custo da matéria-prima ( ) é dado pela equação 31, que por sua vez leva em consideração o preço pago pelo quilograma da matéria-prima.

41 41 [31] 3.11 Cálculo do custo de produção Com base nas definições apresentadas no item 3.1 deste trabalho, a determinação do custo de produção é dada pela simplificação da equação 16 anteriormente apresentada. Dessa forma a equação 32 determina que o custo de produção ( ) para a fabricação de um produto é dado pela a soma do custo ferramenta por peça ( ), mais custo máquina ( ) mais o custo da matéria-prima ( ). [32] 3.12 Erro admissível Para fins de validação do modelo de cálculos de custos das operações conforme apresentados anteriormente, irá ser considerado um erro admissível de 20% para mais e para menos do custo em relação aos valores orçados por empresas de usinagem. Essa consideração é dada em função de dois fatores: O preço da matéria-prima oscila de acordo com a quantidade adquirida e a forma de aquisição (direto da usina ou via distribuidores); Os tamanhos de lote de produção determinam a quantidade de preparações de máquina, cada prestador de serviço dilui o seu tempo total de preparação do equipamento pelo tamanho do lote a ser produzido. Essa parcela não foi contemplada na metodologia desenvolvida nesse trabalho.

42 42 Portanto, os custos calculados no trabalho são oriundos de valores padrões definidos por fabricantes e de medidas definidas em CAD, sendo considerado este erro admissível para a validação do modelo.

43 43 4 ESTUDO DE CASO Neste capítulo será abordada a viabilidade da aplicação da metodologia proposta no capitulo 3. O estudo de caso foi aplicado em um item genérico designado como Peça 01, e consta de uma simulação do custo total de produção para fins de análise. 4.1 Dados de entrada da simulação O item designado como Peça 01 é apresentado na Figura 8, e consiste de um sólido de revolução, o que caracteriza a necessidade de um processo de torneamento, contemplando para sua obtenção, operações de desbaste, acabamento, rosqueamento, furação e usinagem de canais. Figura 8 - Detalhamento da peça usinada. Fonte: Autor Conforme a metodologia de cálculo proposta como solução do presente trabalho, as informações de entrada necessárias para a realização dos cálculos de custo estão dispostas abaixo: Nome da peça = Peça 01; Volume bruto = 570,045 cm³; Peso bruto = 4,474 kg;

44 44 Máquina utilizada = Média ( M ) Banco de dados conforme Anexo B Material = AISI 1045 Aço, trefilado da operação de desbaste = 311,187cm³ da operação de acabamento = 2,971cm³ da operação de furação = 1,467 cm³ = 40 mm 4.2 Memorial de cálculos Na sequência são apresentados os cálculos aplicados na simulação do custo total de produção conforme metodologia proposta por este trabalho. Processo de desbaste Cálculo da taxa de remoção (Q) no processo de desbaste: Cálculo do tempo de corte efetivo ( no processo de desbaste: desbaste: Cálculo do custo da ferramenta e do suporte-ferramenta no processo de ( ) ( )

45 45 ( ) ( ) Cálculo do tempo total da operação de desbaste: 1, ,11 Processo de acabamento: Cálculo da taxa de remoção (Q) no processo de acabamento: Cálculo do tempo de corte efetivo ( no processo de acabamento: desbaste: Cálculo do custo da ferramenta e do suporte-ferramenta no processo de ( ) ( ) ( ) ( )

46 46 Cálculo do tempo total da operação de acabamento: 0, ,11 Processo de furação Cálculo da taxa de remoção (Q) no processo de furação: Cálculo do tempo de corte efetivo ( no processo de furação: Cálculo do custo da ferramenta e no processo de furação: ( ) ( ) ( ) Cálculo do tempo total da operação de furação: 0, ,11

47 47 Processo do canal: Cálculo do tempo de corte efetivo ( no processo do canal: canal: Cálculo do custo da ferramenta e do suporte-ferramenta no processo do ( ) ( ) ( ) ( ) Cálculo do tempo total da operação do canal: 0, ,11 Processo de rosqueamento Cálculo da altura do filete da rosca: Cálculo do número de passes no processo de rosqueamento:

48 48 Cálculo do tempo de corte efetivo do processo de rosquemento ( ): Cálculo do tempo total da operação de rosqueamento: 0, ,11 Cálculo do tempo total de processo (1, , , , ,2406) + (1,00) Cálculo do custo-máquina do processo

49 49 Cálculo do custo-ferramenta por peça produzida 0, , , , ,2864 Cálculo do custo da matéria-prima Cálculo do custo total de produção da peça 4.3 Análise dos resultados Por fim dos cálculos, pode-se afirmar que para a Peça 01, os resultados dos cálculos dos tempos de desabaste, acabamento, furação, canal e rosca para um tipo de máquina média (M), somaram-se em 2,9878 min/peça. Chegando a um custo de produção por peça de R$ 20,4293. Contudo, deste valor, 58,36% representa o custo da matéria-prima. Portanto, o valor pago pela matéria-prima influenciará proporcionalmente no preço final da peça. Em uma tomada de preços efetuada com 03 prestadores de serviço de usinagem que atendem a mesma característica de máquina aplicada ao estudo, foram coletados os valores contidos na Tabela 5.

50 50 Tabela 5 - Valores orçados para a Peça 01 Fonte: Autor Comparando os valores calculados pela metodologia proposta pelo presente trabalho com os valores orçados, pode-se verificar que a diferença de custos é de 71,32%, sendo o valor orçado maior que o calculado. Essa diferença pode ser explicada com base em três fatores: 1. A forma como cada prestador adquire a sua matéria-prima, essa parcela é significativa na formação do preço de venda; 2. A determinação do custo hora-máquina de cada prestador, pois aí estão contemplados normalmente os lucros que cada um almeja; 3. A diluição que cada prestador adotou para os tempos de preparação, visto que o tamanho de lote informado foi de uma peça inicialmente. Tabela 6 - Resultados calculado Fonte: Autor

USINAGEM USINAGEM. Prof. M.Sc.: Anael Krelling

USINAGEM USINAGEM. Prof. M.Sc.: Anael Krelling USINAGEM Prof. M.Sc.: Anael Krelling 1 No processo de Usinagem uma quantidade de material é removido com auxílio de uma ferramenta de corte produzindo o cavaco, obtendo-se assim uma peça com formas e dimensões

Leia mais

Processos Mecânicos de Fabricação. Conceitos introdutórios sobre usinagem dos metais

Processos Mecânicos de Fabricação. Conceitos introdutórios sobre usinagem dos metais UDESC Universidade do Estado de Santa Catarina FEJ Faculdade de Engenharia de Joinville Processos Mecânicos de Fabricação Conceitos introdutórios sobre usinagem dos metais DEPS Departamento de Engenharia

Leia mais

TECNOLOGIA DE CONTROLE NUMÉRICO ASPECTOS DE PROCESSOS DE USINAGEM

TECNOLOGIA DE CONTROLE NUMÉRICO ASPECTOS DE PROCESSOS DE USINAGEM TECNOLOGIA DE CONTROLE NUMÉRICO ASPECTOS DE PROCESSOS DE USINAGEM FERRAMENTAS DE USINAGEM Sandvik Desbaste de Aços Pastilhas Positivas T-MAX U Superfícies na Peça Superfície Transitória Superfície a Usinar

Leia mais

NOTAS DE AULAS (Práticas de Oficina)

NOTAS DE AULAS (Práticas de Oficina) Módulo: Processo de Fabricação PROCESSOS DE USINAGEM CONVENCIONAIS IX. Processos de Usinagem. Damos o nome de processos mecânicos de usinagem ao conjunto dos movimentos destinados à remoção do sobremetal

Leia mais

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 30/08/2009

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 30/08/2009 Questão 1 Conhecimentos Específicos - Fabricação Sobre a montagem de engrenagens para abertura de roscas em um torno, é correto afirmar: Deve-se garantir que a folga entre os dentes das engrenagens seja

Leia mais

Departamento de Engenharia Mecânica Graduação em Engenharia Aeronáutica

Departamento de Engenharia Mecânica Graduação em Engenharia Aeronáutica Lista de Exercícios Departamento de Engenharia Mecânica Graduação em Engenharia Aeronáutica Disciplina SEM0534: Processos de Fabricação Mecânica 1 o semestre de 2010 Prof. Associado Renato Goulart Jasinevicius

Leia mais

PROCESSOS DE USINAGEM I

PROCESSOS DE USINAGEM I PROCESSOS DE USINAGEM I Prof. Arthur Bortolin Beskow AULA 02 1 2 PROCESSOS DE USINAGEM I CLASSIFICAÇÃO DOS PROCESSOS DE FABRICAÇÃO 1 Torneamento 2 Aplainamento 3 Furação 4 Alargamento 5 Rebaixamento 6

Leia mais

PROCESSOS DE USINAGEM. Prof. João Paulo Barbosa, M.Sc.

PROCESSOS DE USINAGEM. Prof. João Paulo Barbosa, M.Sc. PROCESSOS DE USINAGEM Prof. João Paulo Barbosa, M.Sc. Introdução Os processos de usinagem começaram a ser desenvolvidos quando o homem descobriu que podia transformar movimento lineares em movimentos de

Leia mais

Teoria e Prática da Usinagem

Teoria e Prática da Usinagem Teoria e Prática da Usinagem Aula 10 Seleção de Ferramentas e Torneamento Profa. Janaina Fracaro Formação do cavaco O ângulo de posição e o raio de ponta da ferramenta afetam a formação do cavaco na medida

Leia mais

PRÁTICA DE OFICINA - AULA OPERAÇÕES BÁSICAS NO TORNEAMENTO 1 - TORNEAMENTO

PRÁTICA DE OFICINA - AULA OPERAÇÕES BÁSICAS NO TORNEAMENTO 1 - TORNEAMENTO 1 PRÁTICA DE OFICINA - AULA 01-2015-1 OPERAÇÕES BÁSICAS NO TORNEAMENTO 1 - TORNEAMENTO Processo mecânico de usinagem destinado a obtenção de superfícies de revolução com auxílio de uma ou mais ferramentas

Leia mais

NOTAS DE AULAS (Práticas de Oficina)

NOTAS DE AULAS (Práticas de Oficina) Módulo: Processo de Fabricação PROCESSOS DE USINAGEM CONVENCIONAIS IX. Processos de Usinagem. Torneamento O torneamento é um processo mecânico de usinagem destinado a obtenção de superfícies de revolução

Leia mais

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais - Usinagem

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais - Usinagem MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais - Usinagem Introdução - Classificação Processos de usinagem envolvem operações de corte que permitem remover excessos de material

Leia mais

Método para ensaios de avaliação de usinabilidade de materiais metálicos utilizando torno CNC e torno convencional (mecânico)

Método para ensaios de avaliação de usinabilidade de materiais metálicos utilizando torno CNC e torno convencional (mecânico) VIII Encontro de Iniciação Científica do LFS 03-04 maio de 2007, 44-48 Método para ensaios de avaliação de usinabilidade de materiais metálicos utilizando torno CNC e torno convencional (mecânico) F. R.

Leia mais

Prof. Danielle Bond. Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação

Prof. Danielle Bond. Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação Prof. Processos Mecânicos de Fabricação Profª Dra. Processos Mecânicos de Fabricação Processos Mecânicos de Fabricação PROCESSOS METALÚRGICOS Aplicação de temperatura PROCESSOS MECÂNICOS Aplicação de tensão

Leia mais

SEM-0534 Processos de Fabricação Mecânica. Aula 5 Processo de Torneamento. Professor: Alessandro Roger Rodrigues

SEM-0534 Processos de Fabricação Mecânica. Aula 5 Processo de Torneamento. Professor: Alessandro Roger Rodrigues SEM-0534 Processos de Fabricação Mecânica Aula 5 Processo de Torneamento Professor: Alessandro Roger Rodrigues Processo: Torneamento Definições: Torneamento é o processo de usinagem para superfícies cilindricas

Leia mais

Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação

Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação Processos Mecânicos de Fabricação Profª Dra. Processos Mecânicos de Fabricação Processos Mecânicos de Fabricação PROCESSOS METALÚRGICOS Aplicação de temperatura PROCESSOS MECÂNICOS Aplicação de tensão

Leia mais

Tipos de movimento da mesa: discordante: sentido de rotação oposto ao movimento de avanço concordante: mesmo sentido de rotação e avanço

Tipos de movimento da mesa: discordante: sentido de rotação oposto ao movimento de avanço concordante: mesmo sentido de rotação e avanço FRESAGEM (Abr 2007) 1. Introdução Usinagem realizada com ferramenta multicortante, chamada fresa, em máquina fresadora. Alta produtividade. Ferramenta possui movimento de rotação (corte) e peça (fixada

Leia mais

Torneamento. Prof. Régis Kovacs Scalice. UDESC Universidade do Estado de Santa Catarina FEJ Faculdade de Engenharia de Joinville

Torneamento. Prof. Régis Kovacs Scalice. UDESC Universidade do Estado de Santa Catarina FEJ Faculdade de Engenharia de Joinville UDESC Universidade do Estado de Santa Catarina FEJ Faculdade de Engenharia de Joinville Torneamento Prof. Régis Kovacs Scalice DEPS Departamento de Engenharia de Produção e Sistemas Visão sistêmica de

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA PROGRAMA DE DISCIPLINA Disciplina: Processos de Usinagem Código da Disciplina: NDC 177 Curso: Engenharia Mecânica e Produção Semestre de oferta da disciplina: 8º Faculdade responsável: NDC Programa em

Leia mais

Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação

Processos Mecânicos de Fabricação. Profª Dra. Danielle Bond. Processos Mecânicos de Fabricação. Processos Mecânicos de Fabricação Processos Mecânicos de Fabricação Profª Dra. Processos Mecânicos de Fabricação Processos Mecânicos de Fabricação PROCESSOS METALÚRGICOS Aplicação de temperatura PROCESSOS MECÂNICOS Aplicação de tensão

Leia mais

Para se planejar o processo de fabricação da peça é necessário conhecer em detalhes as suas características, como:

Para se planejar o processo de fabricação da peça é necessário conhecer em detalhes as suas características, como: Usinagem de peças a partir de blanks em tornos automáticos CNC Este artigo tem por objetivo apresentar as maneiras de se produzir peças torneadas em série e de forma automática através da utilização de

Leia mais

Retirado da Apostila DIDATECH - Programação Fanuc21T OS CÓDIGOS DOS PROGRAMAS FORAM ALTERADOS CONFORME O SOFTWARE FANUCL - DENFORD

Retirado da Apostila DIDATECH - Programação Fanuc21T OS CÓDIGOS DOS PROGRAMAS FORAM ALTERADOS CONFORME O SOFTWARE FANUCL - DENFORD Estrutura do Programa C.N. Programa C.N. é a transformação do desenho da peça em códigos que são interpretados pelo comando. O programa C.N. é composto por uma seqüência finita de blocos que são memorizados

Leia mais

TECNOLOGIA DE CONTROLE NUMÉRICO FUNDAMENTOS DA USINAGEM: FORMAÇÃO DE CAVACOS, TIPOS E FORMAS DE CAVACOS

TECNOLOGIA DE CONTROLE NUMÉRICO FUNDAMENTOS DA USINAGEM: FORMAÇÃO DE CAVACOS, TIPOS E FORMAS DE CAVACOS TECNOLOGIA DE CONTROLE NUMÉRICO FUNDAMENTOS DA USINAGEM: FORMAÇÃO DE CAVACOS, TIPOS E FORMAS DE CAVACOS Peça Torneada Operações de Torneamento Operações de Torneamento Operações de Torneamento Operações

Leia mais

ANÁLISE DA INFLUÊNCIA DA VELOCIDADE DE AVANÇO NO DESGASTE DA ARESTA DE UMA FERRAMENTA DE CORTE

ANÁLISE DA INFLUÊNCIA DA VELOCIDADE DE AVANÇO NO DESGASTE DA ARESTA DE UMA FERRAMENTA DE CORTE ANÁLISE DA INFLUÊNCIA DA VELOCIDADE DE AVANÇO NO DESGASTE DA ARESTA DE UMA FERRAMENTA DE CORTE Matheus Nogueira Andrade, Tiago Batista Pereira, Msc. Marcos Vieira de Souza Centro Universitário de Itajubá,

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio TDUA2 Aula 2 Prof. Carlos Fernando Torno Mecânico Peças e Acessórios do Torno Mecânico. Operações Realizadas com

Leia mais

Quanto à forma da trajetória, o torneamento pode ser retilíneo ou curvilíneo.

Quanto à forma da trajetória, o torneamento pode ser retilíneo ou curvilíneo. PRÁTICA DE OFICINA aula 03-2015-1 2.4 OPERAÇÕES DE TORNEAMENTO Quanto à forma da trajetória, o torneamento pode ser retilíneo ou curvilíneo. 2.4.1 - Torneamento retilíneo - Processo de torneamento no qual

Leia mais

ESTUDO DO DESGASTE EM FERRAMENTA DE METAL DURO NO TORNEAMENTO DOS AÇOS ABNT 1045, 4140 E 4340.

ESTUDO DO DESGASTE EM FERRAMENTA DE METAL DURO NO TORNEAMENTO DOS AÇOS ABNT 1045, 4140 E 4340. ESTUDO DO DESGASTE EM FERRAMENTA DE METAL DURO NO TORNEAMENTO DOS AÇOS ABNT 1045, 4140 E 4340. André Rezende de Figueiredo Oliveira 1 (PQ), Jacques Douglas A. Caetano 1 (EG), Josias Pacheco Rodrigues 1

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA PROGRAMA DE DISCIPLINA Disciplina: Processos de Usinagem Código da Disciplina: NDC 177 Curso: Engenharia de Produção Semestre de oferta da disciplina: 8 Faculdade responsável: Núcleo de Disciplinas Comuns

Leia mais

Processos de Usinagem

Processos de Usinagem Processos de Usinagem Torneamento O torneamento é um processo mecânico de usinagem destinado à obtenção de superfícies de revolução com auxílio de uma ou mais ferramentas monocortantes. Para tanto, a peça

Leia mais

Torno Automático CNC de cabeçote móvel. Torno Automático CNC de torneamento curto TNL12 TNL12K

Torno Automático CNC de cabeçote móvel. Torno Automático CNC de torneamento curto TNL12 TNL12K Torno Automático CNC de cabeçote móvel Torno Automático CNC de torneamento curto TNL12 TNL12K TNL12 - Ideal para qualquer tarefa de usinagem O conceito da máquina TNL12 foi adaptado para as necessidades

Leia mais

INSTITUTO FEDERAL DE SANTA CATARINA CNC/CAM. Profº Emerson Oliveira Matéria: CNC/CAM Câmpus Joinville

INSTITUTO FEDERAL DE SANTA CATARINA CNC/CAM. Profº Emerson Oliveira Matéria: CNC/CAM Câmpus Joinville INSTITUTO FEDERAL DE SANTA CATARINA CNC/CAM Matéria: CNC/CAM emerson.oliveira@ifsc.edu.br Etapas CAD/CAM: INSTITUTO FEDERAL DE SANTA CATARINA Quando o sistema tem comunicação direta. CAD/CAM Quando o sistema

Leia mais

Entende-se como operações de usinagem aquelas que, ao conferir forma à peça, ou dimensões, produzem cavacos. [FERRARESI, 1970]

Entende-se como operações de usinagem aquelas que, ao conferir forma à peça, ou dimensões, produzem cavacos. [FERRARESI, 1970] Entende-se como operações de usinagem aquelas que, ao conferir forma à peça, ou dimensões, produzem cavacos. [FERRARESI, 1970] Cavaco: Porção de material retirada da peça pela ferramenta, caracterizando-se

Leia mais

AULA 2 CLASSIFICAÇÃO DOS PROCESSOS DE USINAGEM

AULA 2 CLASSIFICAÇÃO DOS PROCESSOS DE USINAGEM AULA 2 CLASSIFICAÇÃO DOS PROCESSOS DE USINAGEM 3 2. CLASSIFICAÇÃO DOS PROCESSOS DE USINAGEM 2.1. Introdução Fabricar é transformar matérias-primas em produtos acabados, por uma variedade de processos.

Leia mais

EME005 - Tecnologia de Fabricação IV Fresamento CNC 5

EME005 - Tecnologia de Fabricação IV Fresamento CNC 5 Ciclos de Furação UNIFEI EME005 - Tecnologia de Fabricação IV Fresamento CNC 5 Aula 12a Prof. José Hamilton Chaves Gorgulho Júnior Comandos que automatizam uma série de movimentos, simplificando a programação

Leia mais

CONHECIMENTOS ESPECÍFICOS TEC. LABORATÓRIO ELETROMECÂNICA (CNC)

CONHECIMENTOS ESPECÍFICOS TEC. LABORATÓRIO ELETROMECÂNICA (CNC) CNHECIMENTS ESPECÍFICS TEC. LABRATÓRI ELETRMECÂNICA (CNC) 21. Sobre as funções G01 e G73, podemos afirmar: A) As duas funções são utilizadas para avanços da ferramenta somente quando compensado o raio

Leia mais

Para uma operação de usinagem, o operador considera principalmente os parâmetros:

Para uma operação de usinagem, o operador considera principalmente os parâmetros: Parâmetros de corte Parâmetros de corte são grandezas numéricas que representam valores de deslocamento da ferramenta ou da peça, adequados ao tipo de trabalho a ser executado, ao material a ser usinado

Leia mais

Acesse:

Acesse: Vou, corto e volto Acesse: http://fuvestibular.com.br/ Você já pensou se tivesse que limar manualmente uma carcaça de um motor de navio? Provavelmente você começaria a tarefa e seus netos a terminariam,

Leia mais

FORMAÇÃO DO PREÇO DE VENDA.

FORMAÇÃO DO PREÇO DE VENDA. FORMAÇÃO DO PREÇO DE VENDA gleicilene@unifei.edu.br Formação do Preço de Venda Fatores que influenciam a formação de preço de um produto ou serviço: Decisões da Concorrência: preço corrente, limitação

Leia mais

Manufatura Assistida por Computador

Manufatura Assistida por Computador Manufatura Assistida por Computador Programação CNC Aula 2 Prof. Associado Mário Luiz Tronco Avanço Rápido, com a maior velocidade fornecida pela máquina Avanço Rápido,

Leia mais

TECNOLOGIA DE CONTROLE NUMÉRICO GEOMETRIA DA FERRAMENTA

TECNOLOGIA DE CONTROLE NUMÉRICO GEOMETRIA DA FERRAMENTA TECNOLOGIA DE CONTROLE NUMÉRICO GEOMETRIA DA GEOMETRIA DA A geometria da ferramenta influencia na: Formação do cavaco Saída do cavaco Forças de corte Desgaste da ferramenta Qualidade final da peça GEOMETRIA

Leia mais

Alternativas de otimização da usinagem de cavidades 2 ½ D

Alternativas de otimização da usinagem de cavidades 2 ½ D Alternativas de otimização da usinagem de cavidades 2 ½ D Cleverson Marcelo da Silva (UFSM) cleverson@mail.ufsm.br Leandro Costa de Oliveira (UFSM) leandro@inf.ufsm.br Resumo Este trabalho apresenta algumas

Leia mais

A UTILIZAÇÃO DE UM SISTEMA DE CUSTOS NA FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADOS EM UMA AGÊNCIA DE PUBLICIDADE E PROPAGANDA 1

A UTILIZAÇÃO DE UM SISTEMA DE CUSTOS NA FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADOS EM UMA AGÊNCIA DE PUBLICIDADE E PROPAGANDA 1 A UTILIZAÇÃO DE UM SISTEMA DE CUSTOS NA FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADOS EM UMA AGÊNCIA DE PUBLICIDADE E PROPAGANDA 1 Andressa Goi Wender 2, Eusélia Paveglio Vieira 3. 1 Trabalho de Conclusão

Leia mais

SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius

SEM 0343 Processos de Usinagem. Professor: Renato Goulart Jasinevicius SEM 0343 Processos de Usinagem Professor: Renato Goulart Jasinevicius Que ferramenta é essa? Para que serve? E essas? Que máquina é essa? Que máquina é essa? Aplainamento Aplainamento é uma operação de

Leia mais

OPERAÇÕES MECÂNICAS I

OPERAÇÕES MECÂNICAS I Professor Miguel Reale Professor Me. Claudemir Claudino Alves OPERAÇÕES MECÂNICAS I Aluno: data: / / ATIVIDADE 4 REVISÃO GERAL DE AJUSTAGEM, TORNEARIA. Exercício 9 Um eixo de comprimento L = 250mm, Vc

Leia mais

TUS - TECNOLOGIA DE USINAGEM EXERCÍCIOS: REVISÃO PÓS P1

TUS - TECNOLOGIA DE USINAGEM EXERCÍCIOS: REVISÃO PÓS P1 TUS - TECNOLOGIA DE USINAGEM Professor Me. Claudemir Claudino Alves TORNO EXERCÍCIOS: REVISÃO PÓS P1 1 Calcular a rotação de desbaste e acabamento no torno mecânico para uma peça de aço 1045, com Ø25mm,

Leia mais

6ª Jornada Científica e Tecnológica da FATEC de Botucatu 23 a 27 de Outubro de 2017, Botucatu São Paulo, Brasil

6ª Jornada Científica e Tecnológica da FATEC de Botucatu 23 a 27 de Outubro de 2017, Botucatu São Paulo, Brasil COMPARATIVO ENTRE SUPERFÍCIE MODELADA EM SOFTWARE 3D E MODELO FÍSICO OBTIDO POR USINAGEM EM BLOCO DE MDF Renato Guassu Carvalho¹, Ricardo Gasperini 2 ¹Graduando em Tecnologia da produção Industrial pela

Leia mais

SELEÇÃO DE PROCESSOS

SELEÇÃO DE PROCESSOS SELEÇÃO DE PROCESSOS 1. Introdução Existem diferentes combinações de processos que permitem a fabricação de um mesmo produto (ou produtos similares). Procura-se alcançar a combinação que traga o maior

Leia mais

Manufatura Assistida por Computador (SEM-0350)

Manufatura Assistida por Computador (SEM-0350) Curso de Graduação em Engenharia Mecânica Manufatura Assistida por Computador (SEM-0350) PROGRAMAÇÃO CNC Prof. Dr. Alessandro Roger Rodrigues Sabendo-se que a peça abaixo é constituida de aço AISI 1020,

Leia mais

Continuação Aula 11 2

Continuação Aula 11 2 . 1 Continuação Aula 11 2 Conceitos Fundamentais sobre custos Figura Ilustração, ocorrência de despesas 3 CLASSIFICAÇÃO DOS CUSTOS Classificação pela facilidade de alocação Os custos podem ser classificados

Leia mais

Processos de geometria definida: Brochamento

Processos de geometria definida: Brochamento Processos de geometria definida: Brochamento Prof. Janaina Fracaro de Souza janainaf@utfpr.edu.br Aula 09 TEORIA E PRÁTICA DA USINAGEM OBJETIVOS: ENTENDER O PROCESSO DE GEOMETRIA DEFINIDA POR BROCHAMENTO;

Leia mais

FORMAS DE OTIMIZAR O TEMPO DE CICLO

FORMAS DE OTIMIZAR O TEMPO DE CICLO FORMAS DE OTIMIZAR O TEMPO DE CICLO Em uma série de artigos, Marco Dolci, especialista da Tornos, oferece informações detalhadas sobre os fundamentos do torneamento de barras e sugere formas de otimizar

Leia mais

Usando as tabelas enviadas e consultando o mini catalogo Corokey da empresa Sandvik proponha a resolução do problema abaixo.

Usando as tabelas enviadas e consultando o mini catalogo Corokey da empresa Sandvik proponha a resolução do problema abaixo. 50 45 Torneamento Exemplo 1: Usando as tabelas enviadas e consultando o mini catalogo Corokey da empresa Sandvik proponha a resolução do problema abaixo. Exemplo 1. Realizar o torneamento cilíndrico de

Leia mais

FORÇAS E POTÊNCIAS NA USINAGEM

FORÇAS E POTÊNCIAS NA USINAGEM FORÇAS E POTÊNCIAS NA USINAGEM FORÇAS NA USINAGEM A força necessária para formar o cavaco, é dependente da tensão de cisalhamento do material da peça, das condições de usinagem e da área do plano de cisalhamento

Leia mais

Definição sobre usinagem

Definição sobre usinagem Definição sobre usinagem Aplica-se a todos os processos de fabricação onde ocorre a remoção de material sob a forma de cavaco (DIN 8580) Usinagem Confere forma, dimensão e acabamento a peça através da

Leia mais

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE Curso: Disciplina: Aula 4 Processos de Fabricação Existem um número maior de processos de fabricação, destacando-se os seguintes: 1) Processos de fundição

Leia mais

Usinagem I Parte I Aula 1 Processos de Usinagem / Conceitos Básicos. Prof. Anna Carla - MECÂNICA - UFRJ

Usinagem I Parte I Aula 1 Processos de Usinagem / Conceitos Básicos. Prof. Anna Carla - MECÂNICA - UFRJ Usinagem I 2016.1 Parte I Aula 1 Processos de Usinagem / Conceitos Básicos Panorama do Curso Usinagem I Parte I - Tecnologia da Usinagem (Prova 1) Parte II - Mecânica do Corte e Geometria da Ferramenta

Leia mais

Condições Econômicas de Corte no. Torneamento Cilíndrico

Condições Econômicas de Corte no. Torneamento Cilíndrico Condições Econômicas de Corte no Torneamento Cilíndrico Usinagem I - Prof. Anna Carla Araujo - 2014/1 - DEM/UFRJ 25 de Junho de 2015 O intervalo de máxima eficiência é a faixa de velocidades compreendida

Leia mais

ESTUDO DA INFLUÊNCIA DOS PARÂMETROS DE USINAGEM NO ACABAMENTO SUPERFICIAL E NA TOLERÂNCIA GEOMÉTRICA DE PEÇAS TORNEADAS

ESTUDO DA INFLUÊNCIA DOS PARÂMETROS DE USINAGEM NO ACABAMENTO SUPERFICIAL E NA TOLERÂNCIA GEOMÉTRICA DE PEÇAS TORNEADAS ESTUDO DA INFLUÊNCIA DOS PARÂMETROS DE USINAGEM NO ACABAMENTO SUPERFICIAL E NA TOLERÂNCIA GEOMÉTRICA DE PEÇAS TORNEADAS Daniel Fabião Setti 1, José Eduardo Ferreira de Oliveira 2, Luiz Roberto Oliveira

Leia mais

Mecanismo de Formação: O cavaco é formado continuamente, devido a ductilidade do material e a alta velocidade de corte;

Mecanismo de Formação: O cavaco é formado continuamente, devido a ductilidade do material e a alta velocidade de corte; ESTUDO DOS CAVACOS Cavaco é o material removido do tarugo (Billet) durante o processo de usinagem, cujo objetivo é obter uma peça com forma e/ou dimensões e/ou acabamento definidas. Exemplo: -lápis é o

Leia mais

Prof. Danielle Bond USINAGEM USINAGEM USINAGEM. Movimentos e Grandezas nos Processos de Usinagem

Prof. Danielle Bond USINAGEM USINAGEM USINAGEM. Movimentos e Grandezas nos Processos de Usinagem Prof. Movimentos e Grandezas nos Processos de Usinagem Recomenda-se a norma NBR 6162: Conceitos da Técnica de Usinagem- Movimentos e Relações Geométricas Os movimentos entre ferramenta e peça são aqueles

Leia mais

RELAÇÕES ENTRE PARÂMETROS DE CORTE E ACABAMENTO SUPERFICIAL NA LIGA DE ALUMINIO 7050

RELAÇÕES ENTRE PARÂMETROS DE CORTE E ACABAMENTO SUPERFICIAL NA LIGA DE ALUMINIO 7050 RELAÇÕES ENTRE PARÂMETROS DE CORTE E ACABAMENTO SUPERFICIAL NA LIGA DE ALUMINIO 7050 Getúlio de Oliveira Benato Junior 1,Celso Fernandes Joaquim Junior 2, Gilson Eduardo Tarrento 3 1 Tecnólogo em Produção

Leia mais

USINAGEM. Prof. Fernando Penteado.

USINAGEM. Prof. Fernando Penteado. USINAGEM Prof. Fernando Penteado. 1 Conceito O termo usinagem compreende todo processo mecânico onde a peça é o resultado de um processo de remoção de material (aparas de metal). segundo a DIN 8580,, aplica-se

Leia mais

FEPI , Page 1 Tecnologia Mecânica II

FEPI , Page 1 Tecnologia Mecânica II 28.09.2009, Page 1 APLAINAMENTO O Aplainamento consiste em obter superfícies planas em posição horizontal, vertical ou inclinada. A ferramenta utilizada tem apenas uma aresta cortante que retira o sobremetal

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Campus Presidente Epitácio TDUA2 Aula 3 Prof. Carlos Fernando Fresadoras. Tipos de Fresamento. Fresas, Tipos de Fresas. Fresadora A fresadora

Leia mais

Métodos de Custeamento. Profª Ma. Máris de Cássia Ribeiro Vendrame

Métodos de Custeamento. Profª Ma. Máris de Cássia Ribeiro Vendrame Métodos de Custeamento Profª Ma. Máris de Cássia Ribeiro Vendrame Método de Custeamento RKW ou Pleno e Integral Também denominado método de custeio pleno ou integral, foi desenvolvido na Alemanha no início

Leia mais

Contar com as ferramentas certas na produção é um fator importante para que uma empresa possa se destacar no mercado. Isso possibilita a saída à

Contar com as ferramentas certas na produção é um fator importante para que uma empresa possa se destacar no mercado. Isso possibilita a saída à O Caminho do Sucesso SOLUÇÕES AFINADAS COM SUA EMPRESA Contar com as ferramentas certas na produção é um fator importante para que uma empresa possa se destacar no mercado. Isso possibilita a saída à frente

Leia mais

SEM-0534 Processos de Fabricação Mecânica. Aula 2. Professor Alessandro Roger Rodrigues

SEM-0534 Processos de Fabricação Mecânica. Aula 2. Professor Alessandro Roger Rodrigues SEM-0534 Processos de Fabricação Mecânica Aula 2 Professor Alessandro Roger Rodrigues Tipos de Corte no Fresamento (a) Fresamento Tangencial (b) Fresamento Frontal Penetração de trabalho Profundidade de

Leia mais

Brochamento. Nesta aula você terá uma visão geral de uma. Nossa aula. O que é brochamento. Brocha

Brochamento. Nesta aula você terá uma visão geral de uma. Nossa aula. O que é brochamento. Brocha A UU L AL A Brochamento Nesta aula você terá uma visão geral de uma operação muito utilizada em usinagem chamada brochamento. Você vai saber como é feita essa operação e quais as ferramentas e máquinas

Leia mais

Brochamento. Nesta aula você terá uma visão geral de uma. Nossa aula. O que é brochamento. Brocha

Brochamento. Nesta aula você terá uma visão geral de uma. Nossa aula. O que é brochamento. Brocha A UU L AL A Brochamento Nesta aula você terá uma visão geral de uma operação muito utilizada em usinagem chamada brochamento. Você vai saber como é feita essa operação e quais as ferramentas e máquinas

Leia mais

CONJUNTOS MECÂNICOS. Figura 1. Representação de conjunto mecânico usando vistas ortográficas.

CONJUNTOS MECÂNICOS. Figura 1. Representação de conjunto mecânico usando vistas ortográficas. CONJUNTOS MECÂNICOS Tão importante quanto conhecer os elementos de máquinas e projetá-los, é saber representar graficamente e interpretar esses elementos em desenhos técnicos. Máquinas (torno mecânico,

Leia mais

Custos Industriais. Variações nos volumes de produção e vendas. Introdução. Classificação dos Gastos

Custos Industriais. Variações nos volumes de produção e vendas. Introdução. Classificação dos Gastos Custos Industriais Classificação dos Gastos Prof. M.Sc. Gustavo Meireles 1 Introdução Separação dos gastos em custos e despesas fundamental para a apuração do custo da produção e do resultado do período;

Leia mais

Etapas do Plano de Negócios

Etapas do Plano de Negócios Etapas do Plano de Negócios Etapa 7. Plano financeiro Detalhes Investimentos Projeção de resultados Ponto de equilíbrio Projeção fluxo de caixa Vendas Despesas Mão de obra Etapa 7 Plano Financeiro Investimento

Leia mais

Usinagem I Parte I Aula 2 Torneamento e Aplainamento. Prof. Anna Carla - MECÂNICA - UFRJ

Usinagem I Parte I Aula 2 Torneamento e Aplainamento. Prof. Anna Carla - MECÂNICA - UFRJ Usinagem I 2016.1 Parte I Aula 2 Torneamento e Aplainamento Movimentos de Usinagem * Os que causam diretamente rehrada de cavaco (AHvos) Corte Avanço EfeHvo de Corte Movimentos que não removem material

Leia mais

SEM-0534 Processos de Fabricação Mecânica. Aula 6. Professor Alessandro Roger Rodrigues

SEM-0534 Processos de Fabricação Mecânica. Aula 6. Professor Alessandro Roger Rodrigues SEM-0534 Processos de Fabricação Mecânica Aula 6 Professor Alessandro Roger Rodrigues Tipos de Corte no Fresamento (a) Fresamento Tangencial (b) Fresamento Frontal Penetração de trabalho Profundidade de

Leia mais

mm. Roda contadora

mm. Roda contadora 5 1 13 mm Roda contadora 28 decomagazine 2-217 alta tecnologia e DPRM : know-how, de braços dados As mais belas peças para os mais belos relógios do mercado : a seguir, queremos apresentar brevemente a

Leia mais

ROMI VT 1400M ROMI VT 2000M ROMI VT 2500M ROMI VT 3000M ROMI VT 5000 ROMI VT 6000 TORNOS VERTICAIS CNC LINHA ROMI VT

ROMI VT 1400M ROMI VT 2000M ROMI VT 2500M ROMI VT 3000M ROMI VT 5000 ROMI VT 6000 TORNOS VERTICAIS CNC LINHA ROMI VT ROMI VT 1400M ROMI VT 2000M ROMI VT 2500M ROMI VT 3000M ROMI VT 5000 ROMI VT 6000 TORNOS VERTICAIS CNC LINHA ROMI VT Complexo Industrial Romi, em Santa Bárbara d Oeste - SP INOVAÇÃO + QUALIDADE ROMI: Desde

Leia mais

SISTEMA DE CUSTOS, FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADO DE UM VIVEIRO DE MUDAS DE EUCALIPTOS 1

SISTEMA DE CUSTOS, FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADO DE UM VIVEIRO DE MUDAS DE EUCALIPTOS 1 SISTEMA DE CUSTOS, FORMAÇÃO DE PREÇOS E ANÁLISE DE RESULTADO DE UM VIVEIRO DE MUDAS DE EUCALIPTOS 1 Francieli Aline Sulzbacher 2, Euselia Paveglio Vieira 3. 1 Trabalho de Conclusão do Curso de Ciências

Leia mais

Usinagem I Parte 3 Aula 23 Condições Econômicas de Corte. Prof. Anna Carla - MECÂNICA - UFRJ

Usinagem I Parte 3 Aula 23 Condições Econômicas de Corte. Prof. Anna Carla - MECÂNICA - UFRJ Usinagem I 2016.1 Parte 3 Aula 23 Condições Econômicas de Corte SELEÇÃO DE PARÂMETROS DE USINAGEM COMO FAZER? ü Avanço ü Profundidade de Corte ü Velocidade de Corte ü Fluido de Corte? Como aplicado? Delineamento

Leia mais

Aula Processos de usinagem de roscas -

Aula Processos de usinagem de roscas - Aula 14 - Processos de usinagem de roscas - Prof. Dr. Eng. Rodrigo Lima Stoeterau Processo de Usinagem de Roscas Processos de Usinagem Rosqueamento Definição: processo de usiangem cujo a função é produzir

Leia mais

ORÇAMENTO EMPRESARIAL

ORÇAMENTO EMPRESARIAL ORÇAMENTO EMPRESARIAL Engenharia de Produção Prof. Flávio Smania Ferreira flavioferreira@live.estacio.br http://flaviosferreira.wordpress.com ORÇAMENTO DE CUSTO DE PRODUÇÃO Orçamento do Custo de Produção

Leia mais

ANÁLISE DO POTENCIAL DA INSERÇÃO DE CENTRO DE USINAGEM CINCO EIXOS NA INDÚSTRIA DE FERRAMENTARIA

ANÁLISE DO POTENCIAL DA INSERÇÃO DE CENTRO DE USINAGEM CINCO EIXOS NA INDÚSTRIA DE FERRAMENTARIA ANÁLISE DO POTENCIAL DA INSERÇÃO DE CENTRO DE USINAGEM CINCO EIXOS NA INDÚSTRIA DE FERRAMENTARIA HISTÓRIA 1930 1942 1956 1972 2007 2013 A Companhia é fundada sob o espírito inovador de Américo Emílio Romi

Leia mais

Prof. Dr. Silvio Aparecido Crepaldi.

Prof. Dr. Silvio Aparecido Crepaldi. 1 2 O objetivo deste capítulo é ensinar a calcular o custo de um produto por meio do sistema de custeio variável, identificando a margem de contribuição, o ponto de equilíbrio e a margem de segurança para

Leia mais

SISTEMA FERRAMENTA NA MÃO

SISTEMA FERRAMENTA NA MÃO SISTEMA FERRAMENTA NA MÃO SISTEMA FERRAMENTA NA MÃO Para definir os planos e medir os ângulos da ferramenta é preciso selecionar um ponto de referência posicionado em qualquer parte do gume principal.

Leia mais

Etapa 7 Plano Financeiro

Etapa 7 Plano Financeiro 17/10/12 Etapas do Plano de Negócios Etapa Detalhes 7. Plano financeiro Investimentos Projeção de resultados Ponto de equilíbrio Projeção fluxo de caixa Vendas Despesas Mão de obra Investimento é tudo

Leia mais

REFERÊNCIAS TECNOLÓGICAS E CÁLCULO DIMENSIONAL

REFERÊNCIAS TECNOLÓGICAS E CÁLCULO DIMENSIONAL Necessidade de Referências ponto, linha ou superfície a precisão de uma superfície não relaciona-se diretamente ao conceito de referências. a precisão de posicionamento sim. As referências podem ser classificadas

Leia mais

MAIS QUE PRODUTOS. PRODUTIVIDADE.

MAIS QUE PRODUTOS. PRODUTIVIDADE. MAIS QUE PRODUTOS. PRODUTIVIDADE. Mais furos por hora ou mais furos por broca? Com os produtos Lenox-Twill você tem a melhor solução, não importa a necessidade. Sejam produtos para aplicação específica

Leia mais

Quebra-Cavacos F30 F50 SN-29. Geometria A11. Robusta. Vivo. Aumento da espessura do chanfro (arestas de corte estáveis)

Quebra-Cavacos F30 F50 SN-29. Geometria A11. Robusta. Vivo. Aumento da espessura do chanfro (arestas de corte estáveis) Quebra-Cavacos A Fina Geometria Média Robusta 0 10 20 30 40 50 60 70 80 90 100 Vivo Aumento da espessura do chanfro (arestas de corte estáveis) FN F30 F50 SN-29 SN Diminuição do ângulo de ataque (ação

Leia mais

ANÁLISE DE CUSTOS, VOLUME E RESULTADOS EM UMA INDÚSTRIA DE MÓVEIS PLANEJADOS 1 ANALYSIS OF COSTS, VOLUME AND RESULTS IN A PLANNED FURNITURE INDUSTRY

ANÁLISE DE CUSTOS, VOLUME E RESULTADOS EM UMA INDÚSTRIA DE MÓVEIS PLANEJADOS 1 ANALYSIS OF COSTS, VOLUME AND RESULTS IN A PLANNED FURNITURE INDUSTRY ANÁLISE DE CUSTOS, VOLUME E RESULTADOS EM UMA INDÚSTRIA DE MÓVEIS PLANEJADOS 1 ANALYSIS OF COSTS, VOLUME AND RESULTS IN A PLANNED FURNITURE INDUSTRY Andriara Marques Rodrigues 2, Jordana Danieli Santos

Leia mais

Torno Mecânico. Prof. João Paulo Barbosa, M.Sc.

Torno Mecânico. Prof. João Paulo Barbosa, M.Sc. Torno Mecânico Prof. João Paulo Barbosa, M.Sc. EVOLUÇÃO DOS TORNOS O PRINCIPIO TORNO TIPOS DE TORNOS PARTES FUNDAMENTAIS DO TORNO HORIZONTAL ACESSÓRIOS SISTEMA DE FIXAÇÃO DA FERRAMENTA DE CORTE ANÉIS GRADUADOS

Leia mais

PROLIND INDUSTRIAL LTDA.

PROLIND INDUSTRIAL LTDA. Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Engenharia Mecânica Coordenadoria de Estágio do Curso de Engenharia Mecânica CEP 88040-970 - Florianópolis - SC - BRASIL www.emc.ufsc.br/estagiomecanica

Leia mais

PROCESSOS AVANÇADOS DE USINAGEM

PROCESSOS AVANÇADOS DE USINAGEM PROCESSOS AVANÇADOS DE USINAGEM E FABRICAÇÃO DE PEÇAS DE PLÁSTICO Prof. Lopes INCLUEM PROCESSOS DE REMOÇÃO DE MATERIAL : QUÍMICOS ELÉTRICOS TÉRMICOS MECÂNICOS Usinagem Química Filme Usinagem Quimica

Leia mais

Desafios e Oportunidades Atuais na Fabricação de Ferramentas de Estampagem. Dr.-Ing. João Henrique Corrêa de Souza Supervisor de P&D

Desafios e Oportunidades Atuais na Fabricação de Ferramentas de Estampagem. Dr.-Ing. João Henrique Corrêa de Souza Supervisor de P&D Desafios e Oportunidades Atuais na Fabricação de Ferramentas de Estampagem Dr.-Ing. João Henrique Corrêa de Souza Supervisor de P&D Agenda Introdução Desafios Inovando para a competir Pesquisa e Desenvolvimento

Leia mais

Usinagem I Parte I Aula 3 Furação. Prof. Anna Carla - MECÂNICA - UFRJ

Usinagem I Parte I Aula 3 Furação. Prof. Anna Carla - MECÂNICA - UFRJ Usinagem I 2016.1 Parte I Aula 3 Furação Ferramentas MulEcortante Dir. Avanço Aresta de Corte Movimento de Corte / Direção de Corte Movimento de Avanço / Direção de Avanço Movimento EfeEvo de Corte / Direção

Leia mais

TECNOLOGIA DE CONTROLE NUMÉRICO PROGRAMAÇÃO CNC CICLOS FIXOS

TECNOLOGIA DE CONTROLE NUMÉRICO PROGRAMAÇÃO CNC CICLOS FIXOS TECNOLOGIA DE CONTROLE NUMÉRICO PROGRAMAÇÃO CNC CICLOS FIXOS Operações de Torneamento Operações de Torneamento Eixos de um Torno CNC Eixos de um Torno CNC Segurança é Fundamental!!! Área de Trabalho de

Leia mais

15 Congresso de Iniciação Científica ANÁLISE DE ESTRATÉGIAS DE CORTE PARA MANUFATURA DE SUPERFÍCIES COMPLEXAS COM ALTA VELOCIDADE

15 Congresso de Iniciação Científica ANÁLISE DE ESTRATÉGIAS DE CORTE PARA MANUFATURA DE SUPERFÍCIES COMPLEXAS COM ALTA VELOCIDADE 15 Congresso de Iniciação Científica ANÁLISE DE ESTRATÉGIAS DE CORTE PARA MANUFATURA DE SUPERFÍCIES COMPLEXAS COM ALTA VELOCIDADE Autor(es) MÁRCIO TEIXEIRA FERNANDES Orientador(es) Klaus Schützer Apoio

Leia mais

22/04/2013 ADMINISTRAÇÃO E FINANÇAS PARA ENGENHARIA. Professor: Luis Guilherme Magalhães (62) DEPRECIAÇÃO, CUSTOS FIXOS E CUSTOS VARIÁVEIS

22/04/2013 ADMINISTRAÇÃO E FINANÇAS PARA ENGENHARIA. Professor: Luis Guilherme Magalhães (62) DEPRECIAÇÃO, CUSTOS FIXOS E CUSTOS VARIÁVEIS ADMINISTRAÇÃO E FINANÇAS PARA ENGENHARIA Professor: Luis Guilherme Magalhães (62) 9607-2031 DEPRECIAÇÃO, CUSTOS FIXOS E CUSTOS VARIÁVEIS 1 CONCEITO Os Bens Patrimoniais, devido ao uso e pelo desgaste natural

Leia mais

APLICAÇÃO DE PROJETO DE EXPERIMENTOS PARA A OTIMIZAÇÃO DE UM PROCESSO DE USINAGEM EM TORNO CNC

APLICAÇÃO DE PROJETO DE EXPERIMENTOS PARA A OTIMIZAÇÃO DE UM PROCESSO DE USINAGEM EM TORNO CNC XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Maturidade e desafios da Engenharia de Produção: competitividade das empresas, condições de trabalho, meio ambiente. São Carlos, SP, Brasil, 1 a15 de outubro

Leia mais

a) O aumento da complexidade e a rápida obsolescência dos produtos. b) Aprendizado mais rápido para eliminar falhas do processo.

a) O aumento da complexidade e a rápida obsolescência dos produtos. b) Aprendizado mais rápido para eliminar falhas do processo. 14 1. Introdução 1.1. Contexto Histórico O Sistema de Produção Just-in-Time (JIT) teve seu início no Japão no início da década de 70 e tinha como principais objetivos, além da redução de todo tipo de estoques:

Leia mais

USINAGEM CNC. Professor: Emerson L. de Oliveira

USINAGEM CNC. Professor: Emerson L. de Oliveira USINAGEM CNC Professor: Emerson L. de Oliveira emerson.oliveira@ifsc.edu.br 1 Tecnologia CNC Gestão da Qualidade 2 Tecnologia CNC 3 Vantagens das máquinas 4 Desvantagens das máquinas 5 Eixos das máquinas

Leia mais