Cálculo das Probabilidades e Estatística I

Tamanho: px
Começar a partir da página:

Download "Cálculo das Probabilidades e Estatística I"

Transcrição

1 Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB

2 Introdução O curso foi dividido em três etapas: 1 vimos como resumir descritivamente variáveis de um conjunto de dados. 2 conhecemos modelos probabilísticos, caracterizados por parâmetros, capazes de representar adequadamente o comportamento de algumas variáveis. 3 esta etapa, apresentaremos métodos para fazer afirmações sobre as características de uma população (parâmetros), com base em informações dadas por amostras.

3 Revisando alguns conceitos... População: conjunto de todos os elementos ou indivíduos sob investigação. Amostra: qualquer subconjunto (não vazio) da população. Variável Aleatória: característica da população sujeita a variação. Parâmetro: Característica numérica observada na população. Estimador: Característica numérica estabelecida por valores da amostra (uma função da amostra). Estimativa: um particular valor assumido por um estimador.

4 Introdução à Inferência Estatística O uso de informações de uma amostra para concluir sobre o todo faz parte do dia a dia da maioria das pessoas. Por exemplo: Uma cozinheira ao verificar o sal de um prato que está preparando; Um comprador, após experimentar uma pequena fatia de queijo, decide se vai ou não comprar o queijo; A forma como as mães verificam a temperatura do mingau de seus bebês.

5 Inferência Inferência Estatística: conjunto de métodos de análise estatística que permitem tirar conclusões sobre uma característica da população com base em somente uma parte dela (uma amostra). Em outras palavras, a inferência estatística trata de métodos que permitem a obtenção de conclusões sobre um ou mais parâmetros de uma ou mais populações através de quantidades (estimadores) calculadas a partir da(s) amostra(s);

6 Inferência Fazer inferência (ou inferir) = tirar conclusões sobre as características de uma população (parâmetros), com base em informações dadas a partir da amostra (estimadores); Os métodos de inferência podem ser agrupados em duas categorias: 1 Estimação: pontual ou intervalar 2 Testes de Hipóteses

7 Com o que lida a Inferência? Suponha que desejamos saber qual a altura média dos brasileiros adultos. Como podemos obter essa informação? Medindo a altura de todos os brasileiros adultos. Nesse caso, não será necessário usar inferência estatística. Selecionar adequadamente uma amostra aleatória (X 1, X 2,..., X n ) da população de brasileiros adultos e, através dessa amostra, inferir sobre a altura média (parâmetro).

8 Podemos inferir sobre a altura média dos brasileiros adultos de duas formas: 1 Estimação: Estimativa Pontual: calculando a média das alturas dos brasileiros adultos selecionados na amostra; Estimativa Intervalar: através dos valores da amostra construir um intervalo de tal forma que a probabilidade de o verdadeiro valor da altura média dos brasileiros pertencer a este intervalo seja alta. 2 Testes de Hipóteses: Em uma outra situação, poderíamos estar interessados em testar se a afirmação os brasileiros têm, em média, 169 cm é verdadeira. Com base na amostra, podemos realizar um Teste de Hipóteses. Contudo, estes resultados dependerão da qualidade da amostra, que tem que ser representativa da população.

9

10 A forma como selecionamos uma amostra interfere nos resultados? Ex 1: Análise da quantidade de glóbulos brancos no sangue de certo indivíduo. Uma gota do dedo seguramente será representativa para a análise. Caso Ideal! Ex 2: Opinião sobre um projeto governamental. Se escolhermos uma cidade favorecida, o resultado certamente conterá erro (viés) OBS: Observe que a forma como se obtém a amostra é determinante para a validade da pesquisa.

11 Como selecionar uma amostra? A maneira de selecionar a amostra é tão importante que existem diversos procedimentos de obtê-la. A teoria da amostragem é o ramo da estatística que fornece procedimentos adequados para a seleção de amostras. Aqui, trataremos do caso mais simples de amostragem probabilística, e que serve como base para procedimentos mais elaborados: a amostragem aleatória simples, com reposição, a ser designada por AAS.

12 Amostragem Aleatória Simples (AAS) Supomos que podemos listar todos os N elementos de uma população homogênea e finita. Usando um procedimento aleatório, sorteia-se um elemento da população. Repete-se o procedimento até que sejam sorteadas as n unidades da amostra. Temos AAS com reposição e sem reposição, contudo, com reposição implica independência entre as unidades selecionadas facilitando o estudo das propriedades dos estimadores. Neste curso, será considerada a amostragem aleatória simples, com reposição, a ser designada por AAS.

13 Estimação Em qualquer área do conhecimento nos deparamos com o problema de estimar alguma quantidade de interesse. Exemplo: estimar a proporção de indivíduos que votarão em determinado candidato. A estimação pode ser feita de duas formas: 1 Estimação Pontual: um único valor e utilizado para inferir sobre um parâmetro de interesse. 2 Estimação Intervalar: uma faixa de valores ou intervalo é utilizado para inferir sobre um parâmetro de interesse, com algum grau de confiança.

14 Estimação Pontual Na estimação pontual desejamos encontrar um único valor numérico que esteja bastante próximo do verdadeiro valor do parâmetro. Parâmetro Média (µ) Variância (σ 2 ) Desvio Padrão (σ) Proporção (p) Estimador n i=1 X = X i n n S 2 i=1 = (X i X) 2 n 1 S = S 2 ˆp = X onde X é o número de indivíduos n que possuem a mesma característica de interesse

15 Os preços de um determinado produto em 10 diferentes mercados em um determinado mês foram: Exemplo A estimativa pontual da média do preço do produto é dada por X = = A estimativa pontual da proporção de preços menores que 1 real é dada por ˆp = 4 10 = 0.4

16 Propriedades desejáveis de um estimador Considere θ um estimador pontual (função de uma amostra) para um parâmetro θ desconhecido. P1 Não-Viesado: diz-se que θ é não-viesado (nãotendencioso) se seu valor esperado é igual a θ. P2 Consistência: diz-se que θ é consistente se além de não-viesado, sua variância tende a zero quando o tamanho de n é suficientemente grande. P3 Eficiência: Se θ 1 e θ 2 são dois estimadores não-viesados de um mesmo parâmetro θ, e ainda V ar(ˆθ 1 ) < V ar(ˆθ 2 ), então, dizemos que ˆθ 1 é mais eficiente do que ˆθ 2.

17 Suponha que alguém deseje comprar um rifle e, escolha quatro (A, B, C e D) para testá-los. foram dados 15 tiros com cada um deles. A representação gráfica é dada abaixo.

18 Estimação Pontual Estimação Intervalar Estimadores pontuais, especificam um único valor para o parâmetro. Mas, sabemos que diferentes amostras levam a diferentes estimativas, pois o estimador é uma função de uma amostra aleatória. E, estimar um parâmetro através de um único valor não permite julgar a magnitude do erro que podemos estar cometendo. Daí, surge a ideia de contruir um intervalo de valores que tenha uma alta probabilidade de conter o verdadeiro valor do parâmetro (denominado intervalo de confiança).

19 Como construir um intervalo de confiança? Um intervalo de confiança (ou estimativa intervalar) é construído de forma que a estimativa pontual esteja acompanhada de uma medida de erro. [ Intervalo Estimativa de Confiança = Pontual ± Erro de Estimação ] Mas como obter o erro de estimação????

20 Distribuição Amostral dos Estimadores Como dissemos, um estimador é uma função de uma amostra. Uma amostra consiste de observações de uma variável aleatória. Assim, estimadores também são variáveis aleatórias. Por esta razão, cada estimador possui uma distribuição de probabilidades e é importante conhecêla, pois a partir dela conhecemos o comportamento do estimador e podemos determinar a precisão das suas estimativas. A distribuição de probabilidades desses estimadores é comumente denominada de distribuição amostral do estimador.

21 Distribuição Amostral dos Estimadores A Distribuição Amostral retrata a distribuição de probabilidades de um estimador ˆθ, caso retirássemos todas as possíveis amostras de tamanho n de uma população. A figura abaixo ilustra a ideia de distribuição amostral.

22 Distribuição Amostral de X Considere, como exemplo, uma população de 5 elementos {2, 3, 6, 8, 11}. Nesta população temos que µ = E(X) = 6 e σ 2 = Var(X) = 10, 8. Se agora retirarmos todas as possíveis amostras de tamanho n = 2, com reposição, teremos: (2, 2); (2, 3); (2, 6); (2, 8); (2, 11); (3, 2)... (11, 11) Calculando a média para cada amostra, temos: (X 1, X 2 ) (2, 2) (2, 3) (2, 6) (2, 8) (2, 11) (3, 2) (11, 11) X 2 2, , 5 2,5 11

23 Distribuição Amostral de X Note que temos todos os possíveis resultados de X. Desta forma, podemos obter a distribuição de probabilidade da variável aleatória X. X 2 2, , P(X = x i ) 1/25 2/25 1/25 2/25 2/25 2/25 1/25 Baseando-se nestes dados, temos que: E(X) = x i p(x i ) = = 6 i E(X 2 ) = x 2 i p(x i ) = = 41, 4 i Var(X) = E(X 2 ) [E(X)] 2 = 41, = 5, 4

24 Distribuição Amostral de X Com respeito a distribuição de X, podemos observar que 1) A sua média é igual à media da população, E(X) = 6 = µ. 2) A sua variância é igual à variância da população dividida pelo tamanho da amostra Var(X) = 5, 4 = 10, 8 = σ2 2 n. Coincidência?

25 Distribuição Amostral de X Não, estes dois fatos não são isolados. Na realidade temos o seguinte resultado: Teorema: Seja X uma v.a. com média µ e variância σ 2, e seja (X 1,..., X n ) uma AAS de X. Então, µ X = E(X) = µ e σ X = Var(X) = σ2 n. Prova: E(X) = E Var(X) = Var ( n ) i=1 X i = 1 n n n i=1 E(X i) = nµ n = µ. ( n i=1 X i n ) = 1n 2 ni=1 Var(X i) = nσ2 n 2 Temos, então, informação sobre a média e a variância de X. Mas, o que dizer sobre sua distribuição de probabilidades? = σ2 n.

26 Distribuição Amostral de X A forma da distribuição amostral de X dependerá da distribuição da v.a. X. Duas situações são consideradas: 1 Se X N(µ, σ 2 ), então, X N(µ, σ2 n ). 2 Se a v.a. X tem distribuição qualquer, a distribuição da média amostral X aproxima-se da distribuição normal quando o tamanho da amostra cresce. Esse resultado é garantido por um teorema chamado Teorema Central do Limite. (Tipicamente, se n > 30 então X N(µ, σ2 n ).)

27 Distribuição Amostral de X

28 Exemplo Numa empresa A, os tempos de execução de uma certa tarefa pelos funcionários são distribuídos conforme uma distribuição normal com média µ = 22 minutos e variância σ 2 = 9 minutos 2. Considere uma amostra de 25 funcionários selecionados para executar a tarefa. Qual a probabilidade de o tempo de execução médio amostral ser menor que 20 minutos?

29 Exemplo Resposta: Temos n = 25 < 30, mas como a população tem distribuição normal, então, X N ( 22 min; 9 25 min2). Daí: ( ) X P (X < 20) = P < 9/25 9/25 = P (Z < 3, 33) = 0, 0004

30 Exemplo Considere que a distribuição das idades no momento do aparecimento de problemas de audição relacionados ao ruído no ambiente de trabalho em funcionários de um determinado setor industrial tenha média µ = 53, 9 anos e desvio padrão σ = 18, 1 anos. Numa amostra de 36 indivíduos qual a probabilidade de a média amostral das idades no momento do aparecimento dos problemas ser inferior a 45 anos?

31 Exemplo Resposta: Temos n = 36 > 30 podemos utilizar a aproximação ( normal. Nesse caso, temos que X N 53, 9 anos; 18,12 36 anos ). 2 Daí: P (X < 45) = P ( X 53, 9 18, 1/6 = P (Z < 2, 95) = 0, 0016 ) 45 53, 9 < 18, 1/6

32 Distribuição Amostral de ˆp Vamos considerar uma população em que a proporção de indivíduos com uma certa característica é p. Logo, podemos definir uma v.a. X como: X = { 1, se o indivíduo possui a característica 0, se o indivíduo não possui a característica, logo, µ = E(X) = p e σ 2 = Var(X) = p(1 p). Retirada uma AAS de tamanho n dessa população, seja Y n = n i=1 X i, o número de indivíduos com a característica de interesse na amostra. Já vimos que Y n binomial(n, p).

33 Distribuição Amostral de ˆp Observando que a proporção amostral é dada por: ˆp = Y n n n = i=1 X i = X. n E, lembrando que X tem distribuição normal, para n suficientemente grande (n > 30), com a mesma média que X e com variância igual à variância de X dividido por n. Neste caso, temos que se n é grande, então, a distribuição amostral de ˆp é: ( ) p(1 p) ˆp N p; n

34 Exemplo Um banco propõe a seus clientes inadimplentes um desconto para que quitem suas dívidas. O gerente espera, com base em estratégias similares realizadas anteriormente, que 50% desses clientes procurem o banco para tentar uma negociação. Num grupo de 200 clientes inadimplentes, qual a probabilidade de a proporção amostral de clientes que tentam a negociação estar entre 0, 48 e 0, 53?

35 Exemplo Resposta: Temos ( que n = 200 e p = 0, 5, o que implica que ˆp N 0, 5; 0,5(1 0,5) 200 anos ). 2 Daí: P (0, 48 < ˆp < 0, 53) = ( 0, 48 0, 5 = P < 0, 25/200 = P ( 0, 57 < Z < 0, 85) ˆp 0, 5 0, 25/200 < = P (Z < 0, 85) P (Z < 0, 57) = 0, , 2843 = 0, 518 ) 0, 53 0, 5 0, 25/200

36 Estimação Intervalar Vimos que como os estimadores pontuais especificam um único valor para o estimador, não podemos julgar qual a possível magnitude do erro que estamos comentendo. Daí, surge a idéia de construir os intervalos de confiança, de forma que a estimativa pontual esteja acompanhada de uma medida de erro. Intervalo de Confiança = [ Estimativa Pontual ± Erro de Estimação Mas como obter o erro de estimação??? Através da distribuição amostral do estimador pontual. ]

37 Estimação Intervalar Um intervalo de confiança (ou estimativa intervalar) representa uma amplitude de valores que tem alta probabilidade (grau de confiança) conter o verdadeiro valor do parâmetro. O grau de confiança (ou nível de confiança) é uma medida que representa a probabilidade do intervalo conter o parâmetro populacional. Tal probabilidade é chamada de 1 α. Logo, α será a probabilidade de erro ao se afirmar que o intervalo contém o verdadeiro valor do parâmetro.

38 Intervalo de confiança para a média populacional Duas situações são consideradas quando desejamos estabelecer um intervalo de confiança para a média de uma população: 1 A variância σ 2 é conhecida; 2 A variância σ 2 é desconhecida;

39 Intervalo de confiança para a média populacional Adicionalmente, deve-se verificar se uma das duas suposições seguintes é satisfeita: 1 A amostra é proviniente de uma população normal. Pois, sabemos que se X N(µ, σ 2 ) então X N(µ, σ 2 /n). 2 A amostra tem tamanho maior do que 30, n > 30, o que nos permite aproximar a distribuição da média amostral X pela distribuição normal, como na suposição anterior.

40 Intervalo de confiança para a média populacional De modo geral, estamos interessados em encontrar um intervalo na forma: IC = [X ε 0 ; X + ε 0 ] = [X ± ε 0 ] onde ε 0 representa a margem de erro ou erro de precisão em relação à média µ. Portanto, o objetivo é encontrar ε 0 tal que que é equivalente a P( X µ < ε 0 ) = 1 α, P( ε 0 < X µ < ε 0 ) = 1 α. A última expressão pode ser reescrita da forma P(µ ε 0 < X < µ + ε 0 ) = 1 α.

41 Caso 1: A variância σ 2 é conhecida Sabemos que X é o estimador de µ. Supondo que pelo menos uma das suposições está satisfeita, temos que X N(µ, σ 2 /n) e, então, X µ σ/ = Z N(0, 1). n P( µ ε 0 µ σ/ n P(µ ε 0 < X < µ + ε 0 ) = 1 α < X µ σ/ n < µ + ε 0 µ σ/ n ) = 1 α. Daí, P( ε 0 σ/ n < Z < +ε 0 σ/ n ) = 1 α. P( z α/2 < Z < +z α/2 ) = 1 α. z α/2 = ε 0 σ/ n e z α/2 = ε 0 σ/ n

42 Caso 1: A variância σ 2 é conhecida Logo, ε 0 = z α/2 σ n

43 Caso 1: A variância σ 2 é conhecida Dessa forma, se X for a média de uma amostra aleatoria de tamanho n, proveniente de uma população com variância conhecida, um intervalo de 100(1 α)% de confiança para a média populacional é dado por: IC µ 100(1 α)% = ( X z α/2 σ n, X + z α/2 σ n ) em que z α/2 é o quantil da normal padrão de nível α/2.

44 Exemplo Em uma industria de cerveja, a quantidade de cerveja inserida em latas se comporta como uma distribuição normal com média 350 ml e desvio padrão 3 ml. Após alguns problemas na linha de produção, suspeita-se que houve alteração na média. Uma amostra de 20 latas acusou uma média de 346 ml. Obtenha um intervalo de 95% para a quantidade média de cerveja inserida em latas, supondo que não tenha ocorrido alteração na variabilidade.

45 Resposta: A variância σ 2 é conhecida, então o intervalo é dado por IC µ 100(1 α)% = ( X z α/2 σ n, X + z α/2 σ n ) Exemplo Como 1 α = 0, 95, temos que α = 0, 05. Então, α/2 = 0, 025. Ou seja, devemos olhar na tabela da normal padrão qual o número z 0,025.

46 Exemplo Olhando na tabela, temos que z α/2 = 1, 96. Assim, o intervalo é obtido através de: IC µ 95% = ( 346 1, , , ) = (344.69, ) Isto é, o intervalo de valores [344, 69; 347, 31] contém a quantidade média de cerveja inserida nas latas está com 95% de confiança. Logo, conclui-se que realmente houve alteração, após os problemas encontrados na linha de produção, na quantidade média de cerveja inserida em latas.

47 Calculando o tamanho da amostra Note que, a partir da expressão obtida para a margem de erro ε 0, podemos estimar o tamanho da amostra, se α e ε 0 estiverem especificados: ε 0 = z α/2 σ n n = z α/2 σ ε 0 n = ( z α/2 σ ε 0 ) 2 Se a população for finita, com N elementos, devese utilizar o fator de correção para populações finitas. Nesse caso, o tamanho da amostra será determinado por: n = n 1 + n N

48 Exemplo Uma construtora deseja estimar a resistência média das barras de aço utilizadas na construção de casas. Qual o tamanho amostral necessário para garantir que haja um risco de 0, 001 de ultrapassar um erro de 5kg ou mais na estimação? O desvio padrão da resistência para este tipo de barra é de 25kg.

49 Exemplo Resposta: Do enunciado tem-se α = 0, 001, ε 0 = 5 e σ = 25. Da tabela da distribuição normal padrão obtemos z α/2 = z 0,0005 = 3, 29. Assim, ( ) 2 ( σ n = z α/2 = 3, ) 2 = 270, 602 ε 0 5 = 271

50 Intervalo de confiança para a média populacional Caso 2: A variância σ 2 é desconhecida O processo para se obter o intervalo de confiança é semelhante ao anterior. Contudo, como σ 2 é desconhecida, é preciso substitui-la pela variância amostral (S 2 ): S 2 = n i=1 (X i X) 2 n 1 Nessa situação, a quantidade T = X µ S/ n t (n 1) tem distribuição t-student com n 1 graus de liberdade, e não mais distribuição normal padrão.

51 Distribuição t-student A distribuição t-student apresenta propriedades semelhantes as da distribuição normal padrão (como, por exemplo, simetria em torno de 0), no entanto, é mais dispersa. Em outras palavras, a distribuição t-student concentra mais probabilidades nas caldas do que a distribuição normal padrão. A medida que n cresce, a distribuição t-student se aproxima mais da distribuição normal padrão, pois S se aproxima mais de σ.

52 Distribuição t-student Existe uma distribuição t-student para cada valor dos graus de liberdade (n 1).

53 Intervalo de confiança para a média populacional Caso 2: A variância σ 2 é desconhecida Dessa forma, se X for a média de uma amostra aleatória de tamanho n, proveniente de uma população com variância desconhecida, um intervalo de 100(1 α)% de confiança para a média populacional é dado por: IC µ 100(1 α)% = ( X t (n 1,α/2) S n, X + t (n 1,α/2) S n ), onde t (n 1,α/2) é o quantil da t-student de nível α/2. Obs: Se σ 2 for desconhecida, mas o tamanho da amostra for grande (n > 30), pode-se utilizar z α/2 no lugar de t (n 1;α/2)

54 Exemplo Deseja-se avaliar a dureza média do aço produzido sob um novo processo de têmpera. Uma amostra de 10 corpos de prova de aço produziu os seguintes resultados, em HRc: 36, 4 35, 7 37, 2 36, 5 34, 9 35, 2 36, 3 35, 8 36, 6 36, 9. Construir um intervalo de 95% de confiança para a dureza média do aço.

55 Exemplo Resposta: Temos a média amostral dada por: X = E a variância amostral: n i=1 X i n = S 2 = n i=1 (X i X) 2 n 1 = 4, = E, portanto, S = Além disso, n = 10 e 1 α = 0, 95, daí t (n 1,α/2) = t (9,0.025) = 2.26

56 Exemplo Assim, IC µ 95% = ( X t (n 1,α/2) S n, X + t (n 1,α/2) S n ) = ( , ) = (35.625, ). Ou seja, com 95% de confiança o intervalo [35, 625; 36, 675] contém a dureza média do aço.

57 Intervalo de confiança para a proporção populacional Vimos que, para n suficientemente grande (n > 30), ( ) p(1 p) ˆp N p,. n O intervalo que estamos procurando é da forma IC = [ˆp ± ε 0 ] Assim, por um caminho semelhante ao adotado no caso da média, a margem de erro é dada por ε 0 = z α/2 p(1 p) n

58 Intervalo de confiança para a proporção populacional Dessa forma, se ˆp for a proporção de indivíduos com uma característica de interesse em uma amostra aleatória, de tamanho n, proveniente de uma população onde a proporção verdadeira de indivíduos com a característica é p, um intervalo de 100(1 α)% de confiança para essa proporção populacional p é dado por IC p 100(1 α)% = ( p(1 p) p(1 p) ˆp z α/2, ˆp + z α/2 n n em que z α/2 é o quantil da normal padrão com α/2 de nível de confiança. )

59 Na prática, o valor de p é desconhecido (é justamente p que queremos estimar!). Nessa situação, duas abordagens são razoáveis: 1 Abordagem otimista: substituir o valor de p por sua estimativa ˆp. Nesse caso, IC p 100(1 α)% = ( ˆp(1 ˆp) ˆp(1 ˆp) ˆp z α/2, ˆp + z α/2 n n 2 Abordagem conservadora: substituir p(1 p) por seu valor máximo, 1/4, quando p = 1/2. Nesse caso, ( ) IC p 100(1 α)% = 1 1 ˆp z α/2, ˆp + z α/2 4n 4n )

60 Exemplo Um estudo foi feito para determinar a proporção de famílias que tem telefone em uma certa comunidade. Uma amostra de 200 famílias é selecionada ao acaso, e 160 afirmam ter telefone. Qual o intervalo para p com 95% de confiança?

61 Resposta:Temos que ˆp = 160/200 = 0, 8. Como 1 α = 0, 95 então z α/2 = z 0,025 = 1, 96. Assim, adotando abordagem otimista, temos Exemplo ( ) IC µ ˆp(1 ˆp) ˆp(1 ˆp) 95% = ˆp z α/2, ˆp + z n α/2 n ( ) 0, 8(1 0, 8) 0, 8(1 0, 8) = 0, 8 1, 96, 0, 8 + 1, = (0.7446, ). Ou seja, com 95% de confiança o intervalo [74, 46%; 85, 54%] contém a porcentagem de famílias que tem telefone nessa comunidade.

62 Exemplo Se calcularmos o intervalo adotando abordagem conservadora, temos ( ) IC µ 95% = 1 1 ˆp z α/2, ˆp + z α/2 4n 4n ( ) 1 1 = 0, 8 1, 96, 0, 8 + 1, = (0.7307, ). Observe que, o intervalo com a abordagem conservadora fornece um intervalo maior.

63 Calculando o tamanho da amostra Mais uma vez, podemos estimar o tamanho da amostra a partir da margem de erro ε 0, basta especificar α e ε 0 : ε 0 = z α/2 p(1 p) n n = z α/2 p(1 p) n = (z α/2 ) 2 ε 0 p(1 p) (ε 0 ) 2 Como p é desconhecido, para a substituição de p(1 p) ou utiliza-se 1/4 ou adota-se um valor de ˆp obtida de um estudo piloto ou de um estudo similar. Se a população for finita, deve-se utilizar, de forma similar o fator de correção para populações finitas: n = n 1 + n N

64 Considerações: interpretação do intervalo de confiança Um erro comum é dizer que a probabilidade do parâmetro (µ ou p) estar no intervalo de 100(1 α)%. O parâmetro (µ ou p) não é uma variável aleatória, portanto não existe probabilidade sobre ele. O parâmetro é uma constante desconhecida, sobre a qual desejamos inferir, através das quantidades amostrais (Xou ˆp). Então, qual a interpretação do intervalo de confiança?????

65 Considerações: interpretação do intervalo de confiança A interpretação correta é do intervalo de confiança conter o verdadeiro valor do parâmetro (µ ou p) com 100(1 α)% de confiança.

66 Fatores determinantes do erro de estimação O erro de estimação dependende do(a): Tamanho da amostra (n): Quanto menor o tamanho da amostra, maior será o erro de estimação. Variabilidade da característica na população: Quanto maior for a variabilidade da característica cuja média está sendo estimada, maior será o erro de estimação. Nível de confiança (1 α): Se quisermos uma confiança maior no intervalo teremos um erro de estimação maior.

67 Teste de Hipóteses O Teste de Hipóteses consiste em uma regra de decisão elaborada para rejeitar (ou não) uma afirmação (hipótese) feita a respeito de um parâmetro populacional desconhecido, com base em informações colhidas de uma amostra aleatória. Exemplo: Verificar se o salário médio de certa categoria profissional no Brasil é igual a R$1.500, 00. Testar se 40% dos eleitores votarão em certo candidato nas próximas eleições. Testar se um medicamento é mais eficaz que outro.

68 Conceitos fundamentais Hipótese Nula (H 0 ): É a hipótese a ser testada. Hipótese Alternativa (H 1 ): É a hipótese a ser confrontada com H 0. O teste será feito de tal forma que deverá sempre concluir na rejeição (ou não) de H 0. Como estamos tomando uma decisão com base em informações de uma amostra, estaremos sujeitos a cometer dois tipos de erros.

69 Conceitos fundamentais Erro do tipo I: Rejeitarmos H 0 quando H 0 é verdadeira. α = P(erro do tipo I) = P(rejeitar H 0 H 0 é verdadeira) Erro do tipo II: Não rejeitarmos H 0 quando H 0 é falsa. β = P(erro do tipo II) = P(não rejeitar H 0 H 0 é falsa) Obs: α é denominado de nível de significância do teste.

70 Conceitos fundamentais Nossas decisões em um teste de hipóteses podem ser resumidas na seguinte tabela:

71 Conceitos fundamentais Estatística do teste: É a estatística utilizada para julgar H 0. Região crítica do teste (RC): É formada pelo conjunto de valores que levam a rejeição de H 0. Ela depende do tipo de hipótese alternativa, do nivel de significância (α) adotado, e da distribuição de probabilidade da estatística do teste.

72 Etapas para a elaboração de um Teste de Hipóteses 1 Definir as hipóteses nula (H 0 ) e alternativa (H 1 ); 2 Fixar o nível de significância (α); 3 Determinar a estatística do teste; 4 Determinar a região crítica do teste; 5 Calcular o valor da estatística do teste (com base numa amostra da população de interesse); 6 Se o valor calculado no passo 5 pertencer a RC, rejeitar H 0, caso contrário, não rejeitar H 0 ; 7 Conclusão do teste.

73 Teste de Hipóteses para a média populacional Caso 1: σ 2 conhecida. 1. Definição das hipóteses: H 0 : µ = µ 0 H 0 : µ = µ 0 H 0 : µ = µ 0 H 1 : µ µ 0 ou H 1 : µ < µ 0 ou H 1 : µ > µ 0 2. Fixar o nível de significância α; 3. Definir a estatística de teste: Z = X µ σ/ N (0, 1) n

74 Teste de Hipóteses para a média populacional 4. Definir a região crítica do teste (RC):

75 Teste de Hipóteses para a média populacional 5. Com base nos valores observados da amostra, calcular o valor da Estatística de teste Z : Z c = X µ 0 σ/ n 6. Se Z c RC rejeitar H 0 (aceitar H 1 ). Se Z c / RC não rejeitar H 0 (não aceitar H 1 ). 7. Concluir sobre a decisão tomada no passo 6.

76 Exemplo Os sistemas de escapamento de uma aeronave funcionam devido a propelente sólido. A taxa de queima desse propelente é uma característica importante do produto. As especificações requerem que a taxa média de queima tem de ser 50 centímetros por segundo. Sabemos que a taxa de queima é normalmente distribuída com desvio padrão de σ = 2 centímetros por segundo. O experimentalista seleciona uma amostra aleatória de tamanho 25 e obtém uma taxa média amostral igual a 51, 3 centímetros por segundo. Que conclusões poderiam ser tiradas ao nível de significância, de 0, 05?

77 Resolução: Teste para média com σ 2 conhecida 1. As hipóteses que queremos testar são: H 0 : µ = 50 contra H 1 : µ Fixamos α = 0, 05; 3. A estatística de teste é: Z = X µ σ/ N (0, 1) n 4. A região crítica é do tipo: onde z = z α/2 = z 0,025 = 1, 96 (tabela da distribuição normal padrão).

78 Resolução: continuação 5. A partir dos dados amostrais temos que: Z c = X µ 0 σ/ n = 51, / Temos que Z c RC pois 3, 25 > 1, 96, portanto, rejeitamos a hipótese nula. 7. Baseados nos dados amostrais, podemos concluir, ao nível de 5% de significância, que a taxa média de queima difere de 50 centímetros por segundo.

79 Teste de Hipóteses para a média populacional Caso 2: σ 2 desconhecida. 1. Definição das hipóteses: H 0 : µ = µ 0 H 0 : µ = µ 0 H 0 : µ = µ 0 H 1 : µ µ 0 ou H 1 : µ < µ 0 ou H 1 : µ > µ 0 2. Fixar o nível de significância α; 3. Definir a estatística de teste: T = X µ S/ n t (n 1)

80 Teste de Hipóteses para a média populacional 4. Definir a região crítica do teste (RC):

81 Teste de Hipóteses para a média populacional 5. Com base nos valores observados da amostra, calcular o valor da Estatística de teste Z : T c = X µ 0 S/ n 6. Se T c RC rejeitar H 0 (aceitar H 1 ). Se T c / RC não rejeitar H 0 (não aceitar H 1 ). 7. Concluir sobre a decisão tomada no passo 6. Obs: se σ 2 for desconhecida, mas o tamanho da amostra for grande (n > 30), pode-se definir a região crítica através da distribuição Normal padrão.

82 Exemplo Suponha que, no exemplo anterior, o valor do desvio padrão fosse desconhecido e o experimentalista o tivesse estimado, a partir da amostra como S = 2, 5 centímetros por segundo. Ao nível de 5% de significância, que conclusão obteríamos acerca da queima média do propelente?

83 Resolução: Teste para média com σ 2 1. As hipóteses que queremos testar são: H 0 : µ = 50 contra H 1 : µ 50 desconhecida 2. Fixamos α = 0, 05; 3. A estatística de teste é: T = X µ S/ n t (n 1) 4. A região crítica é do tipo: onde t = t n 1;α/2 = t 24;0,025 = 2, 064 (tabela da distribuição t-student).

84 Resolução: continuação 5. A partir dos dados amostrais temos que: T c = X µ 0 S/ n = 51, , 3/ Temos que T c RC pois 2, 83 > 2, 064, portanto, rejeitamos a hipótese nula. 7. Baseados nos dados amostrais, podemos concluir, ao nível de 5% de significância, que a taxa média de queima difere de 50 centímetros por segundo.

85 Teste de Hipóteses para a proporção populacional 1. Definição das hipóteses: H 0 : p = p 0 H 0 : p = p 0 H 0 : p = p 0 H 1 : p p 0 ou H 1 : p < p 0 ou H 1 : p > p 0 2. Fixar o nível de significância α; 3. Definir a estatística de teste: Z = ˆp p 0 p 0 (1 p 0 ) n N (0, 1)

86 Teste de Hipóteses para a proporção populacional 4. Definir a região crítica do teste (RC):

87 Teste de Hipóteses para a proporção populacional 5. Com base nos valores observados da amostra, calcular o valor da Estatística de teste Z: Z c = ˆp p 0 p 0 (1 p 0 ) n 6. Se Z c RC rejeitar H 0 (aceitar H 1 ). Se Z c / RC não rejeitar H 0 (não aceitar H 1 ). 7. Concluir sobre a decisão tomada no passo 6.

88 Exemplo Dentre 1655 pacientes tratados com um medicamento A, 2, 1% tiveram reações adversas. A empresa que fabrica o medicamento afirma que apenas 1, 2% dos usuários têm algum tipo de reação adversa. Teste, ao nível de significância de 1%, a afirmativa da empresa pode ser considerada verdadeira.

89 onde z = z α = z 0,01 = 2, 33 (tabela da distribuição normal padrão). Resolução: Teste para porporção 1. As hipóteses que queremos testar são: H 0 : p = 0, 012 contra H 1 : p > 0, Fixamos α = 0, 01; 3. A estatística de teste é: Z = ˆp p 0 p 0 (1 p 0 ) N (0, 1) 4. A região crítica é do tipo: n

90 Resolução: continuação 5. A partir dos dados amostrais temos que: Z c = ˆp p 0 p 0 (1 p 0 ) n = 0, 021 0, 012 0,012(1 0,012) 1655 = 3, Temos que Z c RC, pois 3, 36 > 2, 33 portanto, rejeitamos a hipótese nula. 7. Ao nível de significância de 1%, a amostra fornece evidências estatísticas suficientes de que o percentual de usuários do medicamento que têm alguma reação adversa é superior a 1, 2%

91 Valor p Valor p: é a probabilidade de se obter um valor da estatística de teste que seja, no mínimo, tão extremo quanto aquele que representa os dados amostrais, supondo que a hipótese nula seja verdadeira. A hipótese nula deve ser rejeitada se o valor p for muito pequeno. Na prática, adota-se que se o valor p for menor ou igual ao nível de significância do teste, então devemos rejeitar a hipótese nula.

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Estimativas e Tamanhos de Amostras

Estimativas e Tamanhos de Amostras Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para

Leia mais

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses

PODER DO TESTE. Poder do Teste e Tamanho de Amostra para Testes de Hipóteses PODER DO TESTE Poder do Teste e Tamanho de Amostra para Testes de Hipóteses 1 Tipos de erro num teste estatístico Realidade (desconhecida) Decisão do teste aceita H rejeita H H verdadeira decisão correta

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína

ESTUDOS DE COORTE. Baixo Peso Peso Normal Total Mãe usuária de cocaína UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CENTRO DE CIÊNCIAS DA SAÚDE FACULDADE DE MEDICINA DEPARTAMENTO DE MEDICINA PREVENTIVA DISCIPLINA DE EPIDEMIOLOGIA ESTUDOS DE COORTE 1) Com o objetivo de investigar

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

Inferência Estatística - Teoria da Estimação

Inferência Estatística - Teoria da Estimação Inferência Estatística - Teoria da Estimação Introdução Neste capítulo abordaremos situações em que o interesse está em obter informações da população a partir dos resultados de uma amostra. Como exemplo,

Leia mais

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 8 Testes de hipóteses APOIO: Fundação de Ciência e Tecnologia

Leia mais

Poder do teste e Tamanho de Amostra

Poder do teste e Tamanho de Amostra Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 24 Poder do teste e Tamanho de Amostra APOIO: Fundação de Ciência

Leia mais

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB

Licenciatura em Ciências Biológicas Universidade Federal de Goiás. Bioestatística. Prof. Thiago Rangel - Dep. Ecologia ICB Licenciatura em Ciências Biológicas Universidade Federal de Goiás Bioestatística Prof. Thiago Rangel - Dep. Ecologia ICB rangel.ufg@gmail.com Página do curso: http://www.ecologia.ufrgs.br/~adrimelo/bioestat

Leia mais

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1

Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 MÉTODOS QUANTITATIVOS APLICADOS À CONTABILIDADE Profa.: Patricia Maria Bortolon, D.Sc. Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 9-1 Fundamentos de Testes

Leia mais

Princípios de Bioestatística

Princípios de Bioestatística Princípios de Bioestatística Cálculo do Tamanho de Amostra Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 1 / 32 2 / 32 Cálculo do Tamanho de Amostra Parte fundamental

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II

Considerações. Planejamento. Planejamento. 3.3 Análise de Variância ANOVA. 3.3 Análise de Variância ANOVA. Estatística II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula 8 Profa. Renata G. Aguiar Considerações Coleta de dados no dia 18.05.2010. Aula extra

Leia mais

Poder do teste e determinação do tamanho da amostra:pca & PBC

Poder do teste e determinação do tamanho da amostra:pca & PBC Poder do teste e determinação do tamanho da amostra:pca & PBC Relembrando: α = probabilidade do erro do tipo I: P(Rejeitar H 0 H 0 é verdadeira). β = probabilidade do erro do tipo II: P(Não rejeitar H

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA. Estatística Aplicada à Engenharia ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências Estatística Aplicada à Engenharia

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações.

META Estudar características de populações com base nas informações colhidas por amostras de dados selecionados aleatoriamente nestas populações. AMOSTRAGEM: POPULAÇÃO E AMOSTRA. TIPOS DE AMOSTRAGEM. AMOSTRA PILOTO. NÍVEL DE CONFIANÇA. ESTIMATIVA DA MÉDIA E PROPORÇÃO POPULACIONAL POR PONTO E POR INTERVALO. META Estudar características de populações

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade 1/59

rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade 1/59 ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 06: Intervalo de Confiança e Teste de Hipótese 1/59 população probabilidade (dedução) inferência estatística

Leia mais

Teste de Hipótese e Intervalo de Confiança. Parte 2

Teste de Hipótese e Intervalo de Confiança. Parte 2 Teste de Hipótese e Intervalo de Confiança Parte 2 Questões para discutirmos em sala: O que é uma hipótese estatística? O que é um teste de hipótese? Quem são as hipóteses nula e alternativa? Quando devemos

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

CAPÍTULO 3 POPULAÇÃO E AMOSTRA

CAPÍTULO 3 POPULAÇÃO E AMOSTRA DEPARTAMENTO DE GEOCIÊNCIAS GCN 7901 ANÁLISE ESTATÍSTICA EM GEOCIÊNCIAS PROFESSOR: Dr. ALBERTO FRANKE CONTATO: alberto.franke@ufsc.br F: 3721 8595 CAPÍTULO 3 POPULAÇÃO E AMOSTRA As pesquisas de opinião

Leia mais

Pesquisa Operacional II. Professor: Roberto César

Pesquisa Operacional II. Professor: Roberto César Pesquisa Operacional II Professor: Roberto César POPULAÇÃO E AMOSTRA População: refere-se ao grupo total. Amostra: é toda fração obtida de uma população (independente de seu tamanho). Quando usar Amostragem?

Leia mais

Gabarito da 1 a Lista de Exercícios de Econometria II

Gabarito da 1 a Lista de Exercícios de Econometria II Gabarito da 1 a Lista de Exercícios de Econometria II Professor: Rogério Silva Mattos Monitor: Delano H. A. Cortez Questão 1 Considerando que o modelo verdadeiro inicialmente seja o seguinte: C = a + 2Y

Leia mais

Avaliação de Sistemas de Medição

Avaliação de Sistemas de Medição Monitoramento de um processo: medição de uma característica da qualidade X por meio de um sistema de medição. Sistema de medição ideal: produz somente resultados corretos, ou seja, que coincidem com o

Leia mais

MAE116 - Noções de Estatística

MAE116 - Noções de Estatística MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito da Lista de exercícios 10 - Introdução à Estatística Descritiva - CASA Exercício 1. (2 pontos) Sabe-se que, historicamente, 18% dos

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO.

TEM ALTERNATIVA CORRETA!!!! CERTAMENTE A BANCA EXAMINADORA DARÁ COMO RESPOSTA CERTA LETRA (E). SERIA A MENOS ERRADA POR ELIMINAÇÃO. Prezados concursandos!!! Muita paz e saúde para todos!!! Passemos aos comentários da prova de Raciocínio Lógico Quantitativo propostas pela CESGRANRIO no último concurso para o IBGE, no dia 10/01/010.

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47

Sumário. CAPÍTULO 1 Conceitos preliminares 1. CAPÍTULO 2 Descrição de dados: análise monovariada 47 CAPÍTULO 1 Conceitos preliminares 1 Introdução........................................................1 O que é estatística?.................................................. 4 Papel dos microcomputadores.........................................

Leia mais

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA

EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA DE VELAS DE PARAFINA Revista da Estatística da UFOP, Vol I, 2011 - XI Semana da Matemática e III Semana da Estatística, 2011 ISSN 2237-8111 EXPERIMENTO FATORIAL BLOCADO PARA DETERMINAÇÃO DE DIFERENÇAS ENTRE TEMPO DE QUEIMA

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

6 Intervalos de confiança

6 Intervalos de confiança 6 Intervalos de confiança Estatística Aplicada Larson Farber Seção 6.1 Intervalos de confiança para a média (amostras grandes) Estimativa pontual DEFINIÇÃO: Uma estimativa pontual é a estimativa de um

Leia mais

Determinação de medidas de posição a partir de dados agrupados

Determinação de medidas de posição a partir de dados agrupados Determinação de medidas de posição a partir de dados agrupados Rinaldo Artes Em algumas situações, o acesso aos microdados de uma pesquisa é restrito ou tecnicamente difícil. Em seu lugar, são divulgados

Leia mais

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla

9 Correlação e Regressão. 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 9 Correlação e Regressão 9-1 Aspectos Gerais 9-2 Correlação 9-3 Regressão 9-4 Intervalos de Variação e Predição 9-5 Regressão Múltipla 1 9-1 Aspectos Gerais Dados Emparelhados há uma relação? se há, qual

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Livro Texto recomendado para a Disciplina

Livro Texto recomendado para a Disciplina Livro Texto recomendado para a Disciplina FREUND, John E. Estatística aplicada: economia, administração e contabilidade. Porto Alegre: Bookman, 2006. 11ª Edição, 536 p. (com CD) ISBN: 8573075317 Biblioteca:

Leia mais

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos:

ANÁLISE DOS RESÍDUOS. Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: ANÁLISE DOS RESÍDUOS Na análise de regressão linear, assumimos que os erros E 1, E 2,, E n satisfazem os seguintes pressupostos: seguem uma distribuição normal; têm média zero; têm variância σ 2 constante

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 8 11/2014 Distribuição Normal Vamos apresentar distribuições de probabilidades para variáveis aleatórias contínuas.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Modelos de distribuição Para utilizar a teoria

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência

Probabilidade e Estatística I Antonio Roque Aula 2. Tabelas e Diagramas de Freqüência Tabelas e Diagramas de Freqüência Probabilidade e Estatística I Antonio Roque Aula 2 O primeiro passo na análise e interpretação dos dados de uma amostra consiste na descrição (apresentação) dos dados

Leia mais

FERRAMENTAS ESTATÍSTICAS PARA ANÁLISE DA CLASSIFICAÇÃO

FERRAMENTAS ESTATÍSTICAS PARA ANÁLISE DA CLASSIFICAÇÃO Objetivos: - QUANTIFICAR OS ERROS COMETIDOS NA CLASSIFICAÇÃO - MEDIR A QUALIDADE DO TRABALHO FINAL - AVALIAR A APLICABILIDADE OPERACIONAL DA CLASSIFICAÇÃO Fontes de erro das classificações temáticas Os

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM

Testes de Hipóteses. Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de Hipóteses Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM Testes de hipóteses O Teste de Hipótese é uma regra de decisão para aceitar ou rejeitar uma hipótese

Leia mais

A Influência da Amostragem na Representatividade dos Dados

A Influência da Amostragem na Representatividade dos Dados A Influência da Amostragem na Representatividade dos Dados por Manuel Rui F. Azevedo Alves ESTG- Instituto Politécnico de Viana do Castelo REQUIMTE Rede de Química e Tecnologia Sumário Tópico 1: Definições

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1

Estatística. Professora: Eliana Carvalho Estatística e Probabilidade 1 Estatística Fonte bibliográfica: FARIAS, Alberto Alves Introdução a Estatística MEYER, Paul L. Probabilidade: Aplicações à Estatística MONTGOMERY, Douglas C; Estatística aplicada e probabilidade para engenheiros.

Leia mais

Cálculo do tamanho amostral e da potência estatística. Paulo Nogueira

Cálculo do tamanho amostral e da potência estatística. Paulo Nogueira Cálculo do tamanho amostral e da potência estatística Paulo Nogueira Exemplo 1 Existe diferença na eficácia do Salbutamol e do ipratropium no tratamento da Asma? O investigador delineou um ensaio aleatorizado

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Comprovação Estatística de Medidas Elétricas

Comprovação Estatística de Medidas Elétricas Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Métodos e Técnicas de Laboratório em Eletrônica Comprovação Estatística de Medidas Elétricas Florianópolis,

Leia mais

Teste de hipótese de variância e Análise de Variância (ANOVA)

Teste de hipótese de variância e Análise de Variância (ANOVA) Teste de hipótese de variância e Análise de Variância (ANOVA) Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Testes sobre variâncias Problema: queremos saber se há diferenças estatisticamente

Leia mais

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E

Exercícios para Revisão de Teste de Hipótese. Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E Exercícios para Revisão de Teste de Hipótese Material retirado do site http://adm.online.unip.br/ Gabarito: 1)B 2)D 3)A 4)D 5)E 6)C 7)A 8)E 9)B 10)C 11)A 12)A 13)B 14)E 1) Um revendedor de lâmpadas recebeu

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II

Rememorando. Situação-problema 5. Teorema do Limite Central. Estatística II. Aula II UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARAN PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Rememorando Estatística II Aula II Profa. Renata G. Aguiar 1 Figura 7 Distribuição de uma amostra (n = 150).

Leia mais

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira

Introdução à pesquisa clínica. FACIMED Investigação científica II 5º período Professora Gracian Li Pereira Introdução à pesquisa clínica FACIMED 2012.1 Investigação científica II 5º período Professora Gracian Li Pereira Questão de pesquisa x relevância Questão PICO FINER Literatura existente Como fazer? Delineamento

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA

RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA RESOLUÇÃO DE QUESTÕES DE MATEMÁTICA FINANCEIRA E ESTATÍSTICA Caro aluno, Disponibilizo abaixo a resolução das questões de Matemática Financeira e Estatística da prova para o cargo de Auditor Fiscal da

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Ministério da Educação MEC Coordenação de Aperfeiçoamento de Pessoal de Nível Superior CAPES Diretoria de Educação a Distância DED Universidade Aberta do Brasil UAB Programa Nacional de Formação em Administração

Leia mais

Comparando riscos e chances. Risco relativo e Razão de Chances

Comparando riscos e chances. Risco relativo e Razão de Chances Comparando riscos e chances Risco relativo e Razão de Chances Exemplo Inicial Estudo para verificar se a ingestão de extrato de guaraná tem efeito sobre a fadiga em pacientes tratados com quimioterapia

Leia mais

Equações diferenciais ordinárias

Equações diferenciais ordinárias Departamento de Física Universidade Federal da Paraíba 24 de Junho de 2009 Motivação Problemas envolvendo equações diferenciais são muito comuns em física Exceto pelos mais simples, que podemos resolver

Leia mais

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar:

Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: Consideremos os seguintes exemplos de hipóteses cuja veracidade interessa avaliar: o tempo médio de efeito de dois analgésicos não é o mesmo; a popularidade de determinado partido político aumentou; uma

Leia mais

Cláudio Tadeu Cristino 1. Julho, 2014

Cláudio Tadeu Cristino 1. Julho, 2014 Inferência Estatística Estimação Cláudio Tadeu Cristino 1 1 Universidade Federal de Pernambuco, Recife, Brasil Mestrado em Nutrição, Atividade Física e Plasticidade Fenotípica Julho, 2014 C.T.Cristino

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014

Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Teste Qui-quadrado de aderência Rinaldo Artes Insper Instituto de Ensino e Pesquisa 2014 Objetivo: Decidir se um conjunto de dados segue uma determinada distribuição de probabilidades. Exemplo 1: Uma emissora

Leia mais

(") ; b) ρ b1b2 = 0,5; ρ b1b3 = 0,5; ρ b1b4 = 0

() ; b) ρ b1b2 = 0,5; ρ b1b3 = 0,5; ρ b1b4 = 0 GA PROJETO E ANÁLISE E REES GEOÉSICAS EXERCÍCIOS ) Estimar a precisão do perímetro e da área de uma circunferência, e do volume de uma esfera, cujo raio (R) pode ser medido com as seguintes características:

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

O Teste de % de defeituosos para 2 amostras também depende de outras suposições. Consulte o Apêndice A para obter detalhes.

O Teste de % de defeituosos para 2 amostras também depende de outras suposições. Consulte o Apêndice A para obter detalhes. Este artigo é parte de uma série de artigos que explicam a pesquisa conduzida pelos estatísticos do Minitab para desenvolver os métodos e verificações de dados usados no Assistente no Software Estatístico

Leia mais

População. População: é o todo

População. População: é o todo Amostragem Fonte: CORRAR, L. J.; THEÓPHILO, C. R.; Pesquisa Operacional para Decisão em Contabilidade e Administração, Editora Atlas, São Paulo, 2ª. Edição, 2010. Objetivos: Neste capítulo, você aprenderá:

Leia mais

Número: Dois. Lista de Exercícios Estatística

Número: Dois. Lista de Exercícios Estatística Professor: Assunto(s): Curso(s): William Costa Rodrigues Inferência ; Tipo de Variáveis, Tipos de Amostras; Tamanho da Amostra; Medidas de tendência central: Medidas de Variação Ciências Contábeis Q1.

Leia mais

1. Métodos de prova: Construção; Contradição.

1. Métodos de prova: Construção; Contradição. Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Bacharelado em Ciência da Computação Fundamentos Matemáticos para Computação 1. Métodos de prova: Construção; Contradição.

Leia mais

IME, UFF 10 de dezembro de 2013

IME, UFF 10 de dezembro de 2013 Lógica IME, UFF 10 de dezembro de 2013 Sumário.... Considere o seguinte argumento Um problema de validade (1) p q q r r s s t p t (1) é válido ou não? A resposta é sim... Uma demonstração Uma demonstração

Leia mais

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana: Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,

Leia mais

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO.

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. - Que é Amostragem Aleatória Simples. - Métodos para a

Leia mais

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO Luiz Fernando Stringhini 1 Na tentativa de mostrar as possibilidades de uso das ferramentas da estatística dentro da contabilidade,

Leia mais

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas Universidade Estadual de Goiás Unidade Universitária de Ciências Socioeconômicas e Humanas de Anápolis AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação Prof. Elisabete

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013

UNIVERSIDADE LUSÍADA DE LISBOA. Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 Programa da Unidade Curricular PROBABILIDADES E ESTATÍSTICA Ano Lectivo 2012/2013 1. Unidade Orgânica Ciências da Economia e da Empresa (1º Ciclo) 2. Curso Engenharia Informática 3. Ciclo de Estudos 1º

Leia mais

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA

ESTATÍSTICA. Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA 1 ESTATÍSTICA Objectivo: recolha, compilação, análise e interpretação de dados. ESTATÍSTICA DESCRITIVA INFERÊNCIA ESTATÍSTICA Estatística descritiva : o objectivo é sintetizar e representar de uma forma

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais