Introdução à probabilidade e estatística II

Tamanho: px
Começar a partir da página:

Download "Introdução à probabilidade e estatística II"

Transcrição

1 Introdução à probabilidade e estatística II Testes de hipóteses para duas médias populacionais Prof. Alexandre G Patriota Sala: 98A patriota@ime.usp.br Site: patriota

2 Testes de hipóteses para duas Médias populacionais Sejam X e Y duas variáveis de interesse. Estaremos interessados em testar se a média de X é igual a média de Y. testar se o efeito médio do remédio proposto é maior do que o efeito médio do placebo testar se um determinado método de ensino é mais eficaz que outro. Há dois casos: as variáveis X e Y são dependentes (dados pareados). A mesma unidade amostral é medida duas vezes. as variáveis X e Y são independentes (dados não pareados). Todas as unidades amostrais são medidas apenas uma vez.

3 Exemplo de dados pareados (dependentes) Uma nutricionista propôs um novo complemento alimentar para aumentar o rendimento de jogadores de futebol. A variável de interesse: tempo de corrida na esteira a 15km/h até a fadiga. A pesquisadora selecionou 0 atletas com características similares (peso, altura, idade, etc). Na primeira semana a pesquisadora mediu o tempo de corrida sem utilizar a dieta (X ), na segunda semana a pesquisadora mediu o tempo de corrida utilizando a dieta (Y ) dos mesmos atletas. Interesse: verificar se em média houve um aumento no tempo médio na segunda semana em relação a primeira. Note que as variáveis X e Y referem-se ao mesmo atleta.

4 Exemplo de dados não pareados (independentes) Uma nutricionista propôs um novo complemento alimentar para aumentar o rendimento de jogadores de futebol. A variável de interesse: tempo de corrida na esteira a 15km/h até a fadiga. A pesquisadora selecionou 40 atletas com características similares (peso, altura, idade, etc). Dentre os 40 atletas, 0 utilizaram o novo complemento (X ) e 0 não utilizaram (Y ). Interesse: verificar se em média os atletas que utilizaram o novo complemente tiverem o tempo de corrida aumentado. Note que as variáveis X e Y referem-se a atletas diferentes.

5 Testes para duas médias populacionais Distribuição normal Sejam X N(µ x, σ x) e Y N(µ y, σ y) duas variáveis de interesse. As hipóteses de interesse (tanto para dados pareados como não-pareados) serão: { { H0 : µ (1) x µ y H0 : µ, () x µ y H 1 : µ x > µ y H 1 : µ x < µ y { H0 : µ e (3) x = µ y H 1 : µ x µ y Podemos definir µ D = µ x µ y e teremos de maneira equivalente: { { H0 : µ (1) D 0 H 1 : µ D > 0, () H0 : µ D 0 H 1 : µ D < 0 { H0 : µ e (3) D = 0 H 1 : µ D 0

6 Caso pareado e não-pareado No caso pareado, as variáveis são dependentes e observamos (X 1, Y 1 ), (X, Y ),..., (X n, Y n ) em que (X i, Y i ) é o par de variáveis do i-ésimo indivíduo, X i referente ao tratamento inicial e Y i referente ao tratamento final. No caso não-pareado, as variáveis são independentes e observamos dois conjuntos de dados (X 1, X,..., X n1 ), (Y 1, Y,..., Y n ). o primeiro referente a um tipo de tratamento e o segundo referente a outro tipo de tratamento.

7 Caso pareado e não-pareado No caso pareado, utilizamos a média das diferenças D i = X i Y i para fazer o teste de hipóteses, ou seja, Temos que D par N D par = 1 n n d i. i=1 (µ x µ y, σdn ), em que σ D está embutida as variâncias de X, Y e a covariância. A estimativa para σd será a variância amostral S D (denominador (n-1)) No caso não-pareado, utilizamos a diferença das médias X Ȳ para fazer o teste de hipóteses, ou seja, D npar = X Ȳ. ( Temos que D npar N µ x µ y, σ x n 1 + σ y n ).

8 Testes para duas médias para o caso pareado Distribuição normal Aqui sob H 0 (na igualdade), D par N(0, σd /n), assumimos que a variância σd é desconhecida (pois contém informações da covariância que não conhecemos). A região de rejeição para cada teste é dada por Para o Teste (1): RC = { D par > d c }, com d c = t α S D n Para o Teste (): RC = { D par < d c }, com d c = t α S D n Para o Teste (3): RC = { D par < d 1c ou D par > d c }, com S D S D n n. d 1c = t α e d c = t α Como anteriormente, t α e t α/ são os 1 α e 1 α/ quantis, respectivamente, de uma t-student com n-1 graus de liberdade.

9 Intervalo de confiança para a diferença das médias para o caso pareado Distribuição normal IC(µ x µ y, γ) = Lembrando que [ S D D par t α/ n ; S D ] D par + t α/ n P( t α < T < t α ) = γ = 1 α sendo T uma variável com distribuição t-student com n 1 graus de liberdade

10 Foram coletados os tempos antes a após a aplicação do complemento alimentar e os seguintes dados foram obtidos para 1 atletas. Sabe-se que estes tempos se distribuem conforme a distribuição normal. Deseja-se verificar se o complemento aumenta o desempenho dos atletas. Ind Antes (horas) Depois (horas) d i 1,4 3, - 0,8,8 3,4-0,6 3 4,6 3, 1,4 4 3,1 3,3-0, 5 3,1 3,3-0, 6 4,7 3,0 1,7 7 3,5 3,8-0,3 8 1,7 3,5-1,8 9,3 3, -0,9 10,6 3,9-1,3 11 4, 3,6 0,6 1 3,4 3,4 0,0 Observou-se d par = -0,35 e S D = 1, 07. Defina as hipóteses e a região de rejeição para α = 0,05.

11 Testes para duas médias para o caso não-pareado Distribuição normal Quando X N(µ x, σ x) e Y N(µ y, σ y) são variáveis independentes temos que ( ) D npar N µ x µ y, σ x + σ y. n 1 n Sob a hipótese nula (na igualdade), temos que µ D = µ x µ y = 0 Temos três casos: As variâncias σ x e σ y são conhecidas. As variâncias são desconhecidas e iguais. As variâncias são desconhecidas e diferentes.

12 Regiões críticas quando as variâncias são conhecidas (não-pareado) σ x Para o Teste (1): RC = { D npar > d c }, com d c = z α n 1 + σ y n Para o Teste (): RC = { D npar < d c }, com d c = z α σ x n 1 + σ y n Para o Teste (3): RC = { D npar < d 1c ou D npar > d c }, com σ d 1c = z α x n 1 + σ y σ n e d c = z α x n 1 + σ y n.

13 Intervalo de confiança para a diferença das médias para o caso não-pareado com variâncias conhecidas Distribuição normal IC(µ x µ y, γ) = [ σx D npar z α + σ y σ ; D npar + z ] x α + σ y n 1 n n 1 n Lembrando que P( z α < Z < z α ) = γ = 1 α sendo Z uma variável com distribuição normal padrão.

14 Uma fábrica de embalagens para produtos químicos está estudando dois processos para combater a corrosão de suas latas especiais. Para verificar o efeito dos tratamentos, foram usadas amostras cujos resultados estão no quadro abaixo (em porcentagem de corrosão eliminada). Método A Método B Média amostral Variância populacional Amostra 15 1 Assuma distribuições normais independentes para as variáveis de interesse. Verifique se os efeitos médios dos métodos são diferentes considerando α = 0,05. Faça um intervalo de confiança considerando γ = 0,95.

15 Regiões críticas quando as variâncias são desconhecidas e iguais (não-pareado) Para o Teste (1): RC = { D npar > d c }, com d c = t α s p n 1 + s p n Para o Teste (): RC = { D npar < d c }, com d c = tα s p n 1 + s p n Para o Teste (3): RC = { D npar < d 1c ou D npar > d c }, com d 1c = t s p α n 1 + s p n e d c = t s p α n 1 + s p n. em que tα e t α são os quantis 1 α e 1 α, respectivamente de uma t-student com n = n 1 + n graus de liberdade e s p = (n 1 1) S X + (n 1) S Y n.

16 Intervalo de confiança para a diferença das médias para o caso não-pareado com variâncias desconhecidas e iguais Distribuição normal IC(µ x µ y, γ) = [ D npar t sp α + s p ; D npar + t s ] p α + s p n 1 n n 1 n Lembrando que P( t α < T < t α ) = γ = 1 α sendo T uma variável com distribuição t-student com n graus de liberdade (n = n 1 + n ).

17 Duas técnicas de venda são aplicadas por dois grupos de vendedores: a técnica A, por 1 vendedores, e a técnica B, por 15 vendedores. Espera-se que a técnica B produza melhores resultados. No final de um mês, obtiveram-se os resultados (em porcentagem de vendas): Técnica A Técnica B Média amostral Variância amostral 50 5 Assuma distribuição normal para as variáveis de interesse. Sabe-se, por estudos anteriores, que a variância populacional das duas técnicas são iguais. Conduza os testes apropriados e faça intervalos de confiança para a diferença de médias populacionais.

18 Regiões críticas quando as variâncias são desconhecidas e diferentes (não-pareado) Para o Teste (1): RC = { D npar > d c }, com d c = t α S X n 1 + S Y n Para o Teste (): RC = { D npar < d c }, com d c = t α S X n 1 + S Y n Para o Teste (3): RC = { D npar < d 1c ou D npar > d c }, com d 1c = t α S X n 1 em que em que tα e t α de uma t-student com + S Y n n = ( S X n 1 + S Y n e d c = t α S X n 1 + S Y n. são os quantis 1 α e 1 α, respectivamente ) / ( S X n n 1 n 1 ) ( S Y n ) graus de liberdade.

19 Intervalo de confiança para a diferença das médias para o caso não-pareado com variâncias desconhecidas e diferentes Distribuição normal IC(µ x µ y, γ) = Lembrando que [ s D npar t n, α X + s Y s ; D ] npar +t n 1 n n, α X + s Y n 1 n P( t α < T < t α ) = γ = 1 α sendo T uma variável com distribuição t-student com n graus de liberdade, sendo ( ) s X n n1 + s Y n = ( s X n 1 ) n ( s Y n ) n 1

20 Queremos verificar se as resistências de dois tipos de vigas de aço, A e B, são diferentes. Aplicam-se cargas (em kn/cm ) até que a viga se rompa. Considere que foram testadas n 1 = 15 vigas do tipo A e n = 0 vigas do tipo B, obtemos os valores: Técnica A Técnica B Média amostral 71,5 85,3 Variância amostral 8,6 0,8 Assuma distribuição normal para as variáveis de interesse. Conduza os testes apropriados e faça intervalos de confiança para a diferença de médias populacionais.

21 Comparações de médias populacionais para distribuições não-normais Sejam X e Y variáveis aleatórias independentes com E(X ) = µ x, VAR(X ) = σ x, E(Y ) = µ y e VAR(Y ) = σ y. Sejam (X 1,..., X n1 ) e (Y 1,..., Y n ) amostras de X e Y, respectivamente. Sabemos pelo teorema do limite central que X µ x σ x N(0, 1) e n 1 para n 1 e n forem grandes. Ȳ µ y σ y n N(0, 1).

22 Comparações de médias populacionais para distribuições não-normais Combinando os dois resultados temos X Ȳ N(0, 1) σx n 1 + σ y n Substituindo as variâncias desconhecidas por estimadores consistentes, temos X Ȳ N(0, 1) ˆσ x n 1 + ˆσ y n

23 Regiões críticas aproximadas ˆσ x Para o Teste (1): RC = { D npar > d c }, com d c = z α n 1 + ˆσ y n Para o Teste (): RC = { D npar < d c }, com d c = z α ˆσ x n 1 + ˆσ y n Para o Teste (3): RC = { D npar < d 1c ou D npar > d c }, com ˆσ d 1c = z α x n 1 + ˆσ y ˆσ n e d c = z α x n 1 + ˆσ y n.

24 Exemplo: Comparações de proporções Sejam X e Y variáveis Bernoulli independentes com P(X = 1) = p x e P(Y = 1) = p y. Note que µ x = p x, σ x = p x (1 p x ), µ y = p y e σ y = p y (1 p y ). Note portanto que testar as médias é equivalente a testar as proporções. Utilizamos o teste para variáveis não-normais usando: ˆσ x = x(1 x) e ˆσ y = ȳ(1 ȳ)

25 O nível descritivo do teste (valor-p) O nível descritivo do teste (valor-p) é definido como o menor nível de significância em que a hipótese nula é rejeitada. É calculado substitiundo d c pela média D observada. Para o Teste (1): α = P( D > d quando µ D = 0) Para o Teste (): α = P( D < d quando µ D = 0) Para o Teste (3): α = P( D < d quando µ D = 0) se d < 0 ou α = P( D > d quando µ = 0) se d > 0. A distribuição utilizada depende da situação: caso pareado ou não-pareado (variâncias conhecidas ou desconhecidas).

26 Testes para duas variâncias populacionais Observe que para fazer as comparações de duas médias populacionais (no caso não pareado de variâncias desconhecidas) precisamos saber se as variâncias são iguais ou diferentes. Veremos a seguir como fazer testes de hipóteses para duas variâncias populacionais de variáveis com distribuição normal. Ou seja, se X N(µ x, σ x) e Y N(µ y, σ y) com (X 1, X,..., X n1 ), (Y 1, Y,..., Y n ) as respectivas amostras. Queremos testar as seguintes hipóteses { H0 : σ x = σ y H 1 : σ x σ y

27 Testes para duas variâncias populacionais Sejam (X 1, X,..., X n1 ) e (Y 1, Y,..., Y n ) as duas amostras das variáveis de interesse (com distribuição normal). Sabemos que e U 1 = (n 1 1) S X σ x χ (n 1 1) Vimos que U = (n 1) S Y σ y χ (n 1) U 1 n 1 1 U n 1 F (n1 1,n 1)

28 Testes para duas variâncias populacionais Portanto, S X S Y σy σx F (n1 1,n 1) Sob a hipótese nula σx = σ Y, temos que W = S X S Y F (n1 1,n 1)

29 Região crítica para o testes de duas variâncias populacionais A região crítica para o teste é dada por RC = {W < F 1 ou W > F } sendo que os valores F 1 e F são obtidos da tabela da distribuição F de Snedecor com n 1 1 graus de liberdade no numerador e n 1 graus de liberdade no denominador. P(W < F 1 ) = P(W > F ) = α lembrando que, sob a hipótese nula, W F (n1 1,n 1).

30 Distribuição F O valor F é obtido diretamente usando F (n1 1,n 1) P(F (n1 1,n 1) > F ) = α O valor F 1 = 1/ F em que F é obtido da tabela F (n 1,n 1 1). P(F (n1 1,n 1) < F 1 ) = P(F (n 1,n 1 1) > F ) = α

31 Exemplo Duas técnicas de venda são aplicadas por dois grupos de vendedores: a técnica A, por 1 vendedores, e a técnica B, por 15 vendedores. Espera-se que a técnica B produza melhores resultados. No final de um mês, obtiveram-se os resultados: Técnica A Técnica B Média amostral Variância amostral 50 5 Verifique se as variâncias populacionais são iguais a 5% de significância estatística.

Introdução à probabilidade e estatística II

Introdução à probabilidade e estatística II Introdução à probabilidade e estatística II Testes de hipóteses para duas médias populacionais Prof. Alexandre G Patriota Sala: 98A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Testes de hipóteses

Leia mais

Inferência para duas populações

Inferência para duas populações Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.

Leia mais

Carlos Antonio Filho

Carlos Antonio Filho Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos

Leia mais

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

X e Y independentes. n + 1 m

X e Y independentes. n + 1 m DEPARTAMENTO DE ESTATÍSTICA / CCEN / UFPA Disciplina: Inferência I Prof: Regina Tavares 5.0. TESTE DE HIPÓTESES PARA DUAS POPULAÇÕES 5.0.. Duas Populações Normais independentes : X, X 2,, X n uma a.a.

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 01 de Julho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma população. Serão usadas as distribuições

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese

Teste de Hipótese. Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral. 2 Fundamentos do teste de hipótese Teste de Hipótese Capítulo 8 Triola, 10 a. Ed. (Capítulo 7 Triola, 9 a. Ed.) 1 Visão Geral 2 Fundamentos do teste de hipótese z 3 Teste de uma afirmativa sobre uma Proporção z 4 Teste de uma afirmativa

Leia mais

Testes de Hipóteses II

Testes de Hipóteses II Testes de Hipóteses II Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 6a AULA 06/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 5a aula (06/04/2015) MAE229 1 / 23 1. Teste para

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercício A fim de comparar os salários médios anuais de executivos e executivas de uma determinada cidade, amostras aleatórias de n = 26 executivos e n 2 = 24 executivas foram coletadas obtendose os valores

Leia mais

Unidade IV Inferência estatística

Unidade IV Inferência estatística 6//5 Unidade IV Inferência estatística 4.. Introdução e histórico 4.. Conceitos fundamentais 4.3. Distribuições amostrais e Teorema central do limite 4.4. Estimação de parâmetros 4.5. Testes de hipóteses

Leia mais

Introdução a Estatística

Introdução a Estatística Introdução a Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas: 1 vimos como

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A Site:

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A   Site: Introdução à probabilidade e à estatística II Revisão Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Estatística Estatística: É uma ciência que se dedica

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

Distribuições por Amostragem

Distribuições por Amostragem Distribuições por Amostragem Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições por Amostragem 2007/2008 1 / 27 Introdução: População, amostra e inferência estatística

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real.

Distribuições derivadas da distribuição Normal. Distribuição Normal., x real. Distribuições derivadas da distribuição Normal Distribuição Normal Uma variável aleatória X tem distribuição normal com parâmetros µ e σ, quando sua densidade de probabilidade é f ( x) π σ e ( x µ ) σ,

Leia mais

1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos.

1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos. GET00172 - Fundamentos de Estatística Aplicada Gabarito da Lista de Exercícios Inferência rofa. Ana Maria Farias 1. a Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 2019 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Teste de Hipóteses Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.1 Teste de Hipóteses O Teste de Hipóteses

Leia mais

ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt

ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt ESTATÍSTICA Distribuições qui-quadrado, t de Student e F de Snedecor Lucas Schmidt lucas.breniuk@hotmail.com Estimação de parâmetros Média Variância Proporção Estimação de parâmetros Média: " estimador

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 02/14 1 / 1 A distribuição F de Snedecor também conhecida como distribuição de Fisher é frequêntemente

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Testes de Hipóteses Paramétricos 1 / 41 Introdução. Hipóteses Estatísticas. Erro Tipo I

Leia mais

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo

Leia mais

1 Probabilidade - Modelos Probabilísticos

1 Probabilidade - Modelos Probabilísticos 1 Probabilidade - Modelos Probabilísticos Modelos probabilísticos devem, de alguma forma, 1. identificar o conjunto de resultados possíveis do fenômeno aleatório, que costumamos chamar de espaço amostral,

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Enrico A. Colosimo Depto. Estatística UFMG

Enrico A. Colosimo Depto. Estatística UFMG Bioestatística F Conceitos de Teste de Hipóteses Enrico A. Colosimo Depto. Estatística UFMG http://www.est.ufmg.br/~enricoc/ f(x).4.35.3.25.2.15.1.5 Tabela Normal Padronizada Distribuicao Gaussiana com

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Aula 8 - Testes de hipóteses

Aula 8 - Testes de hipóteses Aula 8 - Testes de hipóteses PhD. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação-LEG Universidade Federal do Paraná 1/2017 Bonat, W. H. (LEG/UFPR) 1/2017 1 / 1 Testes de hipóteses Exemplo

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Algoritmo para simular uma fila Medidas de interesse Média amostral Aula de hoje Teorema do Limite Central Intervalo de Confiança Variância amostral

Leia mais

AULA 7 - Inferência em MQO: ICs e Testes de

AULA 7 - Inferência em MQO: ICs e Testes de AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Prova # SUB 15 junho de 2015

Prova # SUB 15 junho de 2015 MAE 229 -Introdução à Probabilidade e Estatística II Prof. Fábio Machado e Prof. Lígia Henriques-Rodrigues Prova # SUB 15 junho de 2015 Questão 1 2 3 4 Total Valor Nome: Nro. USP: Observações: Não destaque

Leia mais

Prof. Lorí Viali, Dr. Mat2282 Análise Estatística Não Paramétrica

Prof. Lorí Viali, Dr.  Mat2282 Análise Estatística Não Paramétrica Prof. Lorí Viali, Dr. http://www.pucrs.br/~viali/ viali@pucrs.br Objetivos Testar o valor hipotético de um parâmetro (testes paramétricos) ou de relacionamentos ou modelos (testes não paramétricos). Envolvem

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 7: Intervalos de Confiança com uma amostra Leitura obrigatória: Devore, cap 7 ou Montgomery e Runger, cap 8 Chap 8-1 Objetivos Como inferir sobre um parâmetro da população,

Leia mais

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição

Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Aula 5. Teste de Hipóteses II. Capítulo 12, Bussab&Morettin Estatística Básica 7ª Edição Procedimento teste de hipótese para proporção. Resumo. (1) Estabelecer as hipóteses: H: p = p 0 contra uma das alternativas

Leia mais

BIOESTATÍSTICA. Parte 5 Testes de Hipóteses

BIOESTATÍSTICA. Parte 5 Testes de Hipóteses BIOESTATÍSTICA Parte 5 Testes de Hipóteses Aulas Teóricas de 05/05/2011 a 19/05/2011 5.1. Conceito de erro, estatística de teste, região de rejeição, nível de significância, valor de prova, potência do

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas:

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves

Capítulo 9 - Regressão Linear Simples (RLS): Notas breves Capítulo 9 - Regressão Linear Simples RLS: Notas breves Regressão Linear Simples Estrutura formal do modelo de Regressão Linear Simples RLS: Y i = β 0 + β 1 x i + ε i, 1 onde Y i : variável resposta ou

Leia mais

MAB-515 Avaliação e Desempenho (DCC/UFRJ)

MAB-515 Avaliação e Desempenho (DCC/UFRJ) MAB-515 Avaliação e Desempenho (DCC/UFRJ) Aula 7: Intervalos de Confiança 13 de novembro de 2012 1 2 3 4 Percentil 100p%-percentil O ponto t 0 tal que t 0 = F 1 X (p) = min{t : F X (t) p}, 0 < p < 1 é

Leia mais

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO

Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO Bioestatística CE001 Prof. Fernando de Pol Mayer Departamento de Estatística DEST Exercícios: inferência Nome: GABARITO GRR: Observação: em todos os problemas que envolvem teste de hipótese, é necessário

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Introdução em Probabilidade e Estatística II

Introdução em Probabilidade e Estatística II Introdução em Probabilidade e Estatística II Lista 7 Exercicio Em estudo genético um gene A foi destacado para detectar uma doença. Se dita que em pessoas doentes (pacientes) este gene mostra atividade

Leia mais

Inferência a partir de duas amostras

Inferência a partir de duas amostras Inferência a partir de duas amostras Inferência a partir de duas amostras. Inferência sobre duas médias: amostras dependentes. Inferência sobre duas médias: amostras grandes e independêntes 3. Comparação

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Aula 9 Fundamentos de Testes de Hipóteses Leitura: Devore, Capítulo 8 Chap 9-1 Objetivos Neste capítulo, vamos aprender: Os princípios básicos de testes de hipóteses Estabelecer

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Para que serve a inferência estatística? Método dos Momentos Maximum Likehood Estimator (MLE) Teste de hipótese: definições Aula de hoje Teste

Leia mais

Solução dos Exercícios - Capítulos 1 a 3

Solução dos Exercícios - Capítulos 1 a 3 Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral

Leia mais

INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS

INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de outubro de 2017 Há situações em que o interesse do

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Estimação Intervalar Média e Proporção Estimação Pontual x Estimação Intervalar Exemplo Inicial: Um estudo pretende estimar o valor de µ, a renda média familiar dos alunos da UFMG.

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Dependentes Teste t para amostras emparelhadas Variâncias Teste z Conhecidas Independentes Variâncias Desconhecidas Supostas iguais

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

Planejamento de Experimentos Introdução - Teste t

Planejamento de Experimentos Introdução - Teste t 1/22 Planejamento de Experimentos Introdução - Teste t Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/22 Introdução - Planejamento de Experimentos Experimento:

Leia mais

Testes de Hipóteses para duas médias

Testes de Hipóteses para duas médias Testes de Hipóteses para duas médias Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 19 e 24 de setembro de 2018 Londrina 1 / 17 Tipos de Hipóteses Há muitos problemas em

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 1 o semestre de 201 O tempo de vida útil de uma lavadora de roupas automática tem distribuição aproximadamente Normal, com média de 3,1 anos e desvio padrão de 1,2 anos. a Qual deve ser o valor

Leia mais

Teste de Comparações Múltiplas

Teste de Comparações Múltiplas Teste de Comparações Múltiplas Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 24 de outubro de 2018 Londrina 1 / 9 Pela análise de variância realizada no Exemplo 1 da aula

Leia mais

Testes t para comparação de médias de dois grupos independentes

Testes t para comparação de médias de dois grupos independentes Testes t para comparação de médias de dois grupos independentes Acadêmicas do curso de Zootecnia - Aline Cristina Berbet Lopes Amanda da Cruz Leinioski Larissa Ceccon Universidade Federal do Paraná UFPR/2015

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 21 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2 Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,

Leia mais

Distribuições amostrais

Distribuições amostrais Distribuições amostrais Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma

Leia mais

Introdução à Bioestatística Turma Nutrição

Introdução à Bioestatística Turma Nutrição Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição

Leia mais

Teorema central do limite e es/mação da proporção populacional p

Teorema central do limite e es/mação da proporção populacional p Teorema central do limite e es/mação da proporção populacional p 1 RESULTADO 1: Relembrando resultados importantes Seja uma amostra aleatória de tamanho n de uma variável aleatória X, com média µ e variância

Leia mais

Teste de Hipóteses Paramétricos

Teste de Hipóteses Paramétricos Teste de Hipóteses Paramétricos Fundamentos de um teste de hipóteses Como construir testes de hipóteses para uma média. Como construir testes de hipóteses para uma proporção. Como construir testes de hipóteses

Leia mais

Inferências sobre o vetor de Média. (Johnson & Wichern, Cap. 5) Considere o problema univariado no qual temse uma amostra aleatória de tamanho n da

Inferências sobre o vetor de Média. (Johnson & Wichern, Cap. 5) Considere o problema univariado no qual temse uma amostra aleatória de tamanho n da Inferências sobre o vetor de Média (Johnson & Wichern, Cap. 5) Considere o problema univariado no qual temse uma amostra aleatória de tamanho n da distribuição N(µ, σ 2 ), em que ambos os parâmetros de

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

TESTES DE HIPÓTESES. Lucas Santana da Cunha Universidade Estadual de Londrina

TESTES DE HIPÓTESES. Lucas Santana da Cunha     Universidade Estadual de Londrina TESTES DE HIPÓTESES Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 26 de setembro de 2016 Introdução Viu-se a construção de intervalos

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1

AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 AULA 11 - Normalidade e Inferência em Regressão Múltipla - Parte 1 Susan Schommer Econometria I - IE/UFRJ Distribuições amostrais dos estimadores MQO Nas aulas passadas derivamos o valor esperado e variância

Leia mais

TESTES DE HIPÓTESES PARA DIFERENÇA DE DUAS MÉDIAS

TESTES DE HIPÓTESES PARA DIFERENÇA DE DUAS MÉDIAS TESTES DE HIPÓTESES PARA DIFERENÇA DE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 23 de outubro de 2017 Introdução Tipos de Hipóteses Há muitos

Leia mais

AULA 04 Teste de hipótese

AULA 04 Teste de hipótese 1 AULA 04 Teste de hipótese Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal

Leia mais

Variáveis bidimensionais

Variáveis bidimensionais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 19/04/2018 WB, FM, EK ( LEG/DEST/UFPR ) Variáveis

Leia mais

Testes de Hipóteses: Média e proporção

Testes de Hipóteses: Média e proporção Testes de Hipóteses: Média e proporção Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 12 de setembro de 2018 Londrina 1 / 27 Viu-se a construção de intervalos de confiança

Leia mais

TESTES DE HIPÓTESES ADICIONAIS

TESTES DE HIPÓTESES ADICIONAIS TESTES DE HIPÓTESES ADICIONAIS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 30 de outubro de 2017 Foi visto que para a realização do teste t para a diferença

Leia mais

GABARITO DO 2 a CHAMADA ET101 (2017.2)

GABARITO DO 2 a CHAMADA ET101 (2017.2) GABARITO DO 2 a CHAMADA ET101 (2017.2) 1) (a) Para o evento: nenhuma das máquinas esteja operacional escreve-se: A c 1 Ac 2 Ac 3. Deseja-se avaliar P (A c 1 Ac 2 Ac 3 ). Como A 1 A 2 A 3 são independentes,

Leia mais

3 2σ 2] = σ 2 C = 1 6

3 2σ 2] = σ 2 C = 1 6 GET008 - Estatística II Lista de Exercícios Inferência para uma população Profa. Ana Maria Farias. Seja X, X,, X 6 uma amostra aleatória simples de tamanho 6 de uma população Nµ; σ. Determine o valor da

Leia mais

AULA 05 Teste de Hipótese

AULA 05 Teste de Hipótese 1 AULA 05 Teste de Hipótese Ernesto F. L. Amaral 03 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario F. 2008. Introdução

Leia mais

TESTE DE HIPÓTESE. Introdução

TESTE DE HIPÓTESE. Introdução TESTE DE HIPÓTESE Introdução O teste de hipótese estatística objetiva decidir se uma afirmação sobre uma população, usualmente um parâmetro desta, é, ou não, apoiada pela evidência obtida dos dados amostrais.

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B

Leia mais