Átomo de Hélio. Tiago Santiago. 2 de novembro de Resumo

Tamanho: px
Começar a partir da página:

Download "Átomo de Hélio. Tiago Santiago. 2 de novembro de Resumo"

Transcrição

1 Átomo de Hélio Tiago Santiago de novembro d015 Resumo Nesse trabalho o átomo de Hélio é abordado definindo-se o hamiltoniano e utilizando métodos de aproximação para estimar a energia do ground state. Também é feito o tratamento para estados excitados e conceitos como Integral da Coulomb, Integral de troca, simetrização, princípio de Pauli e regras de seleção são introduzidos para o átomo de Hélio. 1 Introdução Em mecânica quântica, conseguimos resolver o Hamiltoniano do átomo mais simples, o átomo de Hidrogênio. Quando partimos para o átomo de Hélio, já não é mais possível uma solução analítica devido ao termo de repulsão entre os elétrons. O átomo de hélio possui um núcleo com carga Ze = +e, massa m He 4m H (sendo m H a massa do hidrogênio) e dois elétrons com carga q = e. A distribuição espacial dos dois elétrons dependem da função de onda Ψ( r 1, r ) a qual é uma função das posições r 1 e r dos dois elétrons. As distâncias entre o núcleo e os elétrons vale r 1 = r 1 e r = r e a distância entre os dois elétrons r 1 = r 1 r. O potencial coulombiano fica: V (r 1, r, r 1 ) = e ( Z + Z 1 ) r1 r r 1 Escrevemos, para o centro de massa, o operador ˆp µ ˆp µ = h ( ) µ 1 + m e m He, µ = m e + m He na forma: com m e a massa do elétron. Como m He 7300m e, fazemos a aproximação µ m e = m. A equação de Schrödinger independente do tempo fica: ] [ h ( ) µ V (r1, r, r 1 ) Ψ( r 1, r ) = EΨ( r 1, r ) (1) 1

2 O potencial não é esfericamente simétrico, o termo r 1 depende do ângulo entre r 1 e r. Assim, a função de onda total não é separável em uma parte radial e outra angular, o que faz com que a equação (1) não possua solução analítica. Energia do estado fundamental Negligenciando o termo de repulsão eletrônica (que depende de r 1 ), podemos separar a função de onda total em: Ψ( r 1, r ) = Ψ 1 ( r 1 )Ψ ( r ) e ficamos com duas equações de Schrödinger, sendo o Hamiltoniano igual ao caso de átomos hidrogenoides: ] [ h µ i + e Z Ψ i ( r i ) = E i Ψ i ( r i ) r i com i = 1, e E = E 1 + E. Para átomos hidrogenoides temos E n = Z E 0 /n, com E 0 = 13.6 ev. Com isso, temos a energia para o estado fundamental: E He (1s) = Z E 0 = 108, 8 ev A energia experimental para se remover os dois elétrons de um átomo de He no estado fundamental é 78, 983 ev. Ou seja, ao não considerarmos o termo de repulsão tivemos um erro em torno de 38%..1 Perturbação de primeira ordem na energia [1] Tratando o termo de repulsão entre os elétrons como uma perturbação, e utilizando as autofunções para átomos hidrogenoides n, l, m l, a função de onda total fica n 1, l 1, m l1 ; n, l, m l, temos como correção de primeira ordem para energia: E (1) = n 1, l 1, m l1 ; n, l, m l r 1 n 1, l 1, m l1 ; n, l, m l = J O termo J é denominado integral de Coulomb e vale: J = e Ψn1,l1,ml1 ( r 1) ( ) 1 r Ψn,l,ml ( r ) dτ1 dτ 1 Essa integral é sempre positiva. O termo Ψ n1,l 1,m l1 ( r 1 ) dτ 1 é a probabilidade de encontrar o elétron no elemento de volume dτ 1 e, quando multiplicado por e, dá a carga associada a essa região. Assim, o integrando é a energia potencial Coulombiana de interação das cargas desses dois elementos de volume e J é a contribuição total

3 para energia potencial. Calculando a integral de Coulomb para o estado fundamental obtemos: J = 5Z 4 ( ) = 5Z a 0 4 E 0 () com a 0 o raio de Bohr. J corresponde a 34 ev. Assim, a energia do estado fundamental fica E He (1s) = 108, = 74, 8 ev. Comparando com o valor experimental de 78, 983 ev temos um erro em torno de 5,3%.. Blindagem da carga nuclear [] Podemos fazer a aproximação em que consideramos que cada elétron se move em um potencial coulombiano, com relação ao núcleo, blindado pela distribuição de carga do outro elétron. O potencial resultante será gerado por uma carga efetiva Q = (Z S)e. A grandeza S (0 S 1) é chamada constante de blindagem. Para o átomo de He, se considerarmos uma blindagem total (S = 1) e o estado fundamental (n = 1), o primeiro elétron sente uma carga nuclear total Q = Ze enquanto o segundo sente uma carga nuclear efetiva Q = (Z S)e. Trocamos Z por Q/e no termo da energia para átomos hidrogenoides (E n = (Q/e) E 0 /n ) e a energia para o estado fundamental fica (E = E 1 + E = 4E 0 E 0 = 5E 0 = 67, 5 ev ). Comparando com o valor experimental de 78, 983 ev temos um erro em torno de 15%. Para uma constante de blindagem em torno de S = o valor experimental é reproduzido. Isso significa que a carga nuclear efetiva sentida pelo segundo elétron é blindada parcialmente pelo primeiro...1 Método variacional para o ground state do átomo de He [3] Tratando o Hamiltoniano do átomo de He com perturbação (Ĥ = Ĥ(0) +Ĥ(1) ), temos: Ψ Ĥ Ψ = Ψ Ĥ(0) + Ĥ(1) Ψ = Ψ E (0) n Ψ + Ψ Ĥ(1) Ψ = E (0) n + E (1) n Se calcularmos a correção da energia para o ground state utilizando para função de onda total o produto das autofunções de átomos hidrogenoides (Ψ = Ψ 1 Ψ ), obteremos o mesmo resultado da seção.1. Para melhorar o resultado, utilizamos o método variacional introduzindo um parâmetro ζ e tentamos a função de onda normalizada: ( ζ ) 3 e ζr 1/a 0 e ζr /a 0 Φ = 1 π a 0 Em que usamos o produto de duas autofunções 1s de átomos hidrogenoides trocando o número atômico Z pelo parâmetro variacional ζ. Aqui, consideramos que cada elétron sentirá uma blindagem parcial devido ao outro elétron, com Z 1 < 3

4 ζ < Z. Escrevendo o hamiltoniano para o átomo de hélio e somando e subtraindo termos com o parâmetro ζ temos: ] Ĥ = [ h m 1 ζe h r 1 m ζe +(ζ Z) +(ζ Z) + e r r 1 r r 1 O termo entre colchetes é a soma de dois hamiltonianos de átomos hidrogenoides com carga nuclear ζ. Assim, o termo entre colchetes aplicado na nossa função teste é uma equação de autovalor: Assim temos: ] [ h m 1 ζe h r 1 m ζe Φ = E (0) Φ r E (0) = ζ E 0 Φ Ĥ Φ = ζ E 0 +(ζ Z) e Φ 1 Φ +(ζ Z) e Φ 1 Φ + e 1 Φ Φ r 1 r r 1 Podemos escrever Φ na forma Φ = f 1 f com f i funções normalizadas na forma: f i = 1 π ( ζ a 0 ) 3/ e ζr i/a 0 Dessa forma: Φ Φ = f 1 f 1 f f = 1 (ζ Z) e Φ 1 r 1 Φ = (ζ Z) e f 1 1 r 1 f 1 f f = (ζ Z) e f 1 1 r 1 f 1 Φ 1 r 1 Φ = e f 1, f 1 r 1 f 1, f O último termo acima tem a forma de uma integral de Coulomb e podemos utilizar a equação () trocando apenas Z por ζ. Calculando os termos restantes: (ζ Z) e f 1 1 f 1 = (ζ Z) e 1 ζ 3 r 1 π a 3 0 π π e ζr 1/a r 1 r 1 sin θdφdθdr 1 = (ζ Z)ζE 0 4

5 Como a integral não muda com a nomenclatura do termo de integração, temos o mesmo resultado calculando para o ter com 1/r. Assim: Φ Ĥ Φ = ζ E 0 + 4(ζ Z)ζE 0 + 5ζ 4 E 0 Derivando e igualando a zero encontramos: Φ Ĥ Φ ζ = 0 ζ = ( Z 5 ) 16 Daí: E = Φ Ĥ Φ = E 0 ( Z 5 16) = 77, 46 ev O que dá um erro em torno 1,9 % se comparado com o valor experimental de 78, 983 ev. 3 Estados exitados Considerado os dois elétrons ocupando orbitais diferentes, as funções de onda Ψ n1,l 1,m l1 ( r 1 )Ψ n,l,m l ( r ) ou Ψ n1,l 1,m l1 ( r )Ψ n,l,m l ( r 1 ), que denotaremos por a(1)b() e a()b(1), possuem mesma energia (E a + E b ) se aplicarmos o hamiltoniano sem o termo de interação entre elétrons. Para calcularmos a correção na energia, utilizamos a TPID para estados degenerados. Temos que calcular o determinante secular det( n, ν H (1) n, µ E n,µδ (1) µ,ν ). Os termos da matriz H (1) ficam: H (1) 11 = a(1)b() a(1)b() r 1 H (1) = a()b(1) a()b(1) r 1 H (1) 1 = a(1)b() a()b(1) = H (1) 1 r 1 Os termos H (1) 11 e H (1) são integrais de Coulomb e H (1) 11 = H (1) = J. Já o termo H (1) 1 é denominado integral de troca (K): K = e 1 a(1)b() a()b(1) r 1 Assim como J, K é positivo. O determinante fica: J E K K J E = 0 5

6 E (1) = J ± K Ou seja, os estados que antes eram degenerados com energia E = E a + E b são quebrados em dois estados com energias E = E a + E b + J ± K. E as autofunções correspondentes são: Ψ ± (1, ) = 1 [a(1)b() ± b(1)a()] Esse resultado mostra que a repulsão entre os dois elétrons quebra a degenerescência (das funções separáveis em forma de produto ab) em estados com diferença de energia K. Note que as autofunções estão simetrizadas, o que é abordado na seção seguinte. 4 Simetrização da função de onda Tratamos o Hamiltoniano sem o termo de interação (elétrons independentes) de forma que a função de onda é separável com Ψ I ab = a(1)b(). Se trocarmos os estados dos dois elétrons, o produto se torna Ψ II ab = a()b(1). Os elétrons são indistinguíveis, logo, a probabilidade do átomo estar nos dois estados citados acima deve ser a mesma. Ψ I ab = Ψ II ab Ψ I ab = e iϕ Ψ II ab Trocando os elétrons de estado novamente, devemos retornar para o estado inicial, e temos Ψ I ab = iϕ Ψ I ab que tem soluções ϕ = 0, π. Assim: Ψ I ab = ±Ψ II ab (3) Sendo a e b autofunções de um átomo hidrogenoide, a condição (3) deveria ser satisfeita para quaisquer autofunções. Mas isso não ocorre, portanto as funções Ψ I ab e Ψ II ab não representam corretamente os estados atômicos. Contudo, podemos construir funções de onda simétrica e antissimétrica de forma que elas não sejam modificadas pela troca de elétrons: Ψ S,A = a(1)b() ± a()b(1) As probabilidades de estarem nesses estados fica: Ψ S,A = a(1)b() ± a()b(1) Se supormos os dois elétrons no mesmo orbital (a = b), temos que a probabilidade de encontrar o estado antissimétrico é nula. 6

7 4.1 Considerando o spin do elétron Negligenciando, também, o termo de acoplamento ˆL.Ŝ, a função de onda é separável com Ψ = Ψ ab ( r 1, r ).χ(s, m s ), com χ a função de onda para o spin total Ŝ, a qual pode ser escrita na forma simétrica (estado de tripleto) ou antissimétrica (singleto). Dessa forma: χ(1, 1) = χ S = χ(1, 0) = 1 ( + ) χ(1, 1) = χ A = χ(0, 0) = 1 ( ) 4. Princípio da exclusão de Pauli Ψ T otal = Ψ S,A χ S,A Wofgang Pauli ( ), baseado na observação do espectro do hélio e de outros átomos, postulou uma regra geral de simetria em 195, chamado Princípio de Pauli: A função de onda total de um sistema com mais de um elétron é sempre antissimétrica com relação à troca de dois elétrons. Isso implica que, para o átomo de hélio, Ψ T otal = Ψ S χ A ou Ψ A χ S Se consideramos os elétrons no mesmo orbital, vimos que Ψ A é nulo, o que significa que a função de onda total possível é Ψ S χ A. Ou seja, dois elétrons só ocupam o mesmo orbital com a função de onda de spin antissimétrica. O princípio de Pauli pode ser expresso de forma mais geral se classificarmos as partículas elementares em férmions (spin semi-inteiro) e bósons (spin inteiro): A função de onda total deve ser antissimétrica com respeito à troca de qualquer par de férmions idênticos e simétrica com respeito à troca de qualquer par de bósons idênticos. 5 O espectro do Hélio Até agora vimos que, se os elétrons estão no mesmo orbital, temos um termo para energia E = E a + J e, quando estão em orbitais diferentes, temos E = E a + E b + J ± K, com separação entre níveis dk. 7

8 Na prática, consideramos apenas a excitação de um elétron pois a energia para excitar os dois elétrons excede a energia de ionização do átomo de hélio. Para encontramos as regras de seleção para transição entre estados simétrico e assimétrico, calculamos o momento de dipolo da transição. Para um sistema de dois elétrons o momento de dipolo vale e r 1 e r, que é simétrico pela permutação de dois elétrons. O momento de dipolo para transição fica: µ ± = e Ψ +( r 1, r )( r 1 + r )Ψ ( r 1, r )dτ 1 dτ Se permutarmos os elétrons, a integral acima muda de sinal, mas a integral não pode depender da nomenclatura das variáveis de integração, portanto deve ser nula. Ou seja, não pode ocorrer a transição entre os estados simétrico e antissimétrico. Considerando a função de onda do spin com o princípio da exclusão de Pauli, com Ψ T otal = Ψ S χ A ou Ψ A χ S, temos que as transições só são permitidas entre estados de singleto ou entre estados de tripleto. Nas primeiras observações do espectro do hélio, visto as diferenças do espectro de singleto e do espectro de tripleto, acreditava-se que se tratava de diferentes átomos. Porém, análises químicas mostraram que era o mesmo elemento. Passaram a acreditar que existiam dois tipos de átomos de hélio, os quais foram denominados para-hélio e orto-hélio (Figura 1). Figura 1 Transições permitidas para estados de singleto e tripleto. Adaptado da referência [] 8

9 Referências 1 ATKINS, P.; FRIEDMAN, R. Molecular quantum mechanics. Oxford University Press, ISBN Disponível em: <https: //books.google.com.br/books?id=9kepaqaamaaj>. DEMTRÖDER, W. Atoms, Molecules and Photons: An Introduction to Atomic- Molecular- and Quantum Physics. Springer, 006. ISBN Disponível em: < 3 LEVINE, I. Quantum Chemistry 5Th Ed. Prentice-Hall Of India Pvt. Limited, 006. ISBN Disponível em: < id=wbrxpwaacaaj>. 9

O estado fundamental do átomo de Hélio Prof. Ricardo L. Viana

O estado fundamental do átomo de Hélio Prof. Ricardo L. Viana Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física O estado fundamental do átomo de Hélio Prof. Ricardo L. Viana Introdução O Hélio é, depois do Hidrogênio, o átomo mais simples

Leia mais

Fundamentos de Química Quântica

Fundamentos de Química Quântica Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Química Fundamentos de Química Quântica Aula 3 Professora: Melissa Soares Caetano Átomo de Hidrogênio Um núcleo

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Livro texto: Modern Quantum Chemistry Introduction to Advanced Elecronic Structure Theory

Leia mais

Introdução à Física Atômica e Molecular

Introdução à Física Atômica e Molecular 4300315 Introdução à Física Atômica e Molecular Átomo de Hélio * : Estado Fundamental II *Referência Principal: D. Vianna, A. Fazzio e S. Canuto, Teoria Quântica de Moléculas e Sólidos Átomo de Hélio Aproximação

Leia mais

Átomos multi-eletrônicos. Indistinguibilidade

Átomos multi-eletrônicos. Indistinguibilidade Átomos multi-eletrônicos Indistinguibilidade Princípio de exclusão, de Pauli 1. Em um átomo multi-eletrônico nunca pode haver mais de 1 e- ocupando o mesmo estado quântico.. Um sistema constituído de vários

Leia mais

Estrutura Atômica. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomos Polieletrônicos

Estrutura Atômica. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomos Polieletrônicos Estrutura Atômica Química Quântica Prof a. Dr a. Carla Dalmolin Átomos Polieletrônicos Átomos Polieletrônicos Átomos que possuem mais de 1 elétron A Eq. de Schrödinger pode ser resolvida exatamente apenas

Leia mais

Introdução à Física Atômica e Molecular

Introdução à Física Atômica e Molecular 4005 Introdução à Física Atômica e Molecular Átomos Multieletrônicos Referências: D. Vianna, A. Fazzio e S. Canuto, Teoria Quântica de Moléculas e Sólidos. P. Atkins e R. Friedman, Molecular Quantum Mechanics,

Leia mais

Átomos polieletrónicos

Átomos polieletrónicos Átomos polieletrónicos Química Teórica e Estrutural P.J.S.B. Caridade & U. Miranda 2/12/2013 5/11/2013, Aula 8 Química Teórica & Estrutural (2013) Caridade & Ulises 1 Átomo de hidrogénio O Hamiltoniano

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 10 ÁTOMOS COMPLEXOS Primeira Edição junho de 2005 CAPÍTULO 10 ÁTOMOS COMPLEXOS ÍNDICE 10-1- Introdução 10.2- Átomos com mais de um

Leia mais

O Método de Hartree-Fock

O Método de Hartree-Fock O Método de Hartree-Fock CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do Paraná

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 8

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 8 Universidade de São Paulo Instituto de Física Física Moderna II Profa. Márcia de Almeida Rizzutto o Semestre de 04 Átomos multi-eletrônicos Indistinguibilidade Princípio de exclusão, de Pauli. Em um átomo

Leia mais

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido

Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento angular bem definido ÁTOMO DE HIDROGÊNIO Primeiro sistema tratado quanticamente por Schrödinger Modelo de Bohr Elétrons se movem ao redor do núcleo em órbitas circulares (atração Coulombiana) Cada órbita n possui um momento

Leia mais

Introdução ao Método de Hartree-Fock

Introdução ao Método de Hartree-Fock Introdução ao Método de Hartree-Fock CF352 - Fundamentos de Física Atômica e Molecular Departamento de Física Universidade Federal do Paraná M. H. F. Bettega (UFPR) CF352 1 / 24 Preliminares Aproximação

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 2008 1 Resultados da Teoria de Hartree As autofunções obtidas pela teoria de Hartree

Leia mais

Aplicação do Método Variacional na Mecânica Quântica:

Aplicação do Método Variacional na Mecânica Quântica: Aplicação do Método Variacional na Mecânica Quântica: Átomo de Hélio Milena Menezes Carvalho 1 1 Instituto de Física de São Carlos, Universidade de São Paulo E-mail: glowingsea@gmail.com 1. Introdução

Leia mais

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos O problema de 1 elétron O princípio variacional Função de onda tentativa Átomo de H unidimensional Íon H2 + unidimensional Equação

Leia mais

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 FF-296: Teoria do Funcional da Densidade I Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Tema de hoje: Problema de 2 elétrons Férmions Hartree-Fock Troca

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto o. Semestre de 008 Conteúdo (P) Cap. 7, 8 e 9 Eisberg (/ do 9.7), Cap. 7 do Tipler, Cap. 7 e parte

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 2008 1 Tabela Periódica dos elementos 2 8 8 Alcalinos, um elétron livre na camada

Leia mais

Gases quânticos sem interação

Gases quânticos sem interação UFABC - Mecânica Estatística Curso 2018.1 Prof. Germán Lugones CAPÍTULO 6 Gases quânticos sem interação!1 Regime clássico e regime quântico Para um gás ideal clássico em equilíbrio térmico a uma temperatura

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOB1021 - FÍSICA IV Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de Lorena (EEL) Universidade

Leia mais

Física Moderna II Aula 08

Física Moderna II Aula 08 Universidade de São Paulo Instituto de Física 1 º Semestre de 2015 Profa. Márcia de Almeida Rizzutto Oscar Sala sala 220 rizzutto@if.usp.br Física Moderna II Aula 08 Monitor: Gabriel M. de Souza Santos

Leia mais

Estrutura Hiperfina e Efeito Zeeman para Muônio e Positrônio

Estrutura Hiperfina e Efeito Zeeman para Muônio e Positrônio Estrutura Hiperfina e Efeito Zeeman para Muônio e Positrônio Armando Valter Felicio Zuffi 05 de dezembro de 014 Resumo Neste trabalho, serão exploradas algumas correções da hamiltoniana do átomo de hidrogênio.

Leia mais

Estrutura Atômica I. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomo de Hidrogênio Átomos Hidrogenóides

Estrutura Atômica I. Química Quântica Prof a. Dr a. Carla Dalmolin. Átomo de Hidrogênio Átomos Hidrogenóides Estrutura Atômica I Química Quântica Prof a. Dr a. Carla Dalmolin Átomo de Hidrogênio Átomos Hidrogenóides Aplicações da Mecânica Quântica Soluções da Equação de Schrödinger independente do tempo Partícula

Leia mais

Aula-11. (quase) Tudo sobre os átomos

Aula-11. (quase) Tudo sobre os átomos Aula-11 (quase) Tudo sobre os átomos Algumas propriedades: Átomos são estáveis (quase sempre) Os átomos se combinam (como o fazem é descrito pela mecânica quântica) Os átomos podem ser agrupados em famílias

Leia mais

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018

CF100 - Física Moderna II. 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 CF100 - Física Moderna II 2º Semestre de 2018 Prof. Ismael André Heisler Aula 10/08/2018 1 Átomos Multieletrônicos 2 Partículas Idênticas 3 Na física quântica, o princípio da incerteza impede a observação

Leia mais

harmônicos esféricos Os harmônicos esféricos são simultaneamente autofunções dos operadores

harmônicos esféricos Os harmônicos esféricos são simultaneamente autofunções dos operadores A eq. de Schrödinger em 3D: Independente do tempo: Separação de variáveis: h m v Ψ + V ( r ) Ψ = h v ψ + V ( r ) ψ = m Ψ ih t Eψ ψ ( r, θ, ϕ) = R( r) Θ( θ ) Φ( ϕ) R n ( r) ; Θ ( θ ) ; Φ ( ϕ) Ylm l ( θ,

Leia mais

Física Moderna II Aula 05. Marcelo G Munhoz Pelletron, sala 245, ramal 6940

Física Moderna II Aula 05. Marcelo G Munhoz Pelletron, sala 245, ramal 6940 Física Moderna II Aula 05 Marcelo G Munhoz Pelletron, sala 245, ramal 6940 munhoz@if.usp.br 1 Átomos multi-eletrônicos A solução da equação de Schroedinger para um átomo com muitos elétrons é bastante

Leia mais

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular.

O spin do elétron. Vimos, na aula 2, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com 2 valores, com propriedades de momento angular. O spin do elétron Vimos, na aula, que Goudsmit e Uhlenbeck propõem uma variável, quantizada, com valores, com propriedades de momento angular. Analogia com o momento angular orbital e e com e foram observadas

Leia mais

ESTRUTURA MOLECULAR. Prof. Harley P. Martins filho

ESTRUTURA MOLECULAR. Prof. Harley P. Martins filho ESTRUTURA MOLECULAR Prof. Harley P. Martins filho o A aproximação de Born-Oppenheimer Núcleos são muito mais pesados que elétrons dinâmica dos elétrons pode ser estudada com os núcleos parados (aproximação

Leia mais

Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui

Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui FÍSICA MODERNA Aula 6a: Física dos Átomos e Moléculas a) O problema do átomo de hidrogénio O Docente Regente: Prof. Doutor Rogério Uthui Tema 5: Física dos átomos e moléculas 5.1. Átomo de hidrogénio;

Leia mais

Átomos e Moléculas. Ligações moleculares. Energia do ion. A molécula de hidrogênio H 2

Átomos e Moléculas. Ligações moleculares. Energia do ion. A molécula de hidrogênio H 2 Ligações moleculares Átomos e Moléculas Energia do ion H 2 + A molécula de hidrogênio Ligações moleculares Uma molécula é formada por um conjunto de átomos que interagem formando um sistema com energia

Leia mais

Física Moderna II Aula 07

Física Moderna II Aula 07 Universidade de São Paulo Instituto de Física 1 º Semestre de 015 Profa. Márcia de Almeida Rizzutto Oscar Sala sala 0 rizzutto@if.usp.br Física Moderna II Aula 07 Monitor: Gabriel M. de Souza Santos Sala

Leia mais

A teoria de Hartree. r r. r r

A teoria de Hartree. r r. r r A teoria de Hartree Vimos, na aula 4, a proposta de Hartree: tratamento autoconsistente Ou seja, V(r) obtido a posteriori, a partir das distribuições de carga dos e -, deve concordar com o V(r) usado para

Leia mais

Átomo de Hidrogênio 1

Átomo de Hidrogênio 1 Átomo de Hidrogênio 1 Potencial central Solução: separação de variáveis satisfaz a equação para qualquer valor de m l. g() deve satisfazer a condição m l deve ser inteiro. 3 Solução: separação de variáveis

Leia mais

Correlação Eletrônica - CI e MP2

Correlação Eletrônica - CI e MP2 Correlação Eletrônica - CI e MP2 CF740 Tópicos Especiais de Física Atômica e Molecular Cálculos de Estrutura Eletrônica Utilizando Funcionais de Densidade Departamento de Física Universidade Federal do

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS DE UM ELÉTRON Primeira Edição junho de 2005 CAPÍTULO 08 ÁTOMOS DE UM ELÉTRON ÍNDICE 8.1- Introdução 8.2- Força Central 8.3- Equação

Leia mais

Física Quântica. Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli. Pieter Westera

Física Quântica. Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli. Pieter Westera Física Quântica Aula 11: Spin do Elétron, Princípio de Exclusão de Pauli Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/quantica.html Quantização do Momento Angular

Leia mais

Problemas de Duas Partículas

Problemas de Duas Partículas Problemas de Duas Partículas Química Quântica Prof a. Dr a. Carla Dalmolin Massa reduzida Rotor Rígido Problemas de Duas Partículas Partícula 1: coordenadas x 1, y 1, z 1 Partícula 2: coordenadas x 2,

Leia mais

Aula 12. (quase) Tudo sobre os átomos. Física Geral F-428

Aula 12. (quase) Tudo sobre os átomos. Física Geral F-428 Aula 1 (quase) Tudo sobre os átomos Física Geral F-48 1 Algumas propriedades atômicas: Átomos são estáveis (quase sempre); Os átomos podem ser agrupados em famílias (propriedades periódicas, com o número

Leia mais

A eq. de Schrödinger em coordenadas esféricas

A eq. de Schrödinger em coordenadas esféricas A eq. de Schrödinger em coordenadas esféricas A autofunção espacial, ψ, e a energia, E, são determinadas pela solução da equação independente do tempo: Separação de variáveis Solução do tipo: Que leva

Leia mais

Não serão aceitas respostas sem justificativa:

Não serão aceitas respostas sem justificativa: Primeira Prova de Conceitos de Mecânica Quântica -(,5) Uma partícula de massa m encontra-se no estado ψ(x,t)= A exp[ω(mx /ħ+it)], onde A e a são constantes reais e positivas. a- Normalize ψ(x,t); b- Calcule

Leia mais

}No caso de 2 elétrons em uma

}No caso de 2 elétrons em uma Voltamos ao caso do átomo de He (Z=2) Níveis de energia do He, considerando interação coulombiana entre os e - e também as forças de troca }No caso de 2 elétrons em uma subcamada, o spin total pode ser

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA

NOTAS DE AULAS DE FÍSICA MODERNA NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS Edição de agosto de 2008 CAPÍTULO 8 ÁTOMOS MONOELETRÔNICOS ÍNDICE 8.1- Introdução 8.2- Problema da Força Central

Leia mais

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier

A Estrutura Eletrônica dos Átomos. Prof. Fernando R. Xavier A Estrutura Eletrônica dos Átomos Prof. Fernando R. Xavier UDESC 2015 Estrutura Atômica, Antencedentes... Modelos de Demócrito, Dalton, Thomson, etc 400 a.c. até 1897 d.c. Nascimento da Mecânica Quântica

Leia mais

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2

Quantização. Quantização da energia (Planck, 1900) hc h. Efeito fotoelétrico (Einstein, 1905) Espectros atômicos (linhas discretas) v 2 Mecânica Quântica Quantização e o modelo de Bohr (revisão) Dualidade Onda-Partícula Princípio da Incerteza Equação de Schrödinger Partícula na Caixa Átomo de Hidrogênio Orbitais Atômicos Números Quânticos

Leia mais

O ÁTOMO DE HIDROGÊNIO

O ÁTOMO DE HIDROGÊNIO FÍSICA PARA ENGENHARIA ELÉTRICA José Fernando Fragalli Departamento de Física Udesc/Joinville O ÁTOMO DE HIDROGÊNIO A elegância, a riqueza, a complexidade e a diversidade dos fenômenos naturais que decorrem

Leia mais

1 O Átomo de Hidrogênio

1 O Átomo de Hidrogênio O modelo de Bohr para o átomo de hidrogênio, embora forneça valores corretos para as energias dos estados atômicos e do espectro da radiação emitida, não pode ser correto do ponto de vista da mecânica

Leia mais

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela

FF-296: Teoria do Funcional da Densidade I. Ronaldo Rodrigues Pela FF-296: Teoria do Funcional da Densidade I Ronaldo Rodrigues Pela Tópicos HF Dois elétrons N elétrons Thomas Fermi Átomo de Hélio 1D Energia exata: 3,154 H Vamos resolver este problema usando o método

Leia mais

Modelos Atômicos e Princípios Quânticos Parte II

Modelos Atômicos e Princípios Quânticos Parte II UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE QUÍMICA DEPARTAMENTO DE QUÍMICA INORGÂNICA QUÍMICA INORGÂNICA I Modelos Atômicos e Princípios Quânticos Parte II Prof. Fabio da Silva Miranda e-mail: miranda@vm.uff.br

Leia mais

B) [N] é uma constante de normalização indicando que a probabilidade de encontrar o elétron em qualquer lugar do espaço deve ser unitária. R n,l (r) é

B) [N] é uma constante de normalização indicando que a probabilidade de encontrar o elétron em qualquer lugar do espaço deve ser unitária. R n,l (r) é QUÍMICA I AULA 04: ESTRUTURA ELETRÔNICA DOS ÁTOMOS TÓPICO 05: ORBITAL ATÔMICO 5.1 A EQUAÇÃO DE SCHRODINGER E O ÁTOMO DE HIDROGÊNIO: Como o elétron tem propriedades ondulatórias, ele pode ser descrito como

Leia mais

Representação grande

Representação grande Capítulo 5 Representação grande canônica 5.1 Introdução Distribuição de probabilidades Vimos no Capítulo 1 que um sistema constituído por partículas que interagem por meio de forças conservativas em contato

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado.

n, l, m l, ms (1) quando estes quatro números quânticos são dados, o estado físico do sistema (no caso, um elétron) é então especificado. Introdução. Consideramos nos textos anteriores sistemas quantum mecânicos que possuem vários níveis de energia mas somente um elétron orbital, ou seja, consideramos até o presente momento átomos hidrogenóides.

Leia mais

Equação de Schrödinger em 3D

Equação de Schrödinger em 3D Equação de Schrödinger em 3D Conteúdo básico: extensão do que foi feito em 1D: p 2 /2m + V(x,y,z) = E; Equação independente do tempo: 2m 2 ψ +V(x, y, z)ψ = Eψ A interpretação probabilística envolve a integração

Leia mais

A Teoria de Orbitais Moleculares

A Teoria de Orbitais Moleculares 2 A Teoria de Orbitais Moleculares 2.1 A Equação de Schroedinger De acordo com a mecânica clássica de Hamilton, um sistema de partículas interagentes tem energia total : T + V = E A mecânica quântica de

Leia mais

Estrutura física da matéria Espectro atômico de sistemas com dois elétrons: He, Hg

Estrutura física da matéria Espectro atômico de sistemas com dois elétrons: He, Hg O que você pode aprender sobre este assunto... Parahélio Ortohélio Energia de conversão Spin Momento angular Interação de momento angular spin-órbita Estados singleto e tripleto Multiplicidade Série de

Leia mais

Interações Atômicas e Moleculares

Interações Atômicas e Moleculares Interações Atômicas e Moleculares 6. O Princípio Variacional Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/iam.html Na aula anterior, tratando de moléculas

Leia mais

n Camadas K L M N...

n Camadas K L M N... Notação Espectroscópica para Configurações Eletrônicas em Átomos. Modelo de Partícula Independente. Podemos obter uma quantidade expressiva importante de informações sobre estados atômicos de sistemas

Leia mais

3-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 2

3-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 2 TE069-Física de Semicondutores 3-FUNDAMENTOS DA MECÂNICA QUÂNTICA - PARTE 2 PROF. CÉSAR AUGUSTO DARTORA - UFPR E-MAIL: CADARTORA@ELETRICA.UFPR.BR CURITIBA-PR Roteiro do Capítulo: Poço de potencial duplo:

Leia mais

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y )

FNC376N: Lista de março de ψ r ψ = Eψ. sin θ Y ) FNC376N: ista 3 31 de março de 5 Tipler - Capítulo 7 7-7 Considere a função de onda ψ = A r a e r/a cos θ, onde A é uma constante e a = /µkze é o raio de Bohr dividido por Z a) Mostre que éla é uma solução

Leia mais

5.1: Aplicação da Equação de Schrödinger ao átomo de Hidrogênio

5.1: Aplicação da Equação de Schrödinger ao átomo de Hidrogênio http://www.if.ufrgs.br/~marcia/textos.html UNIDADE Aula 5 Átomo de Hidrogênio * * Tradução e adaptação livre das aulas do Professor Rick Trebino em: www.physics.gatech.edu/frog 5.1 Aplicação da Equação

Leia mais

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA

NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA NOTAS DE AULAS DE ESTRUTURA DA MATÉRIA Prof. Carlos R. A. Lima CAPÍTULO 11 MOLÉCULAS Primeira Edição junho de 2005 CAPÍTULO 11 MOLÉCULAS ÍNDICE 11-1- Introdução 11.2- Ligação por Tunelamento e a Molécula

Leia mais

Seminário. Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES

Seminário. Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES Seminário Teoria de Ligação de Valência - TLV UMA ABORDAGEM MECÂNICO QUÂNTICA DAS LIGAÇÕES COVALENTES Autor: Marcelo Alves de Souza Mestrando UFABC 2015 Disciplina Química Integrada 1 O modelo de repulsão

Leia mais

FORÇA DE VAN DER WAALS

FORÇA DE VAN DER WAALS 1 FOÇ DE VN DE WLS Priscila França Guidini N USP: 7563860 Tereza Mendes Mêcanica Quântica 1. Introdução o aproximar-se dois átomos surgem forças de interação entre eles. Porém a força exercida entre dois

Leia mais

Física IV Escola Politécnica GABARITO DA P3 27 de novembro de 2012

Física IV Escola Politécnica GABARITO DA P3 27 de novembro de 2012 Física IV - 4320402 Escola Politécnica - 2012 GABARITO DA P3 27 de novembro de 2012 Questão 1 Considere uma partícula de massa m e energia E num potencial unidimensional que é nulo na região 0 < x < d

Leia mais

Física Moderna II - FNC376

Física Moderna II - FNC376 Universidade de São Paulo Instituto de Física Física Moderna II - FNC376 Profa. Márcia de Almeida Rizzutto 1o. Semestre de 2008 1 MQ átomos > < Moléculas moléculas e sólidos núcleos e partículas Moléculas

Leia mais

Moléculas. Usamos a aproximação de Born- Oppenheimer, que considera os núcleos fixos, apenas o e - se movimenta.

Moléculas. Usamos a aproximação de Born- Oppenheimer, que considera os núcleos fixos, apenas o e - se movimenta. Moléculas Moléculas é uma coleção de 2 ou mais núcleos e seus elétrons associados, com todas as ligações complexas unidas pelas forças Os tipos mais importantes de ligação molecular são: covalente, iônica

Leia mais

Física Moderna II Aula 08. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal

Física Moderna II Aula 08. Marcelo G Munhoz Edifício HEPIC, sala 202, ramal Física Moderna II Aula 08 Marcelo G Munhoz Edifício HEPIC, sala 202, ramal 916940 munhoz@if.usp.br 1 Física Moderna II Particle Physics Education CD-ROM 1999 CERN Sólidos Átomos de 1 e - Núcleo Atômico

Leia mais

Estrutura da Matéria Profª Fanny Nascimento Costa

Estrutura da Matéria Profª Fanny Nascimento Costa Estrutura da Matéria Profª Fanny Nascimento Costa (fanny.costa@ufabc.edu.br) Aula 08 Átomos multieletrônicos; Spin; Princípio da exclusão de Pauli; Periodicidade Onde está o elétron? https://www.youtube.com/watch?v=8rohpz0a70i

Leia mais

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros

Operadores e Função de Onda para Muitos Elétrons. Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Operadores e Função de Onda para Muitos Elétrons Introdução à Física Atômica e Molecular UEG Prof. Renato Medeiros Aproximação de Hartree-Fock A maior preocupação da química quântica é encontrar e descrever

Leia mais

A Equação de Onda de Schröedinger. O Princípio da Incerteza de Heisenberg. λ =

A Equação de Onda de Schröedinger. O Princípio da Incerteza de Heisenberg. λ = O Modelo Mecânico-Quântico Louis de Broglie apresentou a idéia de que, se as ondas luminosas exibiam características de partícula, então talvez as partículas de matéria pudessem mostrar propriedades ondulatórias.

Leia mais

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785

FF-296: Teoria do Funcional da Densidade I. Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 FF-296: Teoria do Funcional da Densidade I Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Tema de hoje: Hartree-Fock e Thomas-Fermi Hartree-Fock Caso de N

Leia mais

AULA 01 TEORIA ATÔMICA COMPLETA

AULA 01 TEORIA ATÔMICA COMPLETA AULA 01 TEORIA ATÔMICA COMPLETA - ESTRUTURA ATÔMICA; - MODELOS ATÔMICOS; - ESPECTROSCOPIA ATÔMICA; - PROPRIEDADES ONDULATÓRIAS DOS ELÉTRONS; - NÚMEROS QUÂNTICOS E DISTRIBUIÇÃO ELETRÔNICA. Estrutura Eletrônica

Leia mais

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change

Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change Físico-Química 01 Apresentações com base no material disponível no livro: Atkins, P.; de Paula, J.; Friedman, R. Physical Chemistry Quanta, Matter, and Change, 2nd Ed., Oxford, 2014 Prof. Dr. Anselmo E

Leia mais

Spin e Princípio de exclusão de Pauli

Spin e Princípio de exclusão de Pauli 10 AULA Spin e Princípio de exclusão de Pauli Spin e Princípio de exclusão de Pauli METAS: Introduzir o spin. Introduzir o formalismo utilizado na descrição de spin 1/2. Introduzir o Princípio de exclusão.

Leia mais

ESTRUTURA ELETRÔNICA DOS ÁTOMOS

ESTRUTURA ELETRÔNICA DOS ÁTOMOS ESTRUTURA ELETRÔNICA DOS ÁTOMOS 2 Natureza ondulatória da luz 3 Natureza ondulatória da luz 4 Natureza ondulatória da luz 5 Natureza ondulatória da luz 6 Energia quantizada e fótons Planck quantum h é

Leia mais

FISC TÓPICOS ESPECIAIS DE FÍSICA TEÓRICA (Introdução à Teoria Quântica do Espalhamento)

FISC TÓPICOS ESPECIAIS DE FÍSICA TEÓRICA (Introdução à Teoria Quântica do Espalhamento) FISC-7048 - TÓPICOS ESPECIAIS DE FÍSICA TEÓRICA (Introdução à Teoria Quântica do Espalhamento) Márcio H. F. Bettega Departamento de Física Universidade Federal do Paraná bettega@fisica.ufpr.br Ementa:

Leia mais

Física Moderna 2. Aula 9. Moléculas. Tipos de ligações. Íon H2 + Iônica Covalente Outras: ponte de hidrogênio van der Waals

Física Moderna 2. Aula 9. Moléculas. Tipos de ligações. Íon H2 + Iônica Covalente Outras: ponte de hidrogênio van der Waals Física Moderna 2 Aula 9 Moléculas Tipos de ligações Iônica Covalente Outras: Íon H2 + ponte de hidrogênio van der Waals 1 Moléculas Uma molécula é um arranjo estável de dois ou mais átomos. Por estável

Leia mais

7. A teoria quântica do átomo de Hidrogênio

7. A teoria quântica do átomo de Hidrogênio 7. A teoria quântica do átomo de Hidrogênio Sumário A equação de Schrödinger para o átomo de hidrogênio Autovalores de energia Números quânticos Momento de dipolo magnético Autofunções de energia Orbitais

Leia mais

Ligações Químicas - I

Ligações Químicas - I Ligações Químicas - I Orbitais atômicos e números quânticos A tabela periódica; propriedades Ligações químicas A ligação iônica Ligação covalente Orbitais moleculares (LCAO) Hibridização Geometrias moleculares

Leia mais

Tabela Periódica dos elementos

Tabela Periódica dos elementos Tabela Periódica dos elementos 8 8 Alcalinos, um elétron livre na camada (pode ser facilmente removido), bons condutores Todos possuem subcamada fechada 18 18 3 1 ATENÇÃO 0 Ca (Z=0 A=40) tem camadas completas,

Leia mais

Exame Unificado das Pós-graduações em Física EUF

Exame Unificado das Pós-graduações em Física EUF Exame Unificado das Pós-graduações em Física EUF º Semestre/01 Parte 1 4/04/01 Instruções: NÃO ESCREVA O SEU NOME NA PROVA. Ela deverá ser identificada apenas através do código (EUFxxx). Esta prova constitui

Leia mais

Física Molecular Estrutura das Ligações Químicas

Física Molecular Estrutura das Ligações Químicas Física Molecular Estrutura das Ligações Químicas 100 É razoável focalizar o estudo de moléculas nas interações entre elétrons e núcleos já reagrupados em caroço atômico (núcleo + camadas fechadas internas),

Leia mais

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por:

Rotor quântico. Quanticamente o rotor é descrito por uma função de onda, tal que: l A função de onda do estado estacionário é dada por: Rotor quântico Vamos tratar o caso da rotação de um corpo rígido, que corresponde a 2 massas pontuais, ligadas por uma barra rígida e sem massa. Consideremos rotação livre em torno de um eixo perpendicular

Leia mais

Física IV Escola Politécnica P3 7 de dezembro de 2017

Física IV Escola Politécnica P3 7 de dezembro de 2017 Física IV - 4323204 Escola Politécnica - 2017 P3 7 de dezembro de 2017 Questão 1 Uma partícula de massa m que se move em uma dimensão possui energia potencial que varia com a posição como mostra a figura.

Leia mais

Schrödinger propôs uma equação que contém os termos onda e partícula. A resolução da equação leva às funções de onda. Af função de onda fornece o

Schrödinger propôs uma equação que contém os termos onda e partícula. A resolução da equação leva às funções de onda. Af função de onda fornece o Aula 3 Estrutura Atômica cont Tabela Periódica Mecânica quântica e orbitais atômicos Schrödinger propôs uma equação que contém os termos onda e partícula. A resolução da equação leva às funções de onda.

Leia mais

Interações Atômicas e Moleculares

Interações Atômicas e Moleculares Interações Atômicas e Moleculares 5. Moléculas: Teoria do Orbital Molecular Prof. Pieter Westera pieter.westera@ufabc.edu.br http://professor.ufabc.edu.br/~pieter.westera/iam.html Teoria do Orbital Molecular

Leia mais

Aula 3 ORBITAIS ATÔMICOS E DISTRIBUIÇÃO ELETRÔNICA. Eliana Midori Sussuchi Danilo Oliveira Santos

Aula 3 ORBITAIS ATÔMICOS E DISTRIBUIÇÃO ELETRÔNICA. Eliana Midori Sussuchi Danilo Oliveira Santos Aula 3 ORBITAIS ATÔMICOS E DISTRIBUIÇÃO ELETRÔNICA META Aplicar os conceitos de mecânica quântica aos orbitais atômicos; Descrever a distribuição dos elétrons nos átomos. OBJETIVOS Ao final desta aula,

Leia mais

CÁLCULO DA ESTRUTURA ELETRÔNICA DO ÓXIDO DE GRAFENO

CÁLCULO DA ESTRUTURA ELETRÔNICA DO ÓXIDO DE GRAFENO CÁLCULO DA ESTRUTURA ELETRÔNICA DO ÓXIDO DE GRAFENO Nome do Aluno 1 ; Nome do Orientador 2 ; Nome do Co-orientador 3 (apenas quando estiver oficialmente cadastrado como co-orientador junto ao PIBIC/PIVIC)

Leia mais

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis

Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/2 e de Dois Níveis Aplicações dos Postulados da Mecânica Quântica Para Simples Casos: Sistema de Spin 1/ e de Dois Níveis Bruno Felipe Venancio 8 de abril de 014 1 Partícula de Spin 1/: Quantização do Momento Angular 1.1

Leia mais

Revisão de conceitos de mecânica quântica

Revisão de conceitos de mecânica quântica Revisão de conceitos de mecânica quântica Quantização de energia A Radiação de corpo negro Estudos de Planck (1900) sobre a radiação de corpo negro, levaram a ideia de que a energia é dependente da frequência

Leia mais

Breve Revisão de Mecânica

Breve Revisão de Mecânica Capítulo 1 Breve Revisão de Mecânica Quântica Seguimos as secções 5.1 a 5.3 do Griffiths [1] e a secção 1.1 do meu texto de Introdução à Teoria de Campo []. É assumido como pré-requisito o conhecimento

Leia mais

A Teoria de Bohr foi aceite com entusiasmo, porque pela primeira vez se conseguiu: Interpretar qualitativamente os espectros atómicos em geral;

A Teoria de Bohr foi aceite com entusiasmo, porque pela primeira vez se conseguiu: Interpretar qualitativamente os espectros atómicos em geral; Sumário Das Estrelas ao átomo Unidade temática 1 Como se carateriza o modelo O modelo quântico: Números quânticos. Energia das orbitais. Princípios e regras para a distribuição dos eletrões pelas orbitais.

Leia mais

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) =

SEGUNDA PROVA - F789. angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = SEGUNDA PROVA - F789 NOME: RA:. Considere uma partícula de spin. Seja S seu spin e L seu momento angular orbital. O estado da partícula, Ψ, tem componentes Ψ ± (r) = r, ± Ψ na base r, ± de autoestados

Leia mais

Universidade Federal do Tocantins

Universidade Federal do Tocantins Universidade Federal do Tocantins Modelos atômicos e configurações eletrônicas dos átomos enicolau@uft.edu.br Blog: profedenilsonniculau.wordpress.com Prof. Dr. Edenilson dos Santos Niculau 2 Sumário ESTRUTURA

Leia mais

Fundamentos da Mecânica Quântica

Fundamentos da Mecânica Quântica Fundamentos da Mecânica Quântica Vitor Oguri Departamento de Física Nuclear e Altas Energias (DFNAE) Instituto de Física Armando Dias Tavares (IFADT) Universidade do Estado do Rio de Janeiro (UERJ) Rio

Leia mais

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON

PROPRIEDADES ONDULATÓRIAS DO ELÉTRON MODELO QUÂNTICO PROPRIEDADES ONDULATÓRIAS DO ELÉTRON EINSTEIN: usou o efeito fotoelétrico para demonstrar que a luz, geralmente imaginada como tendo propriedades de onda, pode também ter propriedades de

Leia mais