( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "( ) = σ 2. Capítulo 8 - Testes de hipóteses. 8.1 Introdução"

Transcrição

1 Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para o parâmetro). Muitas situações práticas têm uma natureza diferente, requerendo que em função dos valores observados se tomem decisões acerca dos parâmetros (ou de outros aspectos) da população. Exemplos: 1) Máquina de encher pacotes de açúcar. O peso de cada pacote deve ser 8g (isto é, µ 8). Será que a máquina está a funcionar correctamente? 1 ) O pka tabelado para o ácido ortohidroxibenzóico é.81 (µ y.81). Será que o valor calculado experimentalmente está de acordo com o valor tabelado, isto é, a eventual diferença entre os dois será devida apenas a erros acidentais ou existirá também erro sistemático? Definição: Uma hipótese estatística é uma afirmação acerca dos parâmetros de uma ou mais populações (testes paramétricos) ou acerca da distribuição da população (testes de ajustamento). Vamos estudar em primeiro lugar os testes paramétricos. Exemplo 1) (cont.): temos duas hipóteses: a máquina funciona correctamente (µ 8) ou a máquina não funciona correctamente ( µ 8): :µ 8 versus :µ 8 (hipótese nula) (hipótese alternativa) Hipótese simples: é especificado apenas um valor para o parâmetro. Hipótese composta: é especificado mais de um valor para o parâmetro. Vamos considerar sempre como hipótese simples. A hipótese alternativa ( ) é, em geral, uma das três seguintes: :µ 8 hipótese alternativa bilateral :µ > 8 hipótese alternativa unilateral (superior) :µ < 8 hipótese alternativa unilateral (inferior) Nota: os valores especificados nas hipóteses não devem ter nada a ver com valores observados na amostra. 3 Definição: Teste de hipóteses é um procedimento que conduz a uma decisão acerca das hipóteses (com base numa amostra). Exemplo 1) (cont.): X - v.a. que representa o peso de um pacote de açúcar, E X ( ) σ. V X :µ 8 versus :µ 8 Dispomos de uma amostra de 1 observações: ( X 1,, X 1 ) (a.a.) ( ) µ, Faz sentido decidir com base em X, aceitando se X estiver próxima de 8 e rejeitando se X estiver longe de 8. 4

2 região crítica região de aceitação região crítica α P( erro do tipo I) ( ) P Rejeitar é verdadeira "Aceitar" "Aceitar" "Aceitar" Rejeitar Não rejeitar Rejeitar 8 c c X Região crítica: X < 8 c ou X > 8 + c Aos pontos de fronteira chamam-se valores críticos. Tipos de erro: Situação: Decisão: é verdadeira é falsa "Aceitar" não há erro erro do tipo II Rejeitar erro do tipo I não há erro 5 A α chama-se nível de significância. β P( erro do tipo II) ( ) P "Aceitar" é falsa Voltando ao exemplo, vamos admitir que fazíamos c.5 e que σ 1 e n 1. A região crítica é: X < 7.5 ou X > 8.5. Supondo que X ~ N µ,1 ( ) então X ~ N µ, 1 α P( X < 7.5 ou X > 8.5µ 8) 1 Φ Φ Se aumentarmos n, mantendo os valores críticos, α diminui. Quanto a β, não vamos ter um único valor mas uma função, ou seja, para cada µ de podemos calcular um valor β µ ( ). Por exemplo, para µ 9: ( ) ( ) β( 9) P aceitar µ 9 P 7.5 X 8.5µ 9 Φ Φ ( ) ( ) β( 1) P aceitar µ 1 P 7.5 X 8.5µ 1 Φ Φ Se mudarmos a região crítica, com n fixo: Se c diminuir, α aumenta e, para cada µ, β ( µ ) diminui. Se c aumentar, α diminui e, para cada µ, β ( µ ) aumenta. É mais fácil controlar α do que controlar β depende de µ em ). Logo: rejeitar é uma conclusão "forte". (que "aceitar" é uma conclusão "fraca". Em vez de dizer "aceita-se " é preferível dizer "não se rejeita ", ou "não há evidência suficiente para rejeitar ". Por simetria β( 7) β( 9) e β( 6) β( 1) 7 8

3 Definição: Chama-se potência do teste à probabilidade de rejeitar a hipótese nula quando a hipótese alternativa é verdadeira ( 1 β ). No exemplo, a potência do teste quando µ 9 é , ou seja, se a verdadeira média for 9, a diferença em relação a 8 será detectada 94.9% das vezes. Como decidir entre alternativa unilateral ou bilateral? I) :µ 8 versus :µ > 8 Região crítica: X > 8 + c Ponto de vista do fabricante! II) :µ 8 versus :µ < 8 Região crítica: X < 8 c Ponto de vista do consumidor! Quando rejeitar não aceita a encomenda III) :µ 8 versus :µ 8 Região crítica: X < 8 c ou X > 8 + c Compromisso entre os dois! Quando rejeitar pára a produção para afinar a máquina. 9 1 Procedimento Geral dos Testes de hipóteses 1. Pelo contexto do problema identificar o parâmetro de interesse. Especificar a hipótese nula 3. Especificar uma hipótese alternativa apropriada 4. Escolher o nível de significância, α 5. Escolher uma estatística de teste adequada 6. Fixar a região crítica do teste 7. Recolher uma amostra e calcular o valor observado da estatística de teste 8. Decidir sobre a rejeição ou não de 8. Testes de hipóteses para a média, variância conhecida X população tal que: E( X) µ (desconhecido) V( X) σ (conhecido) ( X 1,, X n ) a. a. de dimensão n X ~ N ( µ,σ ) ou X qq com n grande. Teste de :µ µ versus :µ µ Sabemos já que, quando é verdadeira X ~ N µ, σ ou X ~ N µ n, σ a n 11 1

4 É conveniente estandardizar e usar como estatística de teste: Z X µ σ n Quando é verdadeira Z ~ N(,1) A região crítica deve ser bilateral porque é bilateral: Seja z x µ σ n teste. Então o valor observado da estatística de rejeita-se se z < a ou z > a e não se rejeita se a z a Estas regras podem ser expressas em termos de x Z rejeita-se se x < µ a σ n ou x > µ + a σ n α/ 1 α -a a α/ e não se rejeita se µ a σ n x µ + a σ n R.C.: Z < a ou Z > a com a: P( Z > a) α (recordar que α P( Rejeitar é verdadeira)) 13 Exemplo 1) (cont.): X - v.a. que representa o peso de um pacote de açúcar (supõe-se que X ~ N ( µ,1)). A máquina está afinada quando µ 8. Numa amostra de 5 pacotes (recolhida aleatoriamente) observou-se x Quer-se saber se, ao nível de significância de 5%, se pode afirmar que a máquina continua afinada. :µ 8 versus :µ 8 (1.. e 3.) Nível de significância 5% (4.) Alternativas unilaterais 1) Se fosse :µ µ versus :µ > µ estatística de teste: Z X µ σ n R.C.: Z > a onde a : P Z > a ( ) α Estatística de teste: Z X α.5 a 1.96 donde (5.) 1 α α a' Z R.C.: Z < 1.96 ou Z > 1.96 (6.) Com x 8.5 obtém-se z (7.) Como z > 1.96 rejeita-se, ou seja, existe evidência (ao nível de significância considerado) de que a máquina está desafinada. ) Se fosse :µ µ versus :µ < µ estatística de teste: a mesma R.C.: Z < a onde a : P Z > a α -a' 1 α ( ) α Z 15 16

5 Outro método: valor-p Em vez de fixar α, determinar a região crítica e, em seguida, verificar se o valor observado pertence à região crítica, pode olhar-se directamente para o valor observado da estatística de teste e determinar para que nível de significância a decisão muda. Definição: Dado o valor observado da estatística de teste, o valor-p (p-value) é o maior nível de significância que levaria à não rejeição da hipótese nula (ou o menor que levaria à rejeição). No exemplo, z.5, para este valor não é rejeitada se α 1 Φ.5 p.14. [ ( )].14, ou seja, Quanto mais baixo for o valor-p maior é a evidência contra a hipótese nula. Relação entre intervalos de confiança e testes de hipóteses: Parâmetro desconhecido θ. I.C. a 1 ( 1 α)% para θ [ l,u], baseado numa dada amostra e v. a. fulcral, então a mesma amostra leva à rejeição de :θ θ contra :θ θ, ao nível de significância α, se e só se θ [ l,u] ou à não rejeição de se e só se θ [ l,u] Nota: é necessário que a v.a fulcral e a estatística de teste sejam da mesma forma Vamos ver que isto é verdade para o teste que estamos a estudar (teste para a média com variância conhecida): :µ µ versus :µ µ Não se rejeita, ao nível de significância α, se e só se µ a σ n x µ + a σ n x a σ n µ x + a σ n µ I.C. 1 ( 1 α )% ( µ ) No exemplo, n 5, x 8.5, σ 1, I.C. a 95% ( α.5) a 1.96 ( ) 8.18;8.89 I.C. 95% µ [ ], como µ 8 não pertence ao I.C., rejeita-se :µ 8 (contra :µ 8) ao nível α 5%. 19 Nota: o teste que acabámos de estudar é aplicável com σ desconhecida (substituída por S ) desde que a dimensão da amostra seja grande ( n > 3). 8.3 Testes de hipóteses sobre a igualdade de duas médias, variâncias conhecidas X 1, população 1, com E X 1 X, população, com E X ( X 1 e X independentes) ( ) µ 1 e V( X 1 ) σ 1 (conhecida) ( ) µ e V( X ) σ (conhecida) a. a. da população 1 ( X 11,, X 1n1 ) com média X 1 a. a. da população ( X 1,, X n ) com média X (e a a.a. ( X 11,, X 1n1 ) é independente da a.a. ( X 1,, X n ) )

6 Queremos testar µ contra uma das alternativas já sabemos que µ (bilateral) ou > µ (unilateral superior) ou < µ (unilateral inferior) X 1 X ~ N µ 1 µ, σ 1 + σ n 1 Então, quando é verdadeira ( µ 1 µ ) Z X X 1 σ 1 + σ n 1 n n ~ N(,1) Daqui em diante é tudo semelhante ao caso anterior, ou seja, dadas as amostras concretas calcula-se z x 1 x σ 1 n 1 + σ Com µ, rejeita-se para o nível de significância α se z < a ou z > a com a: P( Z > a) α etc. Nota: este teste é válido para variâncias desconhecidas (substituídas por S 1 e S ) desde que n 1 > 3 e n > 3. n Testes de hipóteses para a média de uma população normal, variância desconhecida Se n < 3 só é possível efectuar testes para a média se for possível assumir que X ~ N µ,σ ( ). Nesse caso para testar :µ µ contra uma das alternativas :µ µ (bilateral) ou :µ > µ (unilateral superior) ou :µ < µ (unilateral inferior) usa-se a estatística de teste T X µ S n Quando é verdadeira T ~ t n 1 Então para :µ µ, rejeita-se ao nível de significância α se t x µ s n < a ou t > a com a:p( T n 1 > a) α etc. Nota: Para os testes em que a estatística de teste tem distribuição normal o valor-p é fácil de determinar. Para outras distribuições (t e chiquadrado) esse valor só pode ser obtido usando um programa de computador ou em certas calculadoras. Recorrendo às tabelas o melhor que se consegue é obter um intervalo que contém (de certeza) o valor-p. 3 4

7 Exemplo: Determinação da constante de acidez do ácido orto-hidroxibenzóico. O valor tabelado para pka é.81. Queremos saber se o valor determinado experimentalmente está de acordo com o valor tabelado (devendo-se as eventuais diferenças apenas a erros acidentais) ou se, pelo contrário, o valor obtido não está de acordo com o valor tabelado (podendo então afirmar-se que ocorreu algum erro sistemático). Ou seja, em termos de testes de hipóteses e sendo Y a v.a. que representa um valor de pka determinado experimentalmente, queremos testar :µ Y.81 contra :µ Y.81 Admitindo que Y ~ N ( µ Y,σ Y ) Relatório 1: Como já determinámos no Cap. 7 (pág. ) I.C. 95% ( ) [.8117;.8768] µ Y fazendo uso da analogia descrita, como.81 I.C. 95% ( µ Y ), podemos concluir que, ao nível de significância de 5%, rejeitamos. Relatório : A conclusão é semelhante I.C. 95% ( ) [ 3.877;3.149] µ Y No entanto é visível uma diferença grande entre os dois relatórios que pode ser melhor avaliada calculando o valor-p para cada teste. Para isso precisamos calcular o valor observado da estatística de teste. 5 6 Relatório 1: t y.81 s y Testes de hipóteses sobre a igualdade das médias de duas populações normais, variâncias desconhecidas valor - p.44 (pelas tabelas:.1 < p <.5) Exemplo: Comparação entre os resultados obtidos pelos dois grupos na determinação da constante de acidez do ácido orto-hidroxibenzóico (vamos usar os dados relativos a pka). Teste de µ contra µ Relatório : t valor p Relatório 1 Relatório Ao nível de significância de 5% conclui-se que há erro sistemático nos dois relatórios, usando o valorp conclui-se que há muito maior evidência a favor da existência de erro sistemático no relatório do que no relatório 1. y s y1.468 n 1 4 y s y n 5 7 8

8 Admitimos que (hipóteses de trabalho): A primeira amostra é uma concretização de uma a.a. de uma população Y 1 ~ N µ 1,σ 1 ( ); A segunda amostra é uma concretização de uma a.a. de uma população Y ~ N µ,σ ( ); Y 1 e Y são independentes; σ 1 σ σ (parece razoável porque s y1 e s y são da mesma ordem de grandeza). Estatística de teste: T X 1 X S p 1 n n Valor observado:, sob T ~ t n1 +n t valor p 5 Pelo I.C. 99% ( µ 1 µ ) [.331;.9] s p n 1 + n concluíamos que se rejeitava ao nível α 1%. 9 3 Teste relativo à igualdade das variâncias Output do Excel para este teste: t-test: Two-Sample Assuming Equal Variances Variable 1 Variable Mean Variance Observations 4 5 Pooled Variance.3719 Hyp. Mean Difference df 7 t P(T<t) one-tail 4.63E-8 t Critical one-tail P(T<t) two-tail 9.64E-8 t Critical two-tail (não faz parte do programa) F-Test: Two-Sample for Variances Variable 1 Variable Mean Variance Observations 4 5 df 3 4 F P(F<f) one-tail F Critical one-tail :σ 1 σ Estatística de teste: contra :σ 1 σ F S 1 S sob F ~ F n1 1;n

9 8.6 Testes de hipóteses para a variância de uma população normal X ~ N ( µ,σ ) e ( X 1,, X n ) a.a. Para testar :σ σ usa-se a estatística de teste Q ( n 1)S σ Quando é verdadeira Q ~ χ n 1 contra :σ σ Então, rejeita-se ao nível de significância α se 8.7 Testes de hipóteses para uma proporção ( X 1, ) amostra aleatória de uma população, X n muito grande ou infinita. Seja Y( n) o número de observações desta amostra que pertencem a uma dada categoria de interesse. Seja p a proporção de indivíduos na população que pertencem a essa categoria de interesse. Exemplos: População Categoria q ( n 1)s σ < a ou q > b Peças Eleitores ser defeituosa vota no partido X com a: P( Q < a) α e b: P ( Q > b) α O estimador pontual de p é ˆP Y n Já vimos que se n for grande Z ˆP p p( 1 p) n ~ N(,1) a Logo para testar : p p contra : p p (ou : p < p, ou : p > p ) usa-se a estatística de teste Z ˆP p p ( 1 p ) n, sob Z ~ N(,1) a Para : p p, rejeita-se ao nível α se z ˆp p ( ) n p 1 p < a ou z > a a: P Z > a ( ) α 35 Exemplo: População de eleitores portugueses. Sondagem (aleatória) a 1 eleitores revelou que 683 tencionam votar no partido ABC. Entretanto o presidente do partido tinha afirmado "estou convencido que vamos obter mais de 5% dos votos". Concordamos com esta afirmação? ˆp Podemos testar : p.5 contra : p >.5 Se rejeitarmos a hipótese nula (e isso é uma conclusão "forte") então a afirmação é corroborada pela sondagem z 4.79 valor-p.1.5( 1.5) 1 Como o valor-p é muito baixo rejeita-se para os níveis de significância usuais. 36

10 8.8 Teste do qui-quadrado de ajustamento O objectivo é testar a hipótese de que as observações seguem uma determinada distribuição (discreta ou contínua, com ou sem parâmetros desconhecidos) Exemplo: O lançamento de um dado 1 vezes conduziu à seguinte tabela de frequências observadas ( o i ) x i o i Total 1 37 Será que os resultados obtidos sustentam a hipótese de que o "dado é perfeito"? X - v.a. que representa o número de pontos obtido num lançamento : P( X i) 1, i 1,,6 ou 6 X ~ Unif. Disc. ( 1,,6) : negação de Quando é verdadeira sabemos calcular a probabilidade de cada valor (ou classe, em geral), que designamos por p i, e o valor esperado para o número de observações em cada classe (abreviadamente, frequências esperadas), E i np i onde n é a dimensão da amostra, neste caso n 1 38 Vamos acrescentar essas duas colunas à tabela: x i o i p i E i np i Total Mesmo quando é verdadeira não estamos à espera que as colunas o i e E i coincidam. É então necessário medir o afastamento entre o i e E i e saber até que ponto esse afastamento é razoável para verdadeira (se determinarmos que o afastamento é razoável não rejeitamos, caso contrário rejeitamos ). 39 A variável que é usada para medir o afastamento é ( ) k O X i E i (Estatística de teste) i1 E i Pode mostrar-se que, quando é verdadeira, X ~ χ k β 1 onde k é o nº. de classes (no exemplo, 6) e β é o nº. de parâmetros estimados (no exemplo, ) Deve rejeitar-se se o valor observado de X for muito elevado, ou seja a região crítica do teste é da forma R.C.: X > a onde a: P( X > a) α e α é o nível de significância do teste. 4

11 Tabela incluindo os cálculos para obter o valor observado de X : ( ) o i E i x i o i p i E i np i Total O valor observado de X E i é Se fixarmos α.5, com k β 1 5, obtém-se a Uma vez que < 11.7, não se rejeita ao nível de significância de 5%. Exemplo: Pensa-se que o número de defeitos por circuito, num certo tipo de circuitos, deve seguir uma distribuição de Poisson. De uma amostra (escolhida aleatoriamente) de 6 circuitos obtiveram-se os resultados seguintes: Nº. de def. o i Total 6 X - v.a. que representa o nº. de defeitos num circuito : X ~ Poisson( λ ) contra : X ~ outra dist λ é desconhecido, então λ deve ser estimado (pelo método da máxima verosimilhança) ˆλ x donde ˆp 1 ˆP ( X ) e.75.75! ˆp ˆP ( X 1) e ! ˆp 3 ˆP ( X ) e.75.75! e e e ˆp 4 ˆP ( X 3) 1 ( ˆp 1 + ˆp + ˆp 3 ).41 e 4.46 Deve ter-se e i 5, i, se para algum i e i < 5, deve fazer-se um agrupamento de classes. 43 Obtém-se então a tabela final: Nº. de def. ( o i e i ) o i ˆp i e i nˆp i e i Total k β a α.5 Como.939 < 3.841, não se rejeita ao nível de significância de 5%. 44

12 Observações: 1) Para variáveis contínuas o procedimento é semelhante: As observações devem previamente ser agrupadas em classes (intervalos). Podem usarse as regras para construção de histogramas e, à partida, classes de amplitude constante. p i 's são as probabilidades das classes. ) É necessário n relativamente elevado para fazer este teste (pelo menos 5 observações por classe). 3) Existem outros testes que não requerem tantas observações (teste de Kolmogorov-Smirnov e papel de probabilidade) mas não fazem parte do programa Teste do qui-quadrado de independência em tabelas de contingência O objectivo é testar a hipótese de que duas variáveis (discretas ou contínuas) são independentes. Para isso devemos ter observações relativas à ocorrência simultânea dos valores possíveis das duas variáveis. Essas observações organizam-se numa tabela de frequências a que se chama tabela de contingência. Exemplo: Um estudo sobre a ocorrência de falhas numa certa componente electrónica revelou que podem ser considerados 4 tipos de falhas (A, B, C e D) e duas posições de montagem. Em 134 componentes seleccionadas aleatoriamente obtiveram-se as frequências absolutas registadas na tabela (de contingência) da página seguinte. Será que o tipo de falha é independente da posição de montagem? 46 Falha Montagem A B C D Total Total Designamos por o ij, (onde i se refere à linha e j à coluna) os valores do interior da tabela. Por n i os totais das colunas e por n j os totais das linhas. Tabela genérica (com as mesmas dimensões): i n i 1 o 11 o 1 o 13 o 14 n 1 j A hipótese nula (independência) pode ser escrita como: : P( X i,y j) P( X i)p( Y j) i, j ou : p ij p i p j i, j Seguindo raciocínio semelhante ao usado no teste de ajustamento, precisamos de calcular a tabela de frequências esperadas sob a hipótese nula e compará-la com a de frequências observadas. Para isso é necessário primeiro estimar p i e p j i, j : donde se obtém ˆp i n i n ˆp j n j n, o 1 o o 3 o 4 n n j n 1 n n 3 n 4 n e ij nˆp i ˆp j n n i n n j n n i n j n 47 48

13 No exemplo em consideração obtém-se então a seguinte tabela de frequências esperadas: Falha Montagem A B C D A variável que é usada para medir o afastamento (entre a tabela de frequências observadas e a tabela de frequências esperadas) é ( ) r s O X ij E ij (Estatística de teste) i1 j 1 E ij Pode mostrar-se que, quando é verdadeira, X ~ χ r 1 ( )( s 1) com rnº de linhas e s nº de colunas da tabela. 49 Valor observado da estatística de teste no exemplo: x ( 18.4 ) Decisão: (( r 1) ( s 1) 3) ( ) α 1% a: P χ ( 3 > a).99 a χ 3, α.5% a χ 3, ou seja,.1 < valor p <.5 O resultado não é muito conclusivo, embora vá no sentido da não independência. Para ter um resultado mais convincente seria necessário repetir a experiência, eventualmente com mais observações. 5

Capítulo 8 - Testes de hipóteses 3

Capítulo 8 - Testes de hipóteses 3 Capítulo 8 - Testes de hipóteses Conceição Amado e Ana M. Pires Capítulo 8 - Testes de hipóteses 3 8.1 Noções básicas....................................................... 4 8.2 Testes de hipóteses para

Leia mais

Estimação e Testes de Hipóteses

Estimação e Testes de Hipóteses Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas

Leia mais

Capítulo 8 - Testes de hipóteses. 8.1 Introdução

Capítulo 8 - Testes de hipóteses. 8.1 Introdução Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para

Leia mais

Aula 6. Testes de Hipóteses Paramétricos (I)

Aula 6. Testes de Hipóteses Paramétricos (I) Aula 6. Testes de Hipóteses Paramétricos (I) Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste de Hipóteses Procedimento estatístico que averigua se os dados sustentam

Leia mais

Testes de Hipótese para uma única Amostra - parte I

Testes de Hipótese para uma única Amostra - parte I Testes de Hipótese para uma única Amostra - parte I 26 de Junho de 2014 Objetivos Ao final deste capítulo você deve ser capaz de: Estruturar problemas de engenharia como testes de hipótese. Entender os

Leia mais

Testes de Hipóteses Paramétricos

Testes de Hipóteses Paramétricos Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

Testes de Hipótese para uma única Amostra - parte II

Testes de Hipótese para uma única Amostra - parte II Testes de Hipótese para uma única Amostra - parte II 2012/02 1 Teste para média com variância conhecida 2 3 Objetivos Ao final deste capítulo você deve ser capaz de: Testar hipóteses para média de uma

Leia mais

Teste de Hipótese e Intervalo de Confiança

Teste de Hipótese e Intervalo de Confiança Teste de Hipótese e Intervalo de Confiança Suponha que estamos interessados em investigar o tamanho da ruptura em um músculo do ombro... para determinar o tamanho exato da ruptura, é necessário um exame

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

Aula 7. Testes de Hipóteses Paramétricos (II)

Aula 7. Testes de Hipóteses Paramétricos (II) Aula 7. Testes de Hipóteses Paramétricos (II) Métodos Estadísticos 008 Universidade de Averio Profª Gladys Castillo Jordán IC e TH para comparação de valores médios µ X e µ Y de duas populações Normais.

Leia mais

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA)

DE ESPECIALIZAÇÃO EM ESTATÍSTICA APLICADA) 1. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p

INFERÊNCIA ESTATÍSTICA. ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p INFERÊNCIA ESTATÍSTICA ESTIMAÇÃO PARA A PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (desconhecida) de elementos em uma população, apresentando certa característica de interesse, a partir

Leia mais

Teste de hipóteses para proporção populacional p

Teste de hipóteses para proporção populacional p Teste de hipóteses para proporção populacional p 1 Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses 2 TESTE DE HIPÓTESES Eu acredito

Leia mais

Princípios de Bioestatística Teste de Hipóteses

Princípios de Bioestatística Teste de Hipóteses 1/36 Princípios de Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG Tabela 2/36 3/36 Exemplo A concentração de certa substância

Leia mais

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses.

TESTES DE HIPÓTESES. O procedimento básico de um teste de hipóteses pode ser decomposto em quatro fases: i) Definição das hipóteses. 227 TESTES DE HIPÓTESES Objectivo: Verificar se os dados amostrais (ou estimativas obtidas a partir deles) são ou não compatíveis com determinadas populações (ou com valores previamente fixados dos correspondentes

Leia mais

Inferência Estatística

Inferência Estatística Metodologia de Diagnóstico e Elaboração de Relatório FASHT Inferência Estatística Profa. Cesaltina Pires cpires@uevora.pt Plano da Apresentação Duas distribuições importantes Normal T- Student Estimação

Leia mais

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA

TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA TESTE DO QUI-QUADRADO DE INDEPENDÊNCIA Suponha que numa amostra aleatória de tamanho n de uma dada população são observados dois atributos ou características A e B (qualitativas ou quantitativas), uma

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior

UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior TESTE DE HIPÓTESES 1 Introdução Considere a seguinte situação:

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Teste de Hipóteses. Enrico A. Colosimo/UFMG enricoc/ Depto. Estatística - ICEx - UFMG 1/24

Teste de Hipóteses. Enrico A. Colosimo/UFMG  enricoc/ Depto. Estatística - ICEx - UFMG 1/24 1/24 Introdução à Bioestatística Teste de Hipóteses Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/24 Exemplo A concentração de certa substância no sangue entre

Leia mais

Intervalos de Confiança - Amostras Pequenas

Intervalos de Confiança - Amostras Pequenas Intervalos de Confiança - Amostras Pequenas Teste de Hipóteses para uma Média Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2016

Leia mais

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não.

TESTES DE HIPÓTESES. HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. TESTES DE HIPÓTESES HIPÓTESES: São suposições que fazemos para testar a fixação de decisões, que poderão ser verdadeiras ou não. HIPÓTESES ESTATÍSTICA: Hipótese Nula (H 0 ): a ser validada pelo teste.

Leia mais

7 Teste de Hipóteses

7 Teste de Hipóteses 7 Teste de Hipóteses 7-1 Aspectos Gerais 7-2 Fundamentos do Teste de Hipóteses 7-3 Teste de uma Afirmação sobre a Média: Grandes Amostras 7-4 Teste de uma Afirmação sobre a Média : Pequenas Amostras 7-5

Leia mais

- Testes Qui-quadrado - Aderência e Independência

- Testes Qui-quadrado - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: Segundo Mendel (geneticista

Leia mais

Aula 8. Teste Binomial a uma proporção p

Aula 8. Teste Binomial a uma proporção p Aula 8. Teste Binomial a uma proporção p Métodos Estadísticos 2008 Universidade de Averio Profª Gladys Castillo Jordán Teste Binomial a uma Proporção p Seja p ˆ = X n a proporção de indivíduos com uma

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Métodos Estatísticos Métodos Estatísticos Estatística Descritiva Inferência Estatística Estimação Teste de Hipóteses TESTE

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Lecture 3a Testes de Hipótese

Lecture 3a Testes de Hipótese Métodos Quantitativos em Contabilidade I Programa de Pós-Graduação em Controladoria e Contabilidade Lucas Barros lucasbarros@usp.br Henrique Castro hcastro@usp.br Universidade de São Paulo 1 of 19 Lecture

Leia mais

TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO)

TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO) TESTES DE AJUSTAMENTO (TESTES DA BONDADE DO AJUSTAMENTO) Os testes de ajustamento servem para testar a hipótese de que uma determinada amostra aleatória tenha sido extraída de uma população com distribuição

Leia mais

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48)

Estimação parâmetros e teste de hipóteses. Prof. Dr. Alberto Franke (48) Estimação parâmetros e teste de hipóteses Prof. Dr. Alberto Franke (48) 91471041 Intervalo de confiança para média É um intervalo em que haja probabilidade do verdadeiro valor desconhecido do parâmetro

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV.

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... ANÁLISE DE VARIÂNCIA. Departamento de Matemática ESTV. INTRODUÇÃO Exemplos Para curar uma certa doença existem quatro tratamentos possíveis: A, B, C e D. Pretende-se saber se existem diferenças significativas nos tratamentos no que diz respeito ao tempo necessário

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Soluções da Colectânea de Exercícios

Soluções da Colectânea de Exercícios Soluções da Colectânea de Exercícios (Edição de Fevereiro de 2003) Capítulo 1 1.1 d) x = 3.167; s = 0.886 (dados não agrupados) e) mediana = x = 3.25; q 1 = 2.4 ; q 3 = 3.9 1.2 a) x = 2.866 ; x = 3; moda

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br

mat.ufrgs..ufrgs.br br/~viali/ mat.ufrgs..ufrgs.br Prof. Lorí Viali, Dr. http://www. ://www.mat mat.ufrgs..ufrgs.br br/~viali/ viali@mat mat.ufrgs..ufrgs.br Média Uma amostra Proporção Variância Dependentes Diferença de médias m Duas amostras Independentes

Leia mais

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média

TESTES DE HIPÓTESES. Conceitos, Testes de 1 proporção, Testes de 1 média TESTES DE HIPÓTESES Conceitos, Testes de 1 proporção, Testes de 1 média 1 Testes de Hipóteses População Conjectura (hipótese) sobre o comportamento de variáveis Amostra Decisão sobre a admissibilidade

Leia mais

Testes de Hipóteses. Henrique Dantas Neder

Testes de Hipóteses. Henrique Dantas Neder Testes de Hipóteses Henrique Dantas Neder Vimos no capítulo anterior como construir intervalos de conança para parâmetros da população. Um outro procedimento muito utilizado em inferência é o estabelecimento

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Algumas considerações Slide 2 As secções deste capítulo referem-se

Leia mais

Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar

Prof. a Dr. a Simone Daniela Sartorio de Medeiros. DTAiSeR-Ar Teste de hipótese para a média de populações normais Prof. a Dr. a Simone Daniela Sartorio de Medeiros DTAiSeR-Ar Teste de hipóteses para média de populações normais Objetivo: avaliar afirmações sobre

Leia mais

HEP-5800 BIOESTATÌSTICA

HEP-5800 BIOESTATÌSTICA HEP-58 BIOESTATÌSTICA UNIDADE IV INFERÊNCIA ESTATÍSTICA: TESTES DE HIPÓTESES Nila Nunes da Silva Regina I. T. Bernal I. QUADRO CONCEITUAL São procedimentos estatísticos que consistem em usar dados de amostras

Leia mais

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional

NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional NOÇÕES DE TESTE DE HIPÓTESES (I) Teste de hipóteses para a proporção populacional Estimação Teste de Hipóteses Qual é a probabilidade de "cara no lançamento de uma moeda? A moeda é honesta ou desequilibrada?

Leia mais

7. Testes de Hipóteses

7. Testes de Hipóteses 7. Testes de Hipóteses Suponha que você é o encarregado de regular o engarrafamento automatizado de leite numa determinada agroindústria. Sabe-se que as máquinas foram reguladas para engarrafar em média,

Leia mais

Capítulo 6 Estatística não-paramétrica

Capítulo 6 Estatística não-paramétrica Capítulo 6 Estatística não-paramétrica Slide 1 Teste de ajustamento do Qui-quadrado Testes de independência e de homogeneidade do Qui-quadrado Testes dos sinais e de Wilcoxon Teste de Mann-Whitney Teste

Leia mais

ESTATÍSTICA E BIOESTATÍSTICA

ESTATÍSTICA E BIOESTATÍSTICA INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE ESTATÍSTICA E BIOESTATÍSTICA Cursos: Licenciaturas Bi-etápicas em Enfermagem e em Fisioterapia Época Normal o Ano/3 o Semestre 003/004 Data: 6

Leia mais

Probabilidades e Estatística

Probabilidades e Estatística Departamento de Matemática Probabilidades e Estatística LEAN, LEE, LEGI, LEGM, LEIC-A, LEIC-T, LEMat, LERC, LMAC, MEAer, MEAmbi, MEBiol, MEBiom, MEEC, MEFT, MEMec, MEQ o semestre 011/01 Exame de Época

Leia mais

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou

Testes de Hipóteses. Professor: Josimar Vasconcelos Contato: ou Testes de Hipóteses Professor: Josimar Vasconcelos Contato: josimar@ufpi.edu.br ou josimar@uag.ufrpe.br http://prof-josimar.blogspot.com.br/ Universidade Federal do Piauí UFPI Campus Senador Helvídio Nunes

Leia mais

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO

CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO CE001 - BIOESTATÍSTICA TESTE DO QUI-QUADRADO Ana Paula Araujo Correa Eder Queiroz Newton Trevisan DEFINIÇÃO É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis

Leia mais

Métodos Quantitativos

Métodos Quantitativos Métodos Quantitativos Unidade 3 Estatística inferencial parte I Prof. Me. Diego Fernandes 1 Sumário Seção Slides 3.1 Noções de probabilidade 03 21 3.2 Distribuição dos estimadores 22 41 3.3 e 3.4 - Testes

Leia mais

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência

MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência MÓDULO V: Análise Bidimensional: Correlação, Regressão e Teste Qui-quadrado de Independência Introdução 1 Muito frequentemente fazemos perguntas do tipo se alguma coisa tem relação com outra. Estatisticamente

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Inferência por Teste de Hipótese Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I

Universidade Federal do Pará Instituto de Tecnologia. Estatística Aplicada I 8/8/05 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 8/08/05 06:55 ESTATÍSTICA APLICADA

Leia mais

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126

Teste de hipóteses. Testes de Hipóteses. Valor de p ou P-valor. Lógica dos testes de hipótese. Valor de p 31/08/2016 VPS126 3/8/26 Teste de hipóteses Testes de Hipóteses VPS26 Ferramenta estatística para auxiliar no acúmulo de evidências sobre uma questão Média de glicemia de um grupo de animais é diferente do esperado? Qual

Leia mais

Medidas de Dispersão ou variabilidade

Medidas de Dispersão ou variabilidade Medidas de Dispersão ou variabilidade A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou

Leia mais

Testes de Hipóteses para uma Única Amostra

Testes de Hipóteses para uma Única Amostra Roteiro Testes de Hipóteses para uma Única Amostra 1. Introdução 2. Testes para a Média i. População normal com variância conhecida ii. População normal com variância desconhecida 3. Testes para a Variância

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Núcleo de Estatística e Informática HUUFMA email: alcione.miranda@terra.com.br Inferência Estatística Inferências

Leia mais

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME:

Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: DEPARTAMENTO DE MATEMÁTICA DA UNIVERSIDADE DE COIMBRA Estatística Computacional (Licenciatura em Matemática) Duração: 2h Exame 14/06/10 NOME: Observação: A resolução completa das perguntas inclui a justificação

Leia mais

ISCTE Instituto Superior de Ciências do Trabalho e da Empresa

ISCTE Instituto Superior de Ciências do Trabalho e da Empresa ISCTE Instituto Superior de Ciências do Trabalho e da Empresa Licenciatura em Gestão Exame de 2ª Época de Estatística II Duração: 2h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Estatística e Probabilidade. Aula 11 Cap 06

Estatística e Probabilidade. Aula 11 Cap 06 Aula 11 Cap 06 Intervalos de confiança para variância e desvio padrão Confiando no erro... Intervalos de Confiança para variância e desvio padrão Na produção industrial, é necessário controlar o tamanho

Leia mais

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados.

Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. TESTES NÃO PARAMÉTRICOS Testes não paramétricos são testes de hipóteses que não requerem pressupostos sobre a forma da distribuição subjacente aos dados. Bioestatística, 2007 15 Vantagens dos testes não

Leia mais

Coleta e Modelagem dos Dados de Entrada

Coleta e Modelagem dos Dados de Entrada Slide 1 Módulo 02 Coleta e Modelagem dos Dados de Entrada Prof. Afonso C. Medina Prof. Leonardo Chwif Três Etapas Coleta Tratamento Inferência Coleta dos Dados 1. Escolha adequada da variável de estudo

Leia mais

Inferência Estatística. Teoria da Estimação

Inferência Estatística. Teoria da Estimação Inferência Estatística Teoria da Estimação Os procedimentos básicos de inferência Estimação: usamos o resultado amostral para estimar o valor desconhecido do parâmetro Teste de hipótese: usamos o resultado

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia do Ambiente 2º Semestre 1º Folha Nº 5: Testes Paramétricos Probabilidades e Estatística 1. O director comercial de uma cadeia de lojas pretende comparar duas técnicas

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4

MAE Introdução à Probabilidade e Estatística II Resolução Lista 4 MAE 9 - Introdução à Probabilidade e Estatística II Resolução Lista 4 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 Antes de testar se a produtividade média dos operários do período diurno

Leia mais

TESTES NÃO PARAMÉTRICOS (para mediana/média)

TESTES NÃO PARAMÉTRICOS (para mediana/média) MAE212: Introdução à Probabilidade e à Estatística II - Profas. Beti e Chang (2012) 1 TESTES NÃO PARAMÉTRICOS (para mediana/média) Os métodos de estimação e testes de hipóteses estudados até agora nessa

Leia mais

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística

Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica. MOQ-13 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 16/11/2011 Testes de

Leia mais

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016.

Resolução da Prova de Matemática Financeira e Estatística do ISS Teresina, aplicada em 28/08/2016. de Matemática Financeira e Estatística do ISS Teresina, aplicada em 8/08/016. 11 - (ISS Teresina 016 / FCC) Joana aplicou todo seu capital, durante 6 meses, em bancos ( e Y). No Banco, ela aplicou 37,5%

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

MB-210 Probabilidade e Estatística

MB-210 Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MB-210 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2013 Testes

Leia mais

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência

Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Modelos Lineares Generalizados - Modelos log-lineares para tabelas de contingência Erica Castilho Rodrigues 12 de Agosto Introdução 3 Vimos como usar Poisson para testar independência em uma Tabela 2x2.

Leia mais

Teste de Hipóteses (ou Teste de Significância)

Teste de Hipóteses (ou Teste de Significância) Teste de Hipóteses (ou Teste de Significância) Pedro Paulo Balestrassi www.pedro.unifei.edu.br ppbalestrassi@gmail.com 35-36291161 / 88776958 (cel) 1 São diferenças estatisticamente significantes? A B

Leia mais

- Testes Qui-quadrado. - Aderência e Independência

- Testes Qui-quadrado. - Aderência e Independência - Testes Qui-quadrado - Aderência e Independência 1 1. Testes de Aderência Objetivo: Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados Exemplo 1: 1 Genética Equilíbrio

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Teste Qui-quadrado Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Teste Qui-quadrado É um teste não paramétrico, pois independe dos parâmetros

Leia mais

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011.

INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011. INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Estatística II - Licenciatura em Gestão Época de Recurso - Parte prática (14 valores) 24/01/2011 Nome: Nº Espaço reservado para a classificação (não escrever aqui)

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

AULA 07 Inferência a Partir de Duas Amostras

AULA 07 Inferência a Partir de Duas Amostras 1 AULA 07 Inferência a Partir de Duas Amostras Ernesto F. L. Amaral 10 de setembro de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola,

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013

Análise da Regressão múltipla: Inferência. Aula 4 6 de maio de 2013 Análise da Regressão múltipla: Inferência Revisão da graduação Aula 4 6 de maio de 2013 Hipóteses do modelo linear clássico (MLC) Sabemos que, dadas as hipóteses de Gauss- Markov, MQO é BLUE. Para realizarmos

Leia mais

Carlos Antonio Filho

Carlos Antonio Filho Estatística II - Seção 04 Carlos Antonio Filho ESAGS 2 o semestre de 2017 Carlos Antonio Filho (ESAGS) Estatística II - Seção 04 2 o semestre de 2017 1 / 137 Comparação de médias de duas populações Vamos

Leia mais

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p

Inferência Estatística Básica. Teste de Hipóteses para uma média populacional Cálculo do Valor p Inferência Estatística Básica Teste de Hipóteses para uma média populacional Cálculo do Valor p Exemplo 1 Um restaurante compra frangos abatidos inteiros com peso médio de 3 Kg há vários anos de um mesmo

Leia mais

Lista de Exercícios 2 - Estatística II

Lista de Exercícios 2 - Estatística II Lista de Exercícios 2 - Estatística II Parte 1 - Teoria Básica de Testes de Hipóteses: Exercício 1. (2007/1 - P2 - ex.15) Um equipamento médico não está funcionando adequadamente; entretanto, no procedimento

Leia mais

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml.

Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. Exemplo 1: Sabemos que a média do nível sérico de colesterol para a população de homens de 20 a 74 anos é 211 mg/100ml. O nível médio de colesterol da subpopulação de homens que são fumantes hipertensos

Leia mais

Hipóteses. Hipótese. É uma pressuposição de um determinado problema.

Hipóteses. Hipótese. É uma pressuposição de um determinado problema. Bioestatística Aula 7 Teoria dos Teste de Hitóteses Prof. Tiago A. E. Ferreira 1 Hipóteses Hipótese É uma pressuposição de um determinado problema. Uma vez formulada, a hipótese estará sujeita a uma comprovação

Leia mais

Testes de Aderência, Homogeneidade e Independência

Testes de Aderência, Homogeneidade e Independência Testes de Aderência, Homogeneidade e Independência Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é um teste de hipótese? Queremos saber se a evidência que temos em mãos significa

Leia mais

1.1. Definições importantes

1.1. Definições importantes Parte I. Inferência Estatística Trata-se do processo de se obter informações sobre uma população a partir dos resultados observados numa amostra. De um modo geral, tem-se uma população com um grande número

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

EXAME DE ESTATÍSTICA / ESTATÍSTICA I

EXAME DE ESTATÍSTICA / ESTATÍSTICA I INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE SAÚDE EAME DE ESTATÍSTICA / ESTATÍSTICA I Cursos: Licenciatura em Enfermagem e Licenciaturas Bi-etápicas em Fisioterapia e em Terapia da Fala Época de

Leia mais

Testes de Hipóteses sobre a média: Várias Amostras

Testes de Hipóteses sobre a média: Várias Amostras Testes de Hipóteses sobre a média: Várias Amostras Na aula de hoje veremos como comparar mais de duas populações, baseados em dados fornecidos por amostras dessas populações. A Análise de Variância (ANOVA)

Leia mais

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20%

a) 19% b) 20% c) Aproximadamente 13% d) 14% e) Qualquer número menor que 20% 0. Sabe-se que o nível de significância é a probabilidade de cometermos um determinado tipo de erro quando da realização de um teste de hipóteses. Então: a) A escolha ideal seria um nível de significância

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental Revisão Virgílio A. F. Almeida Maio de 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais FOCO do curso Revisão

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR. Verde Castanho Vermelho Azul Branco Total

UNIVERSIDADE DA BEIRA INTERIOR. Verde Castanho Vermelho Azul Branco Total UNIVERSIDADE DA BEIRA INTERIOR Probabilidades e Estatística 2008/2009 GESTÃO E ECONOMIA FICHA DE TRABALHO 6: Teste de Ajustamento. 1. Uma máquina de lavar a roupa é vendida em cinco cores: verde, castanho,

Leia mais

José Aparecido da Silva Gama¹. ¹Professor do Instituto Federal de Educação, Ciência e Tecnologia de Alagoas.

José Aparecido da Silva Gama¹. ¹Professor do Instituto Federal de Educação, Ciência e Tecnologia de Alagoas. Estudo e Aplicação dos Testes de Hipóteses Paramétricos e Não Paramétricos em Amostras da Estação Fluviométrica Três Maria (MG) da bacia Hidrográfica do Rio São Francisco José Aparecido da Silva Gama¹

Leia mais

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba.

Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. Estudo das hipóteses não paramétricas χ² de Pearson aplicado ao número de acidentes envolvendo motos na cidade de Campina Grande Paraíba. 1 Introdução Erivaldo de Araújo Silva Edwirde Luiz Silva Os testes

Leia mais

ISCTE- IUL Instituto Universitário de Lisboa

ISCTE- IUL Instituto Universitário de Lisboa ISCTE- IUL Instituto Universitário de Lisboa Licenciatura em Gestão Exame de ª Época de Estatística II de Junho de 0 Duração: h +30m Nota: Não são prestados esclarecimentos durante a prova! Só é permitida

Leia mais