ACOMPANHAMENTO TESTE 6. Fonte: Carlos Barbieri. Fonte: Carlos Barbieri

Tamanho: px
Começar a partir da página:

Download "ACOMPANHAMENTO TESTE 6. Fonte: Carlos Barbieri. Fonte: Carlos Barbieri"

Transcrição

1 PÓS-GRADUAÇÃO LATO SENSU Curso: Banco de Dados Disciplina: Data Warehouse e Business Intelligence Professor: Fernando Zaidan Unidade Cubos 2012 ACOMPANHAMENTO IMPLEMENTAÇÃO TESTE 6 CONSTRUÇÃO ETC CONTACTO ÁREAS DE NEGÓCIOS PROJETO DW/DM 5 DEFINIÇÃO DO ETC- EXTRAÇAÕ-TRANSFORMAÇÃO-CARGA 1 4 PLANEJAMENTO/ LEVANTAMENTO DIFICULDADES DE INFORMAÇÃO GERENCIAL->OBJETIVO INDICADORES ESTRATÉGICOS-MÉTRICAS INICIAIS RESTRIÇÕES DE INFORMAÇÕES-ESTRUTURA-TECNOLOGIA INFORMAÇÕES JÁ EXISTENTES NO DW-METADADOS REUNIÕES JAD-PARTICIPAÇÃO INTENSA USUÁRIOS DEFINIÇÃO DE PATROCINADOR DEFINIÇÃO DE EQUIPE DE PROJETO 2 3 PROJETO-MODELAGEM DIMENSIONAL REUNIÕES DE TRABALHO DETALHAMENTO DE NECESSIDADES DIMENSÕES-FATOS MÉTRICAS-GRANULARIDADE PROJETO FÍSICO DW/DM PROJETO OLAP MINING CUBOS RELATÓRIOS ANALÍTICOS INFERENCIAIS PROJETO DE DW FASES PLANEJAMENTO/LEVANTAMENTO DE NECESSIDADES MODELAGEM DIMENSIONAL PROJETO FÍSICO DW/DM PROJETO DAS APLICAÇÕES OLAP/MINING ETC-EXTRAÇÃO-TRANSFORMAÇÃO E CARGA CONSTRUÇÃO TESTE IMPLEMENTAÇÃO ACOMPANHAMENTO PLANEJAMENTO DEFINIR: ESCOPO DO PROJETO ÁREAS DE NEGÓCIO-PRIORIDADES ARQUITETURA DO DW: DW OU DW+DM(EVOLUTIVO) RECURSOS: REDE-BD-GATEWAYS-TOOLS -TREINAMENTO PLANEJAMENTO DE CAPACIDADE P/FUTURO ETAPAS-ATIVIDADES-PRODUTOS LIBERADOS ESTRATÉGIAS: ATUALIZAÇÃO/PERIODICIDADE CRONOGRAMAS PROJETOS DE DW ESTRATÉGIAS DUAS ABORDAGENS DISTINTAS: MONOLÍTICA(TUDO DE UMA VEZ) BILL INMON-PRISM- WAREHOUSE INCREMENTAL-PASSO A PASSO RALPH KIMBALL- S CONVERGÊNCIA(MELHOR DE 2 MUNDOS): S COM PLANO DE INTEGRAÇÃO DEFINIDO PARA O DW PASSO A PASSO COM CUIDADOS DE CONFORMIDADE DE MÉTRICAS, DIMENSÕES COMPARTILHADAS T0 PLANO DE INTEGRAÇAO: MIDDLE--UP ALINHAVO DE DIMENSÕES CONFORMES MÉTRICAS COMPATÍVEIS CLIENTE PROJETO DE DW/D INTEGRAÇÃO EVOLUTIVA ÁSSUNTO-1 CLIENTE WAREHOUSE ÁSSUNTO-2 MARKETING MARKETING ASSUNTO-3 FINANÇAS IMPLEMENTAÇÃO GRADATIVA FINANÇAS T1 T2 T3 CUIDADOS COM GIGANTISMO PRODUTOS E FASES BEM DEFINIDAS ACERTOS GRADATIVOS NO CAMINHO IMPLEMENTAÇÕES COM TEMPO BEM DEFINIDO 1

2 CONCEITOS DW FORMADO GRADATIVAMENTE DE DS DS SÃO PROJETADOS POR ASSUNTO COM CRITÉRIOS DE INTEGRAÇÃO DS SÃO COMPOSTOS DE N CUBOS CADA CUBO É UMA VISÃO DIMENSIONAL DE DADOS FORMADO POR: 1 TABELA FATO E N TABELAS DIMENSÕES-FORMANDO AS INFORMAÇÕES BASE(GRANULAR) N TABELAS AGREGADAS OS CUBOS SÃO IMPLEMENTADOS SEPARADAMENTE OS CUBOS PODEM SER JOINED CRIANDO VIEWS DIMENSIONAIS DADOS BASE AGREGADOS WAREHOUSE /ODS DADOS OPERACIONAIS/ SISTEMAS TRANSACIONAIS CONSOLIDAÇÃO ETC-EXTRAÇÃO-TRANSFORMAÇÃO-CARGA INTEGRAÇAO MIDDLE-UP DISTRIBUIÇÃO WAREHOUSE ÁREA-1 ÁREA-2 ÁREA-3 RECURSOS HUMANOS FINANCEIRA OPERATIONAL STORE ODS FERRAMENTAS QUERY/REPORT EIS-OLAP MINING Visualiazando as Dimensões E i Empresa R j - Região p/e p/e p/r 2002 p/ano p/r p/ano -- 1 Dimensão Dimensões Cubos E Os relatórios provenientes de OLAP possuem estruturas dinâmicas chamadas CUBOS; Podem ter várias dimensões: tempo, região, produto, etc; Ano Estruturas de dados que forma um sub-conjunto de um banco de dados grande; Podem ser manipulados e visualizados por inúmeros ângulos e diferentes níveis de agregação, onde é possível através de suas dimensões (faces) analisar uma determinada situação. p/e, p/r, p/ano -- 3 Dimensões (Cubo de Dados) -- R 12 2

3 Produto Data Warehouse (DW) Data (Dia) DW Relacional = Simulação relacional de um cubo de dados Vendas = (Faturamento, Quantidade) p/dia, p/produto, p/fornecedor Fornecedor -- 3 Dimensões (Cubo de Dados) Implementação dos Cubos Cubo de Dados CUBOS COMO VISÃO DIMENSIONAL PODEM SER MATERIALIZADOS/IMPLEMENTADOS EM: MOLAP- Multidimensional FORMA FÍSICA DE UMA ESTRUTURA DIMENSIONAL. ROLAP: Relacional - FORMA FÍSICA DE TABELAS RELACIONAIS VISTAS COMO ESTRUTURAS DIMENSIONAIS VIEWS COM MENOR PERFORMANCE- DADO BASE-ACESSO DIRETO AO RELACIONAL COMO VIEW AGREGADOS SÃO CRIADOS NO RELACIONAL Pode ter n dimensões Nós, humanos, só podemos enxergar 3 dimensões ao mesmo tempo Operações especiais permitem decompor um cubo de n dimensões em sub-cubos de até 3 dimensões HOLAP- Híbrido - FORMA MISTA ORIGINADA DAS OUTRAS ANTERIORES 16 Navegação em Agregados Hierarquias em Dimensões Roll-up: aumentando o nível de agregação. Por exemplo, Drill-down: diminuindo o nível de agregação. Por exemplo 17 As operações roll-up e drill-down são normalmente realizadas segundo Hierarquias (1:N) de Dimensão, mas não necessariamente Tempo: dia semana quinzena mês trimestre ano Produto: produto sub categoria categoria departamento Fornecedor: fornecedor cidade região EquipeDeVenda: equipe região 18 3

4 Navegação em Agregados Cubos AQUELE PRODUTO P1 VENDEU NAQUELA LOJA L1 NAQUELE DIA D1 A QUANTIDADE QX NO VALOR VY Slice and Dice: seleção e projeção do cubo de dados Slice (fatia): seleção / projeção de valores de uma dimensão. Exemplo: as vendas (faturamento) da região Norte Dice (dados): seleção / projeção de valores de mais de uma dimensão. Exemplo: as vendas (lucro líquido) da região Norte, no ano PRODUTO LOJA (P1,L1,D1)->QX,VY AQUELE SUBCONJUNTO DE PRODUTOS VENDEU NUM SUB CONJUNTO DE LOJAS NUM SUBCONJUNTO DE DIAS, AQUELE SOMATÓRIO DE QX, NO VALOR VY DIA AQUELE PRODUTO P1, VENDEU EM TODOS OS DIAS, EM TODAS AS LOJAS O VALOR(SOMATÓRIO) DE QX E VY Exercícios - Cubos Exercícios - Cubos Localização Betim Ipatinga Uberlândia Vendas Produto Antarctica Bavaria Brahma Kaiser Skol Análise do ano 2007 Produtos All Região All Tempo 2007 Qtd. Vendida 3000 un Faturamento R$ , Modelo Estrela Produtos Venda key_produto key_produto descricao key_tempo key_região Tempo key_tempo ano quartil mes Produtos Cubo Balas Cafés Cereais Sul Sudeste Região Norte qtd_vendida T1 T2 T3 Período T4 Fonte: Rogério Morais Dimensões Fato Faturamento faturamento Região key_regiao descricao Dimensões Bibliografia Bons Estudos! BARBIERI, Carlos. BI - Business Inteligence: Modelagem e tecnologia. Rio de Janeiro, Axcel Books, CAMPOS, M. L. Data Ware Housing. UFRJ, Prof. Zaidan As pessoas podem alterar suas vidas alterando suas atitudes. Willian James COME, Gilberto de. Contribuição ao Estudo da Implementação de Data Warehousing: um caso no setor de telecomunicações São Paulo : FEA/USP, p FANTAUZZI, F. A. C.; ROCHA, Rogério Morais. Diretório de Softwares para Inteligência Competitiva Monografia apresentada ao Departamento de Ciência da informação como requisito para a conclusão do curso de especialização em Gestão Estratégica da Informação da Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, ano de FARIA, João Marcos Bonadio de. Artefatos da Semiótica Organizacional na Elicitação de Requisitos para Soluções de Data Warehouse Trabalho final (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Computação, fevereiro de

5 Bibliografia INMON, William. What is Data Warehouse? UNjobs, acessado em 19 de abril de 2009, disponível em < SILBERSCHATZ, Abraham; KORTH, Henry F.; SUDARSHAN, S. Sistema de banco de dados. Tradução da 5ª Edição. São Paulo: Campus, TERESKO, John. Information Rich, Knowledge Poor? IndustryWeek.com, acessado em 19 de abril de 2009, disponível em < > Obrigado e bom trabalho, Zaidan Aí está o mérito do êxito de meus projetos: sempre fui muito exigente e rigoroso com procedimentos que aparentemente não faziam muito sentido na época. Mais tarde viu-se que esse rigor fez a diferença entre afundar ou não, concluir ou não um projeto. Amyr Klink 5

Faculdade Pitágoras PROJETO DE DW FASES FCS-EM PROJETOS DE DW 08/02/2012. Unidade 2.1. Curso Superior de Tecnologia: Banco de Dados

Faculdade Pitágoras PROJETO DE DW FASES FCS-EM PROJETOS DE DW 08/02/2012. Unidade 2.1. Curso Superior de Tecnologia: Banco de Dados Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados Disciplina: Ferramentaspara Tomada de Decisão 2 DataWarehouse Unidade 2.1 2.1 Conceitos fundamentais e Cubos Prof.: Fernando Hadad Zaidan

Leia mais

Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados

Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados Disciplina: Ferramentaspara Tomadade Decisão Prof.: Fernando Hadad Zaidan Unidade 1.2 1 Conceitos Iniciais Tomada de Decisão, Modelagem

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.3 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.2 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

24/08/2012 PÓS-GRADUAÇÃO LATO SENSU. Curso: Banco de Dados. Desafios da TI e dos SI. Cenários anteriores. Tomada de Decisão

24/08/2012 PÓS-GRADUAÇÃO LATO SENSU. Curso: Banco de Dados. Desafios da TI e dos SI. Cenários anteriores. Tomada de Decisão Desafios da TI e dos SI PÓS-GRADUAÇÃO LATO SENSU Curso: Banco de Dados Ambiente Interativo Ferramentas de Interatividade Disciplina: Data Warehouse e Business Intelligence Professor: Fernando Zaidan Acesso

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.1 2 1 Material usado na montagem dos Slides BARBIERI,

Leia mais

20/05/2009. Parte 1. Referências. Referências. Logística. Logística

20/05/2009. Parte 1. Referências. Referências. Logística. Logística Referências Palestra para Turma de Administração Newton Paiva BALLOU, Ronald H. Gerenciamento da cadeia de suprimentos / logística empresarial. 5. ed. Porto Alegre: Bookman, 2006. BARBIERI, Carlos. BI

Leia mais

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING http://www.uniriotec.br/~tanaka/tin0036 tanaka@uniriotec.br Introdução a Data Warehousing e OLAP Introdução a Data Warehouse e Modelagem Dimensional Visão

Leia mais

Núcleo de Pós Graduação Pitágoras

Núcleo de Pós Graduação Pitágoras Núcleo de Pós Graduação Pitágoras Desafios da TI Ambiente Ferramentas de Interativo Interatividade MBA Gestão em TI T6 Disciplina: Gestão do Conhecimento e de Conteúdos Acesso aos Dados Inteligência nos

Leia mais

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Data Warehouses Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Conceitos Básicos Data Warehouse(DW) Banco de Dados voltado para

Leia mais

Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura

Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Apresentação Os projetos de Data Warehouse e Business Intelligence são dos mais interessantes e complexos de desenvolver

Leia mais

Curso Data warehouse e Business Intelligence

Curso Data warehouse e Business Intelligence Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Apresentação Os projetos de Data Warehouse e Business Intelligence são dos mais interessantes e complexos de desenvolver

Leia mais

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence. Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4

Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4 Sumário Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4 Capítulo 2 - Reputação corporativa e uma nova ordem empresarial 7 Inovação e virtualidade 9 Coopetição 10 Modelos plurais

Leia mais

PLANO DE ENSINO PRÉ-REQUISITOS: ENS

PLANO DE ENSINO PRÉ-REQUISITOS: ENS UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE EDUCAÇÃO SUPERIOR DO ALTO VALE DO ITAJAÍ CEAVI PLANO DE ENSINO DEPARTAMENTO: DSI Departamento de Sistema de Informação DISCIPLINA: Data Warehouse

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS

Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS Sumário Conceitos/Autores chave... 3 1. Introdução... 5 2. OLAP... 6 3. Operações em OLAP... 8 4. Arquiteturas em OLAP...

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Revisão em Data Warehouses Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt 1 DATA WAREHOUSES UMA VISÃO GERAL

Leia mais

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Carlos Alberto Ferreira Bispo (AFA) cafbispo@siteplanet.com.br Daniela Gibertoni (FATECTQ) daniela@fatectq.com.br

Leia mais

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com DATA WAREHOUSES UMA INTRODUÇÃO Prof. Ronaldo R. Goldschmidt ronaldo.rgold@gmail.com 1 DATA WAREHOUSES UMA INTRODUÇÃO Considerações Iniciais Conceitos Básicos Modelagem Multidimensional Projeto de Data

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Módulo 5. Implementando Cubos OLAP

Módulo 5. Implementando Cubos OLAP Módulo 5. Implementando Cubos OLAP Objetivos Compreender a importância da manipulação correta da segurança nos dados. Conhecer as operações que podem ser realizadas na consulta de um cubo. Entender o uso

Leia mais

Uma Ferramenta Web para BI focada no Gestor de Informação

Uma Ferramenta Web para BI focada no Gestor de Informação Uma Ferramenta Web para BI focada no Gestor de Informação Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot

Leia mais

Chapter 3. Análise de Negócios e Visualização de Dados

Chapter 3. Análise de Negócios e Visualização de Dados Chapter 3 Análise de Negócios e Visualização de Dados Objetivos de Aprendizado Descrever a análise de negócios (BA) e sua importância par as organizações Listar e descrever brevemente os principais métodos

Leia mais

IMPLANTAÇÃO DO DW NA ANVISA

IMPLANTAÇÃO DO DW NA ANVISA IMPLANTAÇÃO DO DW NA ANVISA Bruno Nascimento de Ávila 1 Rodrigo Vitorino Moravia 2 Maria Renata Furtado 3 Viviane Rodrigues Silva 4 RESUMO A tecnologia de Business Intelligenge (BI) ou Inteligência de

Leia mais

Conhecendo o Business Intelligence (BI)

Conhecendo o Business Intelligence (BI) (BI) Uma Ferramenta de Auxílio à Tomada de Decisão Ricardo Adriano Antonelli Resumo: A necessidade por informações úteis para auxílio à tomada de decisão perante as organizações tem aumentado exponencialmente

Leia mais

Banco de Dados - Senado

Banco de Dados - Senado Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs

Leia mais

DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP.

DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP. DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP. Eduardo Cristovo de Freitas Aguiar (PIBIC/CNPq), André Luís Andrade

Leia mais

Uma análise de ferramentas de modelagem e gerência de metadados aplicadas ao projeto de BI/DW-UFBA

Uma análise de ferramentas de modelagem e gerência de metadados aplicadas ao projeto de BI/DW-UFBA Universidade Federal da Bahia Instituto de Matemática Departamento de Ciência da Computação MATA67 Projeto Final II Uma análise de ferramentas de modelagem e gerência de metadados aplicadas ao projeto

Leia mais

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

BUSINESS INTELLIGENCE -Inteligência nos Negócios-

BUSINESS INTELLIGENCE -Inteligência nos Negócios- UNIVERSIDADE SÃO FRANCISCO CENTRO DE CIÊNCIAS JURÍDICAS, HUMANAS E SOCIAIS BUSINESS INTELLIGENCE -Inteligência nos Negócios- Curso: Administração Hab. Sistemas de Informações Disciplina: Gestão de Tecnologia

Leia mais

Business Intelligence Conceitos, Metodologia de Desenvolvimento e Exemplos de BI

Business Intelligence Conceitos, Metodologia de Desenvolvimento e Exemplos de BI Matriz: Av. Caçapava, 527 CEP 90.460-130 Tecnopuc: Av. Ipiranga, 6681 Prédio 32 Sala 109 CEP 90.619-900 Porto Alegre - RS, Brasil Contate-nos: +55 (51) 3330.7777 contato@dbccompany.com.br www.dbccompany.com.br

Leia mais

Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹

Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹ Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹ ¹Ciência da Computação Universidade Federal de Itajubá (UNIFEI) MG Brasil

Leia mais

Fundamentos da Análise Multidimensional

Fundamentos da Análise Multidimensional Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Fundamentos da Análise Multidimensional Fundamentos da Análise Multidimensional

Leia mais

Prova INSS RJ - 2007 cargo: Fiscal de Rendas

Prova INSS RJ - 2007 cargo: Fiscal de Rendas Prova INSS RJ - 2007 cargo: Fiscal de Rendas Material de Apoio de Informática - Prof(a) Ana Lucia 53. Uma rede de microcomputadores acessa os recursos da Internet e utiliza o endereço IP 138.159.0.0/16,

Leia mais

OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional

OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional João Silva and José Saias m5672@alunos.uevora.pt, jsaias@di.uevora.pt Mestrado em Engenharia Informática, Universidade

Leia mais

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012

PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 PLANO DE ENSINO DO 2º SEMESTRE LETIVO DE 2012 Curso: TECNOLOGIA EM GESTÃO COMERCIAL Habilitação: TECNÓLOGO Disciplina: NEGÓCIOS INTELIGENTES (BUSINESS INTELLIGENCE) Período: M V N 4º semestre do Curso

Leia mais

14/09/2008. Curso Superior de Tecnologia em Bando de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

14/09/2008. Curso Superior de Tecnologia em Bando de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Bando de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Unidade 2.2 1 2 Material usado na montagem dos Slides Bibliografia

Leia mais

Uma aplicação de Data Warehouse para apoiar negócios

Uma aplicação de Data Warehouse para apoiar negócios Uma aplicação de Data Warehouse para apoiar negócios André Vinicius Gouvêa Monteiro Marcos Paulo Oliveira Pinto Rosa Maria E. Moreira da Costa Universidade do Estado do Rio de Janeiro - UERJ IME - Dept

Leia mais

Data Warehouse Granularidade. rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1

Data Warehouse Granularidade. rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1 Data Warehouse Granularidade rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1 Granularidade A granularidade de dados refere-se ao nível de sumarização dos elementos e de detalhe

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

Data Warehouse. Debora Marrach Renata Miwa Tsuruda

Data Warehouse. Debora Marrach Renata Miwa Tsuruda Debora Marrach Renata Miwa Tsuruda Agenda Introdução Contexto corporativo Agenda Introdução Contexto corporativo Introdução O conceito de Data Warehouse surgiu da necessidade de integrar dados corporativos

Leia mais

Pós-Graduação MBA em Inteligência Competitiva com Business Intelligence(BI) Banco de Dados para BI 2011-11

Pós-Graduação MBA em Inteligência Competitiva com Business Intelligence(BI) Banco de Dados para BI 2011-11 Pós-Graduação MBA em Inteligência Competitiva com Business Intelligence(BI) Banco de Dados para BI 2011-11 Apresentação José Roberto Escodeiro Formação Acadêmica Mestre, Eng. de Produção, Ufscar, 2009,

Leia mais

OLAP: Características, Arquitetura e Ferramentas

OLAP: Características, Arquitetura e Ferramentas INSTITUTO VIANNA JÚNIOR FACULDADES INTEGRADAS VIANNA JÚNIOR OLAP: Características, Arquitetura e Ferramentas Erika Maria Teixeira Araújo 1 Mônica de Lourdes Souza Batista 2 Teresinha Moreira de Magalhães

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

Business Intelligence: Desafios e Melhores Práticas

Business Intelligence: Desafios e Melhores Práticas Sucesu RJ - IV Congresso de Inteligência Competitiva Business Intelligence: Desafios e Melhores Práticas Eugenio Pedrosa Petrobras Roteiro Arquitetura de BI Evolução da BI nas Empresas Corporate Performance

Leia mais

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI)

Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Programa do Curso de Pós-Graduação Lato Sensu MBA em Business Intelligence (BI) Apresentação O programa de Pós-graduação Lato Sensu em Business Intelligence Inteligência Competitiva tem por fornecer conhecimento

Leia mais

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009.

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. REFERÊNCIAS o o Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. Competição Analítica - Vencendo Através da Nova Ciência Davenport,

Leia mais

SIMPLIFICANDO O BUSINESS INTELLIGENCE. Andre de Freitas Tasca. Bacharel em Analise de Sistemas pela Unisinos. Diretor da empresa SoftSystem IT

SIMPLIFICANDO O BUSINESS INTELLIGENCE. Andre de Freitas Tasca. Bacharel em Analise de Sistemas pela Unisinos. Diretor da empresa SoftSystem IT SIMPLIFICANDO O BUSINESS INTELLIGENCE Andre de Freitas Tasca Bacharel em Analise de Sistemas pela Unisinos Diretor da empresa SoftSystem IT Porto Alegre, 2013 Resumo Todos os dias são tomadas decisões

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Data Warehouse Processos e Arquitetura

Data Warehouse Processos e Arquitetura Data Warehouse - definições: Coleção de dados orientada a assunto, integrada, não volátil e variável em relação ao tempo, que tem por objetivo dar apoio aos processos de tomada de decisão (Inmon, 1997)

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

perspectivas e abordagens típicas de campos de investigação (Senra & Camargo, 2010).

perspectivas e abordagens típicas de campos de investigação (Senra & Camargo, 2010). 1 Introdução Os avanços na tecnologia da informação, bem como o crescimento da sociedade da informação através do uso da Internet, obrigaram os governos de inúmeros países, em seus mais variados níveis,

Leia mais

Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP

Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP Wílson Luiz Vinci (Faculdades IPEP) wilson@cnptia.embrapa.br Marcelo Gonçalves Narciso (Embrapa Informática

Leia mais

Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar

Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar Newton Shydeo Brandão Miyoshi Joaquim Cezar Felipe Grupo de Informática Biomédica Departamento

Leia mais

Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql

Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql Carlos H. Cardoso 1, Roberto D Nebo 1, Luis A. da Silva 1 1 Curso de Tecnologia em Banco

Leia mais

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO

UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO UNIVERSIDADE FEDERAL DE MINAS GERAIS BACHARELADO EM SISTEMAS DE INFORMAÇÃO Proposta de Formação Complementar: BUSINESS INTELLIGENCE E SUA APLICAÇÃO À GESTÃO Aluno: Yussif Tadeu de Barcelos Solange Teixeira

Leia mais

Estudo Comparativo de Ferramentas de. Business Intelligence. Jander Rodrigues de Queiroz. Uberlândia, Dezembro/2002.

Estudo Comparativo de Ferramentas de. Business Intelligence. Jander Rodrigues de Queiroz. Uberlândia, Dezembro/2002. Estudo Comparativo de Ferramentas de Business Intelligence Jander Rodrigues de Queiroz Uberlândia, Dezembro/2002. Estudo Comparativo de Ferramentas de Business Intelligence Jander Rodrigues de Queiroz

Leia mais

Data Warehousing Visão Geral do Processo

Data Warehousing Visão Geral do Processo Data Warehousing Visão Geral do Processo Organizações continuamente coletam dados, informações e conhecimento em níveis cada vez maiores,, e os armazenam em sistemas informatizados O número de usuários

Leia mais

Microsoft Analysis Service

Microsoft Analysis Service Microsoft Analysis Service Neste capítulo você verá: BI Development Studio Analysis Services e Cubos Microsoft Analysis Services é um conjunto de serviços que são usados para gerenciar os dados que são

Leia mais

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data

Leia mais

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE Fabio Favaretto Professor adjunto - Programa de Pós Graduação em Engenharia de Produção

Leia mais

AGILE ROLAP - UMA METODOLOGIA ÁGIL PARA IMPLEMENTAÇÃO DE AMBIENTES DE NEGÓCIOS BASEADO EM SERVIDORES OLAP.

AGILE ROLAP - UMA METODOLOGIA ÁGIL PARA IMPLEMENTAÇÃO DE AMBIENTES DE NEGÓCIOS BASEADO EM SERVIDORES OLAP. AGILE ROLAP - UMA METODOLOGIA ÁGIL PARA IMPLEMENTAÇÃO DE AMBIENTES DE NEGÓCIOS BASEADO EM SERVIDORES OLAP. Luan de Souza Melo (Fundação Araucária), André Luís Andrade Menolli (Orientador), Ricardo G. Coelho

Leia mais

MBA em Inteligência de Negócio.

MBA em Inteligência de Negócio. MBA em Inteligência de Negócio. APRESENTAÇÃO O MBA em Inteligência de Negócio pretende atender a profissionais que tenham especialização em Tecnologia da Informação e que tenham interesse em se atualizar

Leia mais

BARBIERI, Carlos. BI Modelagem de Dados. Rio de Janeiro: Infobook, 1994.

BARBIERI, Carlos. BI Modelagem de Dados. Rio de Janeiro: Infobook, 1994. Faculdade Pitágoras Unidade 1 Curso Superior de Tecnologia: Banco de Dados Disciplina: Banco de Dados Prof.: Fernando Hadad Zaidan Imagem: BARBIERI, Carlos. Material usado na montagem dos Slides INTRODUÇÃO

Leia mais

DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS

DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS Flávio Augusto Lacerda de Farias Rogério Tronco Vassoler ** Resumo

Leia mais

Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse

Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse Alcione Benacchio (UFPR) E mail: alcione@inf.ufpr.br Maria Salete Marcon Gomes Vaz (UEPG, UFPR) E mail: salete@uepg.br Resumo: O ambiente de

Leia mais

Sistemas de Apoio à Inteligência do Negócio

Sistemas de Apoio à Inteligência do Negócio Sistemas de Apoio à Inteligência do Negócio http://www.uniriotec.br/~tanaka/sain tanaka@uniriotec.br Visão Geral de Business Intelligence Evolução dos Sistemas de Informação (computadorizados) 1950 s:

Leia mais

MODELAGEM GRÁFICA DE DATA WAREHOUSES E DATA MARTS USANDO UML

MODELAGEM GRÁFICA DE DATA WAREHOUSES E DATA MARTS USANDO UML 1 MODELAGEM GRÁFICA DE DATA WAREHOUSES E DATA MARTS USANDO UML JOANA SCHEEREN Porto Alegre 2009 2 JOANA SCHEEREN MODELAGEM GRÁFICA DE DATA WAREHOUSES E DATA MARTS USANDO UML Trabalho de Conclusão de Curso

Leia mais

Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE

Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE Mateus Ferreira Silva, Luís Gustavo Corrêa Lira, Marcelo Fernandes Antunes, Tatiana Escovedo, Rubens N. Melo mateusferreiras@gmail.com, gustavolira@ymail.com,

Leia mais

Gestão de TI. Aula 10 - Prof. Bruno Moreno 30/06/2011

Gestão de TI. Aula 10 - Prof. Bruno Moreno 30/06/2011 Gestão de TI Aula 10 - Prof. Bruno Moreno 30/06/2011 Aula passada... Gestão do Conhecimento 08:46 2 Aula de Hoje... BI Apresentação do artigo IT doesn t matter Debate 08:48 3 Caso da Toyota Toyota Motor

Leia mais

Sobre o que falaremos nesta aula?

Sobre o que falaremos nesta aula? Business Intelligence - BI Inteligência de Negócios Prof. Ricardo José Pfitscher Elaborado com base no material de: José Luiz Mendes Gerson Volney Lagmman Introdução Sobre o que falaremos nesta aula? Ferramentas

Leia mais

Business Intelligence: um sistema de apoio a decisões gerenciais

Business Intelligence: um sistema de apoio a decisões gerenciais Business Intelligence: um sistema de apoio a decisões gerenciais André Amaral Muszinski, Silvia de Castro Bertagnolli Faculdade de Informática Curso de Bacharelado em Sistemas de Informação Centro Universitário

Leia mais

ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO:

ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO: ATENÇÃO: ESTE ARTIGO NÃO PODERÁ SER UTILIZADO PARA FINS COMERCIAIS. DEVERÁ OBRIGATORIAMENTE SER REFERENCIADO COMO: Fabre, Jorge Leandro; Carvalho, José Oscar Fontanini de. (2004). Uma Taxonomia para Informações

Leia mais

Business Intelligence para Computação TítuloForense. Tiago Schettini Batista

Business Intelligence para Computação TítuloForense. Tiago Schettini Batista Business Intelligence para Computação TítuloForense Tiago Schettini Batista Agenda Empresa; Crescimento de Dados; Business Intelligence; Exemplos (CGU, B2T) A empresa Empresa fundada em 2003 especializada

Leia mais

A aplicação do Business Intelligence no segmento de Saúde Pública Ambulatorial

A aplicação do Business Intelligence no segmento de Saúde Pública Ambulatorial A aplicação do Business Intelligence no segmento de Saúde Pública Ambulatorial Gilberto Capatina Valente 1, Newton Naoki Ahagon 1 1 Atech Tecnologias Críticas, São Paulo, SP Resumo Este artigo descreve

Leia mais

MBA Inteligência Competitiva Com ênfase em BI/CPM. Metadados

MBA Inteligência Competitiva Com ênfase em BI/CPM. Metadados MBA Inteligência Competitiva BI/CPM 1 Data Warehousing PÓS-GRADUAÇÃO MBA Inteligência Competitiva Com ênfase em BI/CPM Metadados Andréa Cristina Montefusco (36927) Hermes Abreu Mattos (36768) Robson Pereira

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

Capítulo 2 Data Warehousing

Capítulo 2 Data Warehousing Capítulo 2 Data Warehousing Objetivos de Aprendizado Compreender as definições e os conceitos básicos dos data warehouses Compreender as arquiteturas de data warehousing Descrever os processos usados no

Leia mais

SISTEMAS DE APOIO À INTELIGÊNCIA DE NEGÓCIOS

SISTEMAS DE APOIO À INTELIGÊNCIA DE NEGÓCIOS SISTEMAS DE APOIO À INTELIGÊNCIA DE NEGÓCIOS http://www.uniriotec.br/~tanaka/sain tanaka@uniriotec.br OLAP e Modelagem Dimensional Conceitos Básicos Material baseado em originais de Maria Luiza Campos

Leia mais

BUSINESS INTELLIGENCE COMO DIFERENCIAL COMPETITIVO NA GESTÃO DE NEGÓCIOS

BUSINESS INTELLIGENCE COMO DIFERENCIAL COMPETITIVO NA GESTÃO DE NEGÓCIOS BUSINESS INTELLIGENCE Gilvani Bruno Kisner Bacharel em Ciências da Computação Pós Graduação em especialização Tecnologia da Informação nas Organizações / Universidade Regional de Blumenau Prof. Dr. Oscar

Leia mais

MANUAL BI- Business Intelligence

MANUAL BI- Business Intelligence 1. VISÃO GERAL 1.1 SISTEMA BI Business Intelligence: Segundo Gartner Group, a maior ameaça das empresas da atualidade é o desconhecimento... O Business Intelligence se empenha em eliminar as dúvidas e

Leia mais

Arquiteturas de DW e Abordagens de Implementação. Arquiteturas e Abordagens de Implementação

Arquiteturas de DW e Abordagens de Implementação. Arquiteturas e Abordagens de Implementação Curso de Dwing TecBD-DI PUC-Rio Prof. Rubens Melo Arquiteturas de DW e Abordagens de Implementação Arquiteturas e Abordagens de Implementação Arquitetura adequada é fundamental Infra-estrutura disponível

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Cenário Atual. ... No coração deste ambiente está a idéia do

Cenário Atual. ... No coração deste ambiente está a idéia do Fundamentos DW Cenário Atual Grande e desordenada coleção de aplicações operacionais, frágeis e muitas vezes não integradas... Dificultando a disponibilização de informações estratégicas para tomada de

Leia mais

UNIVERSIDADE ESTADUAL DE LONDRINA GUSTAVO VIEIRA LOLIS ANÁLISE DE VIABILIDADE DO USO DE BUSINESS INTELLIGENCE EM PEQUENAS EMPRESAS

UNIVERSIDADE ESTADUAL DE LONDRINA GUSTAVO VIEIRA LOLIS ANÁLISE DE VIABILIDADE DO USO DE BUSINESS INTELLIGENCE EM PEQUENAS EMPRESAS UNIVERSIDADE ESTADUAL DE LONDRINA GUSTAVO VIEIRA LOLIS ANÁLISE DE VIABILIDADE DO USO DE BUSINESS INTELLIGENCE EM PEQUENAS EMPRESAS Londrina - Paraná 2007 GUSTAVO VIEIRA LOLIS ANÁLISE DE VIABILIDADE DO

Leia mais

CENTRO UNIVERSITÁRIO FEEVALE EDMILSON J. W. FELBER

CENTRO UNIVERSITÁRIO FEEVALE EDMILSON J. W. FELBER CENTRO UNIVERSITÁRIO FEEVALE EDMILSON J. W. FELBER PROPOSTA DE UMA FERRAMENTA OLAP EM UM DATA MART COMERCIAL: UMA APLICAÇÃO PRÁTICA NA INDÚSTRIA CALÇADISTA Novo Hamburgo, novembro de 2005. EDMILSON J.

Leia mais

BUSINESS INTELLIGENCE BI Aplicado à Gestão das Águas Subterrâneas. Frederico Cláudio Peixinho Flávio Luis de Mello 23 a 26 de Outubro de 2012

BUSINESS INTELLIGENCE BI Aplicado à Gestão das Águas Subterrâneas. Frederico Cláudio Peixinho Flávio Luis de Mello 23 a 26 de Outubro de 2012 XVII Congresso Brasileiro de Águas Subterrâneas Bonito - MT Serviço Geológico do Brasil CPRM BUSINESS INTELLIGENCE BI Aplicado à Gestão das Águas Subterrâneas Frederico Cláudio Peixinho Flávio Luis de

Leia mais

PROCESSO SELETIVO EXTERNO CONTEÚDO PROGRAMÁTICO

PROCESSO SELETIVO EXTERNO CONTEÚDO PROGRAMÁTICO ANEXO II EDITAL N 06/2014, DE 29 DE SETEMBRO DE 2014 PROCESSO SELETIVO EXTERNO CONTEÚDO PROGRAMÁTICO A-01 - ASSESSOR TECNICO IV RECRUTAMENTO, SELEÇÃO, TREINAMENTO E DESENVOLVIMENTO DE PESSOAS Administração

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

Business Intelligence

Business Intelligence e-book Senior Business Intelligence 1 Índice 03 05 08 14 17 20 22 Introdução Agilize a tomada de decisão e saia à frente da concorrência Capítulo 1 O que é Business Intelligence? Capítulo 2 Quatro grandes

Leia mais

Uma peça estratégica para o seu negócio

Uma peça estratégica para o seu negócio Uma peça estratégica para o seu negócio INFORMAÇÃO GERAL DA EMPRESA CASO DE SUCESSO EM IMPLEMENTAÇÃO BI PERGUNTAS E RESPOSTAS Fundada em 1997, Habber Tec é uma empresa especializada na oferta de soluções

Leia mais

Arquitetura física de um Data Warehouse

Arquitetura física de um Data Warehouse É um modo de representar a macroestrutura de, comunicação, processamento e existentes para usuários finais dentro da empresa. Operacionais origem Data / Arquitetura física Serviços Armazenamento de Área

Leia mais

Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional

Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional Margy Ross Presidente Kimball Group Maio de 2009, Intelligent Enterprise.com Tradução livre para a língua portuguesa por

Leia mais