Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse

Tamanho: px
Começar a partir da página:

Download "Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse"

Transcrição

1 Uma Arquitetura de Gestão de Dados em Ambiente Data Warehouse Alcione Benacchio (UFPR) E mail: Maria Salete Marcon Gomes Vaz (UEPG, UFPR) E mail: Resumo: O ambiente de data warehouse envolve uma coleção de tecnologias, objetivando o auxílio à administração dos dados e aos processos de tomada de decisão. Este artigo apresenta uma arquitetura para gestão de dados descentralizados, levando em consideração um ambiente de data warehouse. Com essa arquitetura os problemas de integração de dados, processos de auditoria e descentralização dos dados são minimizados, pois todos os dados são tratados, organizados e otimizados em uma estrutura de data warehouse. Palavr as chave: Gestão de dados, Data Warehouse, OLAP. 1. Intr odução A atividade de armazenamento, pesquisa e recuperação de dados para tomada de decisão envolvem o desenvolvimento, a priori, da extração, tratamento e integração de dados, a fim de facilitar a reutilização, minimizar problemas de inconsistência e simplificar e diminuir o tempo de tomada de decisão. Existem organizações que possuem seus dados descentralizados, organizados e estruturados de formas diferentes, processados por sistemas diferentes, implicando em difícil integração entre os diversos sistemas e dados. Esses dados precisam ser extraídos, tratados e organizados a fim de ajudar na tomada de decisão (SINGH, 2001). Um repositório integra todos os dados dos sistemas utilizados pela organização, facilita a indexação e a recuperação de dados comuns entre sistemas distintos (BERTINO, 2001; DATE, 2003; SILBERCHATZ, 2006). O objetivo deste artigo é apresentar uma arquitetura com os processos de recuperação dos dados manipulados pelos diversos sistemas e o processo de tratamento e armazenamento desses dados numa estrutura em um ambiente de data warehouse. Para tanto este artigo está estruturado como segue. Na Seção 2 são descritas algumas definições inerentes ao ambiente de data warehouse. Na Seção 3 é apresentada a arquitetura para gestão de dados descentralizados, de folha de pagamento, em ambiente data warehouse. E finalmente, a última seção apresenta as considerações finais deste trabalho. 2. Ambiente de Data Warehouse Com o avanço dos negócios, não basta apenas ter a informação em mãos. É necessário processá la e interpretá la de modo correto, para obter um resultado satisfatório ao utilizá la. Muitas empresas possuem vários sistemas espalhados em várias cidades. Cada sistema manipula dados de modos diferentes. Para a união dos bancos de dados desses sistemas foi desenvolvido um Data Warehouse. O Data Warehouse (BARQUIM, 1997; CHAUDHURI, 1997; COREY, 2001) é um banco de dados que possui uma quantidade de dados muito grande que contribui para o sistema de suporte a decisão da empresa. Esse grande banco de dados se baseia nos banco de dados dos vários sistemas da empresa. Ele é responsável por armazenar as informações de maneira a interpretar os dados conforme um determinado padrão.

2 Formalmente, um data warehouse é uma coleção de dados orientada por assuntos, integrada, variante no tempo, e não volátil, que tem por objetivo dar suporte aos processos de tomada de decisão (KIMBALL, 2002). O data warehouse cria uma visualização única de dados que residem em diversos bancos de dados físicos. Mas antes que o data warehouse possa ser acessado, com eficiência, é necessário entender quais dados estão disponíveis e onde estão localizados. Os metadados fornecem um catálogo dos dados do data warehouse e ponteiros para esses dados. A Ferramenta OLAP (COREY, 2001; GONÇALVES, 2003) entra com o papel de proporcionar uma solução ao problema de síntese, análise e consolidação de dados. Com o auxilio da ferramenta OLAP o usuário consegue obter as informações desejadas mais facilmente, dentre os dados armazenados. Desenvolver um data warehouse para uma empresa é um tanto complexo. Deve se analisar a arquitetura adequada e a ferramenta que melhor atende às necessidades e expectativas do projeto. Os dados estão por toda à parte. A maioria das organizações não sofre de falta de dados, mas sim de uma abundância de dados redundantes e inconsistentes, difíceis de administrar com eficiência, cada vez mais difíceis de acessar e difíceis de usar para fins de suporte à decisão. Não existem metodologias formais para a implementação de um data warehouse, então há uma busca por ferramentas que se adaptem melhor as características e às expectativas de cada empresa. Na seção seguinte é apresentada uma arquitetura para a gestão de folha de pagamento, que possui sistemas processando dados oriundos de várias fontes, com ferramentas de processamento distintas e com estruturas de armazenamento distintas. 3. Ar quitetura para Gestão de Folha de Pagamento Descentr alizada Com o objetivo de otimizar o fluxo dos processos, durante a realização de auditorias capazes de detectar irregularidades e verificar legalidade das vantagens remuneratórias existentes em uma folha de pagamento descentralizada, propõem se a utilização de um ambiente de Data Warehouse. Nesse contexto, uma empresa com sistemas de informação não padronizados para execução da folha de pagamento, com sistemas processados por diversos órgãos, não permitindo cruzamento de dados dos diversos sistemas, gerando como conseqüência, atrasos e burocratizações no fluxo dos processos organizacionais. Assim, foi construída uma estrutura com todas as informações dos funcionários e das folhas de pagamento processadas, dos diversos órgãos. Em seguida, um mapeamento de cada informação de cada sistema é processado. No mapeamento estão compreendidas todas as regras de transformação necessárias a cada informação. Por exemplo, o sexo tem valor definido como M, F ou I na estrutura origem e valor 0, 1 ou 2 na estrutura destino. Dessa forma o mapeamento desse atributo deve realizar todas as transformações necessárias nas informações de origem para enquadramento na informação destino. Na Figura 1 é apresentada uma arquitetura para solução do problema, bem como uma descrição das características e ações implícitas em cada fase. A fase de extração é responsável por fazer este mapeamento entre dados de origem e dados do Data Warehouse. Este mapeamento é feito através de metadados que descrevem a contextualização das informações.

3 Figura 1: Fases para Solução do Problema Na solução proposta é definido um extrator para A, B, C e D. Na Estrutura A são os dados de aproximadamente 80% da folha de pagamento, processada por uma empresa de consultoria. Na Estrutura B estão 35 mil funcionários, onde seus dados são processados por seus respectivos órgãos de lotação. Na Estrutura B envolve dados de outros órgãos. Após a análise de cada uma, foi definido um mapeamento das entidades e atributos utilizados na coleta dos dados. Para entidade D foi criada uma interface para o recebimento dos dados obtidos por meios magnéticos. Cada organização que entrega os dados, utilizando esse meio, necessita de um extrator intermediário entre os dados e a entidade D. Isso torna o recebimento flexível quanto ao formato e a variedade de dados que são manipulados, garantindo a integridade dos mapeamentos, regras de transformação e carregamento dos dados. Na fase de transformação são aplicadas regras que determinam padronização e homogeneização dos dados que são armazenados no data warehouse. Essas transformações convertem valores diferentes, mas que possuam o mesmo significado para um valor único que poderá então ser utilizado na mineração dos dados. Por exemplo, em um sistema o atributo sexo é armazenado como 0 para Masculino e 1 para Feminino, enquanto em outro sistema o dado está escrito por extenso Masculino e Feminino. Na fase de Transformação esse será convertido em M e 1 para Masculino e 0 e F para Feminino, atendendo dessa forma o domínio de valores para este atributo. Assim, como na fase de extração, nesta fase os metadados têm

4 um papel importante, sendo responsável pelo armazenamento das regras de transformação e domínio de valores de atributos. Após os dados terem sido coletados e padronizados eles estão prontos para serem carregados no data warehouse. Essa fase é executada pela camada de carregamento, que é responsável por definir como será feita à atualização. Essa pode ser incremental ou completa. Na forma incremental, são os dados como Vendas, Compras e Folha de Pagamento. Já na forma completa, entidades que não possuem controle de atualização. Na seqüência, o Data Warehouse é onde todos os dados que foram extraídos, transformados e carregados estão armazenados. A partir a armazenamento, podem ser executadas rotinas que identificam duplicidade entre registros, determinam quais as pessoas que estão alocadas em organizações distintas e recebendo vencimentos indevidos. Um Data Mart para a folha de pagamento é criado. É o ponto de acesso a um universo de domínio, ou seja, de um determinado assunto. Ele possui um nível de sumarização mais detalhado como, por exemplo, a folha de pagamento do mês, ou as vendas de determinado mês ou ano. Nesse caso, contempla o contexto permitindo simulações necessárias envolvendo os órgãos que fazem parte da folha de pagamento. O Cubo de dados é uma estrutura de dados multidimensional que apresenta a forma como as informações se relacionam. É composto por uma tabela de fatos e por tabelas de dimensões que representam as formas de consulta e visualização dos dados. Neste contexto o cubo é utilizado para cruzar as informações entre as organizações, auxiliando a busca por irregularidades na folha de pagamento. A ferramenta OLAP, processamento analítico em tempo real, compreende uma categoria de programas que proporcionam ao usuário que a utiliza, a capacidade de realizar análises sobre os dados armazenados em um data warehouse. Esta ferramenta torna possível a análise de várias dimensões sobre dados dimensionais. Nesse contexto, a ferramenta cliente OLAP pode ser um navegador Web ou uma aplicação Desktop. Independente do tipo de cliente, o componente essencial do OLAP é o servidor OLAP, o qual situa se entre o cliente e o sistema gerenciador de banco de dados (SGBD). O servidor OLAP compreende como o dado é organizado e possui funções especiais para analisá lo. Uma vez que os Cubos e Data Marts estejam construídos, a ferramenta OLAP pode ser utilizada para construir os mais diversos relatórios. Estes relatórios são extremamente personalizáveis ao ponto de tornar possível a construção de simulações, como aumento de percentuais dos vencimentos dos funcionários, uma vez que estas ferramentas permitem a criação de fórmulas sobre os dados projetados. 4. Considerações Finais As informações descentralizadas trazem diversos problemas às organizações, tal como a impossibilidade de obtenção de dados confiáveis e precisos. A solução proposta neste artigo, teve como objetivo principal solucionar problemas existentes em organizações como despadronização dos dados, burocracia e lentidão nos processos de negócios. Através da implantação de um sistema de apoio a decisão utilizando à tecnologia de data warehouse foi possível demonstrar grandes vantagens que facilitam a tomada de decisão por

5 parte dos gerentes e administradores. A implantação de um ambiente de data warehouse padroniza os dados, otimiza os processos e possibilita a construção de vários tipos de relatórios gerenciais, bem como otimização geral dos processos de negócio. Referências BARQUIM, R. C; EDELSTEIN, H. A. Building, Using, and Managing the Data Warehouse. Pretince Hall, BERTINO, E; CATANIA, B.; ZARRI, G. P. Intelligent Database Systems. Addison Wesley, CHAUDHURI, SURAJIT E DAYALI, UMESHWAR. An Overview of Data Warehousing and OLAP Technology. Proc. of ACM SIGMOD Records, Mar COREY, M.; ABBEY, M; ABRAMSON, I.; TAUB, B. Oracle 8i Data Warehouse. Rio de Janeiro: Campus, DATE, C. J. Introdução a Sistemas de Bancos de Dados. Tradução da 8 a. Edição Americana. Rio de Janeiro: Elsevier, GONÇALVES, M. Extração de Dados para Data Warehouse. Rio de Janeiro: Axcel Books, KIMBALL, ROSS. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second Edition), Wiley, SILBERCHATZ, K.; KORTH, H. F.; SUDARSHAN, S. Sistema de Bancos de Dados. Tradução da 5º edição. Editora Makron Books do Brasil. São Paulo SP, SINGH, H. S. Data Warehouse: Conceitos, Tecnologias, Implementação e Gerenciamento. São Paulo: Makron Books, 2001.

Uma Ferramenta Web para BI focada no Gestor de Informação

Uma Ferramenta Web para BI focada no Gestor de Informação Uma Ferramenta Web para BI focada no Gestor de Informação Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE

CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE CONSIDERAÇÕES SOBRE ATIVIDADES DE IDENTIFICAÇÃO, LOCALIZAÇÃO E TRATAMENTO DE DADOS NA CONSTRUÇÃO DE UM DATA WAREHOUSE Fabio Favaretto Professor adjunto - Programa de Pós Graduação em Engenharia de Produção

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

IMPLANTAÇÃO DO DW NA ANVISA

IMPLANTAÇÃO DO DW NA ANVISA IMPLANTAÇÃO DO DW NA ANVISA Bruno Nascimento de Ávila 1 Rodrigo Vitorino Moravia 2 Maria Renata Furtado 3 Viviane Rodrigues Silva 4 RESUMO A tecnologia de Business Intelligenge (BI) ou Inteligência de

Leia mais

SAD orientado a DADOS

SAD orientado a DADOS Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a DADOS DISCIPLINA: Sistemas de Apoio a Decisão SAD orientado a dados Utilizam grandes repositórios

Leia mais

Banco de Dados. Introdução. João Eduardo Ferreira Osvaldo Kotaro Takai. jef@ime.usp.br DCC-IME-USP

Banco de Dados. Introdução. João Eduardo Ferreira Osvaldo Kotaro Takai. jef@ime.usp.br DCC-IME-USP Banco de Dados Introdução João Eduardo Ferreira Osvaldo Kotaro Takai jef@ime.usp.br DCC-IME-USP Importância dos Bancos de Dados A competitividade das empresas depende de dados precisos e atualizados. Conforme

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

Data Warehouse Processos e Arquitetura

Data Warehouse Processos e Arquitetura Data Warehouse - definições: Coleção de dados orientada a assunto, integrada, não volátil e variável em relação ao tempo, que tem por objetivo dar apoio aos processos de tomada de decisão (Inmon, 1997)

Leia mais

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data

Leia mais

Curso Superior de Tecnologia em BD Curso Superior de Tecnologia em DAI

Curso Superior de Tecnologia em BD Curso Superior de Tecnologia em DAI Curso Superior de Tecnologia em BD Curso Superior de Tecnologia em DAI Fundamentos de Banco de Dados Aula 01 Introdução aos Sistemas de Bancos de Dados Introdução aos Sistemas de BD Objetivo Apresentar

Leia mais

Sistemas de Apoio à Inteligência do Negócio

Sistemas de Apoio à Inteligência do Negócio Sistemas de Apoio à Inteligência do Negócio http://www.uniriotec.br/~tanaka/sain tanaka@uniriotec.br Visão Geral de Business Intelligence Evolução dos Sistemas de Informação (computadorizados) 1950 s:

Leia mais

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining.

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining. BUSINESS INTELLIGENCE COM DADOS EXTRAÍDOS DO FACEBOOK UTILIZANDO A SUÍTE PENTAHO Francy H. Silva de Almeida 1 ; Maycon Henrique Trindade 2 ; Everton Castelão Tetila 3 UFGD/FACET Caixa Postal 364, 79.804-970

Leia mais

Curso Data warehouse e Business Intelligence

Curso Data warehouse e Business Intelligence Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Apresentação Os projetos de Data Warehouse e Business Intelligence são dos mais interessantes e complexos de desenvolver

Leia mais

Data Warehouses Uma Introdução

Data Warehouses Uma Introdução Data Warehouses Uma Introdução Alex dos Santos Vieira, Renaldy Pereira Sousa, Ronaldo Ribeiro Goldschmidt 1. Motivação e Conceitos Básicos Com o advento da globalização, a competitividade entre as empresas

Leia mais

Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE

Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE Aplicação de Data Warehousing no Cadastro de Ficha Limpa do TSE Mateus Ferreira Silva, Luís Gustavo Corrêa Lira, Marcelo Fernandes Antunes, Tatiana Escovedo, Rubens N. Melo mateusferreiras@gmail.com, gustavolira@ymail.com,

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura

Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Curso Data warehouse e Business Intelligence Fundamentos, Metodologia e Arquitetura Apresentação Os projetos de Data Warehouse e Business Intelligence são dos mais interessantes e complexos de desenvolver

Leia mais

RESUMO DA SOLUÇÃO CA ERwin Modeling. Como eu posso gerenciar a complexidade dos dados e aumentar a agilidade dos negócios?

RESUMO DA SOLUÇÃO CA ERwin Modeling. Como eu posso gerenciar a complexidade dos dados e aumentar a agilidade dos negócios? RESUMO DA SOLUÇÃO CA ERwin Modeling Como eu posso gerenciar a complexidade dos dados e aumentar a agilidade dos negócios? O CA ERwin Modeling fornece uma visão centralizada das principais definições de

Leia mais

Aplicando Técnicas de Business Intelligence sobre dados de desempenho Acadêmico: Um estudo de caso

Aplicando Técnicas de Business Intelligence sobre dados de desempenho Acadêmico: Um estudo de caso Aplicando Técnicas de Business Intelligence sobre dados de desempenho Acadêmico: Um estudo de caso Ana Magela Rodriguez Almeida 1, Sandro da Silva Camargo 1 1 Curso Engenharia de Computação Universidade

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

DATA WAREHOUSE. Data Warehouse

DATA WAREHOUSE. Data Warehouse DATA WAREHOUSE Data Warehouse Sumário Conceitos / Autores chave... 3 1. Introdução... 5 2. Características de um Data Warehouse... 6 3. Arquitetura de Data Wirehouse... 8 4. Conclusões... 10 Materiais

Leia mais

Data Warehousing Visão Geral do Processo

Data Warehousing Visão Geral do Processo Data Warehousing Visão Geral do Processo Organizações continuamente coletam dados, informações e conhecimento em níveis cada vez maiores,, e os armazenam em sistemas informatizados O número de usuários

Leia mais

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II Data Warehouse Diogo Matos da Silva 1 1 Departamento de Computação Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil Banco de Dados II Diogo Matos (DECOM - UFOP) Banco de Dados II Jun 2013 1 /

Leia mais

PLANO DE ENSINO PRÉ-REQUISITOS: ENS

PLANO DE ENSINO PRÉ-REQUISITOS: ENS UNIVERSIDADE DO ESTADO DE SANTA CATARINA UDESC CENTRO DE EDUCAÇÃO SUPERIOR DO ALTO VALE DO ITAJAÍ CEAVI PLANO DE ENSINO DEPARTAMENTO: DSI Departamento de Sistema de Informação DISCIPLINA: Data Warehouse

Leia mais

FACULDADE INTEGRADAS DE PARANAÍBA ADMINISTRAÇÃO DE EMPRESAS. Bancos de Dados Conceitos Fundamentais

FACULDADE INTEGRADAS DE PARANAÍBA ADMINISTRAÇÃO DE EMPRESAS. Bancos de Dados Conceitos Fundamentais FACULDADE INTEGRADAS DE PARANAÍBA ADMINISTRAÇÃO DE EMPRESAS Bancos de Dados Conceitos Fundamentais Tópicos Conceitos Básicos Bancos de Dados Sistemas de Bancos de Dados Sistemas de Gerenciamento de Bancos

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Revisão em Data Warehouses Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt 1 DATA WAREHOUSES UMA VISÃO GERAL

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Interatividade aliada a Análise de Negócios

Interatividade aliada a Análise de Negócios Interatividade aliada a Análise de Negócios Na era digital, a quase totalidade das organizações necessita da análise de seus negócios de forma ágil e segura - relatórios interativos, análise de gráficos,

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

DATA WAREHOUSING. Data Warehousing

DATA WAREHOUSING. Data Warehousing DATA WAREHOUSING Data Warehousing Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Modelos de Data Warehouse... 4 3. Processo de Extração, Transformação e Carga de Dados... 6 4. Data Mart versus

Leia mais

MBA Inteligência Competitiva Com ênfase em BI/CPM. Metadados

MBA Inteligência Competitiva Com ênfase em BI/CPM. Metadados MBA Inteligência Competitiva BI/CPM 1 Data Warehousing PÓS-GRADUAÇÃO MBA Inteligência Competitiva Com ênfase em BI/CPM Metadados Andréa Cristina Montefusco (36927) Hermes Abreu Mattos (36768) Robson Pereira

Leia mais

Business Intelligence aplicado a área da saúde: potencializando a tomada de decisão

Business Intelligence aplicado a área da saúde: potencializando a tomada de decisão Business Intelligence aplicado a área da saúde: potencializando a tomada de decisão Daiane Kelly de Oliveira 1, Dorirley Rodrigo Alves 1 1 Instituto de Ciências Exatas e Informática PUC Minas Campus Guanhães

Leia mais

DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS

DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS DESENVOLVIMENTO DA SOLUÇÃO DE BUSINESS INTELLIGENCE EM UMA UNIVERSIDADE ESTADUAL, UTILIZANDO A FERRAMENTA EXCEL PARA MANIPULAÇÃO DOS DADOS Flávio Augusto Lacerda de Farias Rogério Tronco Vassoler ** Resumo

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Introdução. Motivação. Sistema Gerenciador de Banco de Dados (SGBD) Banco de Dados (BD) Sistema de Banco de Dados (SBD)

Introdução. Motivação. Sistema Gerenciador de Banco de Dados (SGBD) Banco de Dados (BD) Sistema de Banco de Dados (SBD) Pós-graduação em Ciência da Computação CCM-202 Sistemas de Banco de Dados Introdução Profa. Maria Camila Nardini Barioni camila.barioni@ufabc.edu.br Bloco B - sala 937 2 quadrimestre de 2011 Motivação

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com DATA WAREHOUSES UMA INTRODUÇÃO Prof. Ronaldo R. Goldschmidt ronaldo.rgold@gmail.com 1 DATA WAREHOUSES UMA INTRODUÇÃO Considerações Iniciais Conceitos Básicos Modelagem Multidimensional Projeto de Data

Leia mais

DESMISTIFICANDO O CONCEITO DE ETL

DESMISTIFICANDO O CONCEITO DE ETL DESMISTIFICANDO O CONCEITO DE ETL Fábio Silva Gomes da Gama e Abreu- FSMA Resumo Este artigo aborda os conceitos de ETL (Extract, Transform and Load ou Extração, Transformação e Carga) com o objetivo de

Leia mais

Banco de Dados I. Quantidade de informação gerada em um dia. Aula 1. 59 milhões de clientes ativos; Mais de 42 terabytes de dados; Salários na área

Banco de Dados I. Quantidade de informação gerada em um dia. Aula 1. 59 milhões de clientes ativos; Mais de 42 terabytes de dados; Salários na área Banco de Dados I Aula 1 Quantidade de informação gerada em um dia E-mails Compras Bate-papo Notícias Blogs Transações bancárias Etc... 59 milhões de clientes ativos; Mais de 42 terabytes de dados; 100

Leia mais

Bases de Dados aplicadas a Inteligência de Negócios

Bases de Dados aplicadas a Inteligência de Negócios Agenda Bases de Dados aplicadas a Inteligência de Negócios Professor Sérgio Rodrigues professor@sergiorodrigues.net Sistemas de Gerenciamento de Bancos de Dados (SGBD) Tipos de Banco de Dados Noções de

Leia mais

Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql

Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql Conversão de Base de Dados Relacional para Dimensional para Business Intelligence Utilizando Banco de Dados Mysql Carlos H. Cardoso 1, Roberto D Nebo 1, Luis A. da Silva 1 1 Curso de Tecnologia em Banco

Leia mais

DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES

DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES DATA WAREHOUSE NO APOIO À TOMADA DE DECISÕES Janaína Schwarzrock jana_100ideia@hotmail.com Prof. Leonardo W. Sommariva RESUMO: Este artigo trata da importância da informação na hora da tomada de decisão,

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação ão? Como um sistema de gerenciamento

Leia mais

Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional

Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional Kimball University: As 10 Regras Essenciais para a Modelagem de Dados Dimensional Margy Ross Presidente Kimball Group Maio de 2009, Intelligent Enterprise.com Tradução livre para a língua portuguesa por

Leia mais

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1

Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 Laudon & Laudon Essentials of MIS, 5th Edition. Pg. 1.1 SISTEMA DE APOIO À DECISÃO Grupo: Denilson Neves Diego Antônio Nelson Santiago Sabrina Dantas CONCEITO É UM SISTEMA QUE AUXILIA O PROCESSO DE DECISÃO

Leia mais

Data Warehouse a experiência da ANVISA

Data Warehouse a experiência da ANVISA Data Warehouse a experiência da ANVISA Camilo Mussi, Denis Murahovschi, Giliana Bettni, Luiz Gustavo Kratz Assessoria da Presidência, Agência Nacional de Vigilância Sanitária (ANVISA), Brasil Resumo -

Leia mais

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4. SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.1 Armazenamento... 5 4.2 Modelagem... 6 4.3 Metadado... 6 4.4

Leia mais

Hoje é inegável que a sobrevivência das organizações depende de dados precisos e atualizados.

Hoje é inegável que a sobrevivência das organizações depende de dados precisos e atualizados. BANCO DE DADOS Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Ciência da Computação Prof. Alexandre Veloso de Matos alexandre.matos@udesc.br INTRODUÇÃO Hoje é

Leia mais

Banco de Dados - Senado

Banco de Dados - Senado Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs

Leia mais

Metapadrão - Descrição e Integração de Padrões de Metadados

Metapadrão - Descrição e Integração de Padrões de Metadados Metapadrão - Descrição e Integração de Padrões de Metadados Alcione Benacchio alcione@inf.ufpr.br Departamento de Informática, Universidade Federal do Paraná (UFPR) Caixa Postal 19.081 81.531-990 Curitiba

Leia mais

Tecnologias da Informação, Comunicação e Sistemas de Inteligência

Tecnologias da Informação, Comunicação e Sistemas de Inteligência , Comunicação e Sistemas de Inteligência Gestão e de Bancos de Dados IESB - Centro Universitário A importância da informação em um mundo de informação disponível em tempo real a informação menos acessível

Leia mais

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Data Warehouses Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Conceitos Básicos Data Warehouse(DW) Banco de Dados voltado para

Leia mais

IMPLANTAÇÃO DE UM SISTEMA CRM. Prof. Wilson Míccoli, MsC

IMPLANTAÇÃO DE UM SISTEMA CRM. Prof. Wilson Míccoli, MsC IMPLANTAÇÃO DE UM SISTEMA CRM 1 Fase 1: Contextualização Fase 2: Revisão do Plano Estratégico da Organização Fase 3: Revisão do Portfólio de Produtos Fase 4: Definição da Visão e dos Objetivos do CRM Fase

Leia mais

RESUMO. Palavras chave: Data Warehousing (Armazenagem de Dados), Banco de Dados. Especializado.

RESUMO. Palavras chave: Data Warehousing (Armazenagem de Dados), Banco de Dados. Especializado. Faculdade de Ciências Sociais e Tecnológicas FACITEC Bacharelado em Sistemas de Informação BSI 2B Disciplina: Fundamentos de Sistemas de Informação Professor: Paulo de Tarso DATA WAREHOUSING Componentes:

Leia mais

Uma aplicação de Data Warehouse para apoiar negócios

Uma aplicação de Data Warehouse para apoiar negócios Uma aplicação de Data Warehouse para apoiar negócios André Vinicius Gouvêa Monteiro Marcos Paulo Oliveira Pinto Rosa Maria E. Moreira da Costa Universidade do Estado do Rio de Janeiro - UERJ IME - Dept

Leia mais

Módulo 2. Definindo Soluções OLAP

Módulo 2. Definindo Soluções OLAP Módulo 2. Definindo Soluções OLAP Objetivos Ao finalizar este módulo o participante: Recordará os conceitos básicos de um sistema OLTP com seus exemplos. Compreenderá as características de um Data Warehouse

Leia mais

SISTEMA DE BANCO DE DADOS. Banco e Modelagem de dados

SISTEMA DE BANCO DE DADOS. Banco e Modelagem de dados SISTEMA DE BANCO DE DADOS Banco e Modelagem de dados Sumário Conceitos/Autores chave... 3 1. Introdução... 4 2. Arquiteturas de um Sistema Gerenciador... 5 3. Componentes de um Sistema... 8 4. Vantagens

Leia mais

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas.

Trata-se de uma estratégia de negócio, em primeira linha, que posteriormente se consubstancia em soluções tecnológicas. CUSTOMER RELATIONSHIP MANAGEMENT Customer Relationship Management CRM ou Gestão de Relacionamento com o Cliente é uma abordagem que coloca o cliente no centro dos processos do negócio, sendo desenhado

Leia mais

O Que é Data Warehouse

O Que é Data Warehouse O Que é Data Warehouse Escrito por Carlos Alberto Sowek Buscando dar uma melhor visão sobre uma proposta de arquitetura de um Data Warehouse para a Celepar, bem como para os clientes da Celepar, sentimos

Leia mais

SISTEMA GERENCIADOR DE BANCO DE DADOS

SISTEMA GERENCIADOR DE BANCO DE DADOS BANCO DE DADOS Universidade do Estado de Santa Catarina Centro de Ciências Tecnológicas Departamento de Ciência da Computação Prof. Alexandre Veloso de Matos alexandre.matos@udesc.br SISTEMA GERENCIADOR

Leia mais

CAPÍTULO 5. Introdução ao Gerenciamento de Bancos de Dados.

CAPÍTULO 5. Introdução ao Gerenciamento de Bancos de Dados. CAPÍTULO 5. Introdução ao Gerenciamento de Bancos de Dados. VISÃO GERAL DO CAPÍTULO O objetivo do capítulo é enfatizar o gerenciamento dos recursos de dados de organizações que utilizam computadores. O

Leia mais

UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO (Bacharelado)

UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO (Bacharelado) UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO (Bacharelado) SISTEMA INTERNO INTEGRADO PARA CONTROLE DE TAREFAS INTERNAS DE UMA EMPRESA DE DESENVOLVIMENTO

Leia mais

Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados

Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados Faculdade Pitágoras Curso Superior de Tecnologia: Banco de Dados Disciplina: Ferramentaspara Tomadade Decisão Prof.: Fernando Hadad Zaidan Unidade 1.2 1 Conceitos Iniciais Tomada de Decisão, Modelagem

Leia mais

Gerenciamento de Dados e Gestão do Conhecimento

Gerenciamento de Dados e Gestão do Conhecimento ELC1075 Introdução a Sistemas de Informação Gerenciamento de Dados e Gestão do Conhecimento Raul Ceretta Nunes CSI/UFSM Introdução Gerenciando dados A abordagem de banco de dados Sistemas de gerenciamento

Leia mais

BUSINESS INTELLIGENCE -Inteligência nos Negócios-

BUSINESS INTELLIGENCE -Inteligência nos Negócios- UNIVERSIDADE SÃO FRANCISCO CENTRO DE CIÊNCIAS JURÍDICAS, HUMANAS E SOCIAIS BUSINESS INTELLIGENCE -Inteligência nos Negócios- Curso: Administração Hab. Sistemas de Informações Disciplina: Gestão de Tecnologia

Leia mais

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PRÓ-REITORIA DE ENSINO DE GRADUAÇÃO Rua Dom Manoel de Medeiros, s/n Dois Irmãos 52171-900 Recife-PE Fone: 0xx-81-332060-40 proreitor@preg.ufrpe.br PLANO DE ENSINO

Leia mais

18. Qualidade de Dados em Data Warehouse - Objetivos e Sucesso

18. Qualidade de Dados em Data Warehouse - Objetivos e Sucesso 18. Qualidade de Dados em Data Warehouse - Objetivos e Sucesso Uma das características das Ciências Exatas é a precisão das informações obtidas; a segurança dos dados extraídos nos processos usados. Cálculos

Leia mais

Padronização de Processos: BI e KDD

Padronização de Processos: BI e KDD 47 Padronização de Processos: BI e KDD Nara Martini Bigolin Departamento da Tecnologia da Informação -Universidade Federal de Santa Maria 98400-000 Frederico Westphalen RS Brazil nara.bigolin@ufsm.br Abstract:

Leia mais

srbo@ufpa.br www.ufpa.br/srbo

srbo@ufpa.br www.ufpa.br/srbo CBSI Curso de Bacharelado em Sistemas de Informação BI Prof. Dr. Sandro Ronaldo Bezerra Oliveira srbo@ufpa.br www.ufpa.br/srbo Tópicos Especiais em Sistemas de Informação Faculdade de Computação Instituto

Leia mais

Sistemas de Informação Aplicados a AgroIndústria Utilizando DataWarehouse/DataWebhouse

Sistemas de Informação Aplicados a AgroIndústria Utilizando DataWarehouse/DataWebhouse Sistemas de Informação Aplicados a AgroIndústria Utilizando DataWarehouse/DataWebhouse Prof. Dr. Oscar Dalfovo Universidade Regional de Blumenau - FURB, Blumenau, Brasil dalfovo@furb.br Prof. Dr. Juarez

Leia mais

Módulo 4: Gerenciamento de Dados

Módulo 4: Gerenciamento de Dados Módulo 4: Gerenciamento de Dados 1 1. CONCEITOS Os dados são um recurso organizacional decisivo que precisa ser administrado como outros importantes ativos das empresas. A maioria das organizações não

Leia mais

Modelagem Relacional e Multidimensional: uma análise envolvendo Sistemas de Apoio a decisão

Modelagem Relacional e Multidimensional: uma análise envolvendo Sistemas de Apoio a decisão Modelagem Relacional e Multidimensional: uma análise envolvendo Sistemas de Apoio a decisão Rita Cristina Galarraga Berardi, Flávia Braga de Azambuja, Ana Marilza Pernas, Rodrigo Coelho Barros Departamento

Leia mais

BARBIERI, Carlos. BI Modelagem de Dados. Rio de Janeiro: Infobook, 1994.

BARBIERI, Carlos. BI Modelagem de Dados. Rio de Janeiro: Infobook, 1994. Faculdade Pitágoras Unidade 1 Curso Superior de Tecnologia: Banco de Dados Disciplina: Banco de Dados Prof.: Fernando Hadad Zaidan Imagem: BARBIERI, Carlos. Material usado na montagem dos Slides INTRODUÇÃO

Leia mais

Capítulo 2 Data Warehousing

Capítulo 2 Data Warehousing Capítulo 2 Data Warehousing Objetivos de Aprendizado Compreender as definições e os conceitos básicos dos data warehouses Compreender as arquiteturas de data warehousing Descrever os processos usados no

Leia mais

BANCO DE DADOS E BUSINESS INTELIGENCE. C/H: 20 horas (20/02, 25/02, 27/02, 04/03, 06/03)

BANCO DE DADOS E BUSINESS INTELIGENCE. C/H: 20 horas (20/02, 25/02, 27/02, 04/03, 06/03) MBA em Gestão de TI MÓDULO: BANCO DE DADOS E BUSINESS INTELIGENCE C/H: 20 horas (20/02, 25/02, 27/02, 04/03, 06/03) PROFESSOR: Edison Andrade Martins Morais prof@edison.eti.br http://www.edison.eti.br

Leia mais

DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP.

DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP. DESENVOLVIMENTO DE PLUG-INS KETTLE PARA GERAÇÃO DE MONDRIAN SCHEMA A PARTIR DE BASES RELACIONAIS, UTILIZANDO A METODOLOGIA AGILE ROLAP. Eduardo Cristovo de Freitas Aguiar (PIBIC/CNPq), André Luís Andrade

Leia mais

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel

Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Uma análise multidimensional dos dados estratégicos da empresa usando o recurso OLAP do Microsoft Excel Carlos Alberto Ferreira Bispo (AFA) cafbispo@siteplanet.com.br Daniela Gibertoni (FATECTQ) daniela@fatectq.com.br

Leia mais

O Projeto DW/BHTRANS - Uma solução de armazém de dados como ferramenta de planejamento urbano.

O Projeto DW/BHTRANS - Uma solução de armazém de dados como ferramenta de planejamento urbano. O Projeto DW/BHTRANS - Uma solução de armazém de dados como ferramenta de planejamento urbano. Reinaldo Avelar Drumond Empresa de Transportes e Trânsito de Belo Horizonte S.A BHTRANS - Av. Engenheiro Carlos

Leia mais

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009.

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. REFERÊNCIAS o o Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. Competição Analítica - Vencendo Através da Nova Ciência Davenport,

Leia mais

Data Warehouse: uma classificação de seus Custos e Benefícios

Data Warehouse: uma classificação de seus Custos e Benefícios Data Warehouse: uma classificação de seus Custos e Benefícios Marcos Paulo Kohler Caldas (CEFET-ES/CEFET-PR) marcospaulo@cefetes.br Prof. Dr. Luciano Scandelari (CEFET-PR) luciano@cefetpr.br Prof. Dr.

Leia mais

CEP 97420-000 São Vicente do Sul RS Brasil. filipe-kulinski@hotmail.com, {maicon.amarante, eliana.zen} @iffarroupilha.edu.br

CEP 97420-000 São Vicente do Sul RS Brasil. filipe-kulinski@hotmail.com, {maicon.amarante, eliana.zen} @iffarroupilha.edu.br 109 Utilização de Businnes Intelligence para análise de evasão escolar nos diferentes níveis de ensino do Instituto Federal Farroupilha Campus São Vicente do Sul Filipe Kulinski Mello 1, Eliana Zen 1,

Leia mais

Documentação de um Produto de Software

Documentação de um Produto de Software Documentação de um Produto de Software Versão 3.0 Autora: Profª Ana Paula Gonçalves Serra Revisor: Prof. Fernando Giorno 2005 ÍNDICE DETALHADO PREFÁCIO... 4 1. INTRODUÇÃO AO DOCUMENTO... 6 1.1. TEMA...

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot

Leia mais

UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU INSTITUTO A VEZ DO MESTRE

UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU INSTITUTO A VEZ DO MESTRE UNIVERSIDADE CANDIDO MENDES PÓS-GRADUAÇÃO LATO SENSU INSTITUTO A VEZ DO MESTRE DATA WAREHOUSE: A IMPORTÂNCIA DO SISTEMA DATA WAREHOUSE NA TOMADA DE DECISÃO DA EMPRESA Por: Ana Cristina do Valle Sidreira

Leia mais

Universidade do Estado da Bahia UNEB Departamento de Ciências Exatas e da Terra - Campus I

Universidade do Estado da Bahia UNEB Departamento de Ciências Exatas e da Terra - Campus I Metodologia de Desenvolvimento de Sistemas II/CPD025 Conceitos orientação a objetos. Evolução das técnicas de modelagem orientadas a objetos. Estrutura da linguagem UML. Conceito de processo interativo

Leia mais

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING http://www.uniriotec.br/~tanaka/tin0036 tanaka@uniriotec.br Introdução a Data Warehousing e OLAP Introdução a Data Warehouse e Modelagem Dimensional Visão

Leia mais

Prova INSS RJ - 2007 cargo: Fiscal de Rendas

Prova INSS RJ - 2007 cargo: Fiscal de Rendas Prova INSS RJ - 2007 cargo: Fiscal de Rendas Material de Apoio de Informática - Prof(a) Ana Lucia 53. Uma rede de microcomputadores acessa os recursos da Internet e utiliza o endereço IP 138.159.0.0/16,

Leia mais

Palavras-Chaves: Arquitetura, Modelagem Orientada a Objetos, UML.

Palavras-Chaves: Arquitetura, Modelagem Orientada a Objetos, UML. MODELAGEM ORIENTADA A OBJETOS APLICADA À ANÁLISE E AO PROJETO DE SISTEMA DE VENDAS ALTEMIR FERNANDES DE ARAÚJO Discente da AEMS Faculdades Integradas de Três Lagoas ANDRE LUIZ DA CUNHA DIAS Discente da

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.1 2 1 Material usado na montagem dos Slides BARBIERI,

Leia mais

Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados.

Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados. Histórico Etapas da evolução rumo a tomada de decisão: Aplicações Isoladas: dados duplicados, dados inconsistentes, processos duplicados. Sistemas Integrados: racionalização de processos, manutenção dos

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS Capítulo 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7.1 2003 by Prentice Hall OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação?

Leia mais

9º Congresso de Pós-Graduação GERENCIAMENTO DE CONSULTAS EM DATA WAREHOUSE DISTRIBUÍDO EM NUVEM

9º Congresso de Pós-Graduação GERENCIAMENTO DE CONSULTAS EM DATA WAREHOUSE DISTRIBUÍDO EM NUVEM 9º Congresso de Pós-Graduação GERENCIAMENTO DE CONSULTAS EM DATA WAREHOUSE DISTRIBUÍDO EM NUVEM Autor(es) ORLANDO PEREIRA SANTANA JUNIOR Orientador(es) MARINA TERESA PIRES VIEIRA 1. Introdução A informação

Leia mais