FASORES E NÚMEROS COMPLEXOS

Documentos relacionados
FASORES E NÚMEROS COMPLEXOS

Análise de Circuitos I I

Teoria de Eletricidade Aplicada

Fontes senoidais. Fontes senoidais podem ser expressar em funções de senos ou cossenos A função senoidal se repete periodicamente

Fasores e Números Complexos

ELETROTÉCNICA (ENE078)

LINHAS DE TRANSMISSÃO DE ENERGIA LTE. Aula 4 Conceitos Básicos da Transmissão em Corrente Alternada

Análise de Circuitos 2

Números Complexos. Prof. Eng. Antonio Carlos Lemos Júnior. Controle de Sistemas Mecânicos 1

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

BC 1519 Circuitos Elétricos e Fotônica

Circuitos com excitação Senoidal

Experiência 4 - Sinais Senoidais e Fasores

30 o 50 o 70 o 90 o 110 o 130 o 150 o 170 o 190 o 210 o 230 o 250 o 270 o 290 o 310 o 330 o 350 o

ANÁLISE DE CIRCUITOS ELÉTRICOS II

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÕES ELÉTRICAS PREDIAIS ELETRICIDADE BÁSICA

ELETRICIDADE APLICADA RESUMO DE AULAS PARA A 2ª PROVA

Eletrotécnica II Números complexos

Aula 26. Introdução a Potência em CA

ELETROTÉCNICA. Impedância

NÚMEROS COMPLEXOS. Prof. Edgar Zuim (*)

Representação Gráfica

IMPEDÂNCIA Impedância

Disciplinas de 60 horas : 19:00 às 21:50 horas

Circuitos Elétricos I

Revisão números Complexos

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA II ONDAS. Prof.

Circuitos RC com corrente alternada. 5.1 Material. resistor de 10 Ω; capacitor de 2,2 µf.

Sinais e Sistemas Aula 1 - Revisão

Deduza a Equação de Onda que representa uma onda progressiva unidimensional, numa corda de massa M e comprimento L.

Centro Federal de Educação Tecnológica de Santa Catarina Departamento de Eletrônica Retificadores. Prof. Clóvis Antônio Petry.

ANÁLISE DE SINAIS DINÂMICOS

FNT AULA 6 FUNÇÃO SENO E COSSENO

UTFPR DAELN CORRENTE ALTERNADA, REATÂNCIAS, IMPEDÂNCIA & FASE

Vamos considerar um gerador de tensão alternada ε(t) = ε m sen ωt ligado a um resistor de resistência R. A tensão no resistor é igual à fem do gerador

I φ= V φ R. Fazendo a mesma análise para um circuito indutivo, se aplicarmos uma tensão v(t) = V m sen(ωt + I (φ 90)= V φ X L

Exp 3 Comparação entre tensão contínua e tensão alternada

LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS

PSI-3214 Laboratório de Instrumentação Elétrica. Sinais Periódicos. Vítor H. Nascimento

Introdução a Corrente Alternada

Pré-Cálculo ECT2101 Slides de apoio Funções II

MATEMÁTICA I FUNÇÕES. Profa. Dra. Amanda L. P. M. Perticarrari

Chamaremos AC de vetor soma (um Vetor resultante) dos vetores AB e BC. Essa soma não é uma soma algébrica comum.

Conceitos de vetores. Decomposição de vetores

Circuitos Elétricos I

Aula do cap. 03 Vetores. Halliday

carga do fio: Q. r = r p r q figura 1

TURMA:12.ºA/12.ºB. O que é o i? Resposta: A raiz imaginária da unidade negativa. (Leibniz)

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Eletrotécnica geral. A tensão alternada é obtida através do 3 fenômeno do eletromagnetismo, que diz:

CEFET BA Vitória da Conquista CIRCUITOS INDUTIVOS

Curso Física 1. Aula - 4. Vetores

Máquinas Elétricas I PRINCÍPIO DE FUNCIONAMENTO

Introdução ao Processamento Digital de Imagens. Aula 6 Propriedades da Transformada de Fourier

Movimento harmônico. Prof. Juliano G. Iossaqui. Londrina, 2017

Vetores. Prof. Marco Simões

Conjunto dos Números Complexos

Eletricidade II. Aula 1. Resolução de circuitos série de corrente contínua

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

Notas de aula da disciplina de Ana lise de Circuitos 2

Introdução: Um pouco de História

Eletricidade Aula 6. Corrente Alternada

O Eletromagnetismo é um ramo da física ou da engenharia elétrica onde os fenômenos elétricos e magnéticos são estudados.

ROTEIRO: 1. Cap. 2 Plano Cartesiano; 2. Vetores.

ROBÓTICA REPRESENTAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

Circuitos Elétricos. Dispositivos Básicos e os Fasores. Prof. Dr. Eduardo Giometti Bertogna

Parte A: Circuitos RC com corrente alternada

Circuitos RC e RL com Corrente Alternada

FENÔMENOS OSCILATÓRIOS E TERMODINÂMICA AULA 3 ONDAS I

Capítulo 4 - Derivadas

Processamento de Sinais Multimídia

Lista de Exercícios P1. Entregar resolvida individualmente no dia da 1ª Prova. a) 25Hz b) 35MHz c) 1Hz d)25khz. a) 1/60s b) 0,01s c) 35ms d) 25µs

AULA 1: PRÉ-CÁLCULO E FUNÇÕES

Prof. Daniel Hasse. Princípios de Comunicações

Sistemas Lineares. Aula 9 Transformada de Fourier

Sumário CIRCUITOS DE CORRENTE ALTERNADA. Prof. Fábio da Conceição Cruz 21/10/ Introdução. 2. Formas de ondas alternadas senoidais

Vetores. Prof. Marco Simões

Módulo I Ondas Planas

Corrente alternada em Circuitos monofásicos

Capítulo 10. Excitação Senoidal e Fasores

RELAÇÕES ENTRE TENSÃO E CORRENTE ALTERNADAS NOS ELEMENTOS PASSIVOS DE CIRCUITOS

A origem de i ao quadrado igual a -1

Capítulo 9 - Rotação de Corpos Rígidos

Aula 6 Análise de circuitos capacitivos em CA circuitos RC

Trigonometria e relações trigonométricas

ROBÓTICA TRANSFORMAÇÕES MATRICIAIS. Prof a. Dra. GIOVANA TRIPOLONI TANGERINO Tecnologia em Automação Industrial

CIRCUITOS ELÉTRICOS. Aula 03 RESISTORES EM CORRENTE ALTERNADA E CIRCUITOS RL

Educação para o Trabalho e Cidadania.

ELETROTÉCNICA GERAL Unidade 08

Métodos Matemáticos. Números complexos I. A C Tort 1. Instituto Física Universidade Federal do Rio de Janeiro. 1 Departmento de Física Teórica

Programa Princípios Gerais Forças, vetores e operações vetoriais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 6

Regime permanente senoidal e Fasores

Verificando a parte imaginária da impedância equivalente na forma complexa

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

Ficha Técnica 4 Introdução à Eletrónica

T7 - Oscilações forçadas. sen (3)

Capítulo 12. Potência em Regime Permanente C.A.

Transcrição:

Capítulo FSORES E NÚMEROS COMPLEXOS. Introdução.1 Fasor.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal.1. Diagramas Fasoriais. Sistema de Números Complexos..1 Plano Complexo.. Operador j.3 Forma Retangular e Polar.3.1 Forma Retangular.3. Forma Polar.3.3 Identidade de Euler.4 Operação Matemática com Grandezas Complexas.4.1 Soma.4. Subtração.4.3 Produto.4.4 Divisão.4.5 Potenciação.4.6 Raiz N-ésima.4.7 Logaritmo Prof a Ruth P.S. Leão Email: rleao@dee.ufc.br HP: www.dee.ufc.br/~rleao

. Introdução Os fasores e os números complexos são duas importantes ferramentas para a análise de circuitos ca. s tensões e correntes senoidais podem ser matemática e graficamente representadas por fasores em termos de suas magnitudes e ângulos de fase. O sistema de números complexos é um meio de expressar os fasores e de operá-los matematicamente..1. Fasor Um fasor é uma representação gráfica semelhante a um vetor, mas em geral refere-se a grandezas que variam no tempo como as ondas senoidais. O comprimento de um fasor representa sua magnitude, e o ângulo θ representa sua posição angular relativa ao eixo horizontal tomado como referência. Os ângulos positivos são medidos no sentido antihorário a partir da referência (0 o ) e os ângulos negativos são medidos no sentido horário a partir da referência. 90º magnitude 90º θ 180º 0º 180º 0º -60º 70º 70º Figura.1: Exemplo de fasores: magnitude e direção. Figura. mostra um fasor de magnitude que gira com velocidade angular ω. 90º ωt 180º Figura.: Fasor girante. 0º Prof a Ruth P.S. Leão Email: rleao@dee.ufc.br HP: www.dee.ufc.br/~rleao

-.1.1 Representação Fasorial de uma Onda Senoidal e Co-senoidal Um ciclo completo de uma senóide pode ser representado pela rotação de um fasor que gira 360º. O valor instantâneo da onda senoidal em qualquer ponto da senóide é igual à distância vertical da extremidade do fasor ao eixo horizontal, isto é, a projeção do fasor no eixo vertical. Figura.3 Onda senoidal representada por fasor em movimento. Figura.4 Onda co-senoidal representada por fasor em movimento.

-3 Figura.4 apresenta a representação de uma onda co-senoidal por um fasor girante. O valor instantâneo da co-senoide em qualquer ponto da onda é igual à distância horizontal da extremidade do fasor ao eixo vertical, ou seja, igual à projeção do fasor sobre o eixo horizontal. Note que a amplitude do fasor é igual ao valor de pico da onda senoidal na Figura.3 (pontos 90º e 70º) e da onda co-senoidal na Figura.4 (pontos 0 o e 180º). Figura.5 mostra um fasor de tensão em uma posição angular específica de 45º e o correspondente ponto na onda senoidal. O valor instantâneo da onda senoidal neste ponto está relacionado à posição (θ) e à amplitude do fasor (V p ). Note que quando uma linha vertical é traçada da extremidade do fasor até o eixo horizontal é formado um triângulo retangular. O comprimento do fasor é a hipotenusa do triângulo, e a projeção vertical, o seu cateto oposto. ssim, o cateto oposto do triângulo reto é igual à hipotenusa vezes o seno do ângulo θ e representa o valor instantâneo da senóide. Figura.5: Relação matemática entre a senóide e o fasor. O período e a freqüência da onda senoidal estão relacionados à velocidade de rotação do fasor. velocidade de rotação do fasor é denominada de velocidade angular, ω. Quando um fasor gira a uma velocidade ω, então ωt representa o ângulo instantâneo do fasor que pode ser expresso como:.1. Diagramas Fasoriais θ=ωt (.1) Como visto anteriormente, uma onda senoidal periódica de freqüência e amplitude constantes pode ser representada por um fasor girante. Como amplitude e freqüência são constantes, tem-se que uma vez

-4 conhecida o valor instantâneo de uma senóide em t=0, em qualquer tempo o valor da senóide pode ser determinado. 90º Vp 180º 45º 0º (a) Figura.6: Definição de uma onda senoidal. 70º (b) onda senoidal mostrada na Figura.6 é definida matematicamente como: ν(t)= V p.sen(ωt+45º) (.) ssim, o fasor da Figura.6 (b) tem amplitude igual a V p, gira a uma velocidade angular ω, e tem um ângulo de fase igual a 45º. Um fasor em uma posição fixa é usado para representar uma onda senoidal completa porque uma vez estabelecido o ângulo de fase entre a onda senoidal e uma referência, o ângulo de fase permanece constante ao longo dos demais ciclos. Um diagrama fasorial pode ser usado para mostrar a posição relativa de duas ou mais ondas senoidais de mesma freqüência, pois uma vez que o ângulo de fase entre duas ou mais ondas de mesma freqüência é estabelecida, o ângulo de fase permanece constante ao longo dos ciclos. Na Figura.7 três ondas senoidais são representadas por um diagrama fasorial. senóide está adiantada das senóides e C, a senóide está adiantada em relação à senóide C, porém atrasada em relação à senóide, e a senóide C está atrasada em relação às senóides e, como indicado no diagrama fasorial. 45º -60º C Figura.7: Exemplo de diagrama fasorial.

-5.. Sistema de Números Complexos Os números complexos permitem operações matemáticas com fasores e são úteis na análise de circuitos ca. álgebra de números complexos é uma extensão da álgebra de números reais. Os números reais constituem um sub-conjunto dos números complexos. Os números complexos são formados pelos números reais e pelos números imaginários. {Conjunto dos Complexos} = {Reais} + {Imaginários} (.3) Os números imaginários são distinguidos dos números reais pelo uso do operador j ou i. representação de um número complexo é dada pela soma algébrica da componente real, ± a, e da componente imaginária, ± jb. y = ±a ± jb (.4) Se a parte real de um número complexo é zero, o número complexo torna-se puramente imaginário: y = ± jb. Se a parte imaginária do número complexo é nula, o número torna-se puramente real: y = ±a. Na matemática o operador i é usado invés do j, mas em circuitos elétricos o i pode ser confundido com o valor instantâneo da corrente, por isso o j tem preferência...1 Plano Complexo Um número complexo pode ser representado por um ponto no plano complexo. No plano complexo o eixo horizontal é denominado de eixo real, e o eixo vertical, de eixo imaginário. Figura.8 mostra um conjunto de pontos no plano cartesiano complexo. O número + é um número complexo cuja parte imaginária é nula; o número j é um número complexo negativo com parte real nula, e representado sobre o eixo imaginário. Quando um ponto não está situado sobre nenhum eixo, mas está localizado em um dos quatro quadrantes, o número é definido por suas coordenadas, a

-6 exemplo do ponto 4+j. Note que o número 4+j tem como conjugado 4-j, pois diferem apenas no sinal da parte imaginária. O conjugado de um número complexo é representado pelo expoente ()*. +j Eixo Imaginário º quadrante 1º quadrante -5 + j1 j3 4 + j -4-j -j 4 - j Eixo Real 3º quadrante 4º quadrante -j Figura.8: Plano cartesiano complexo. Uma posição angular pode ser representada em um plano complexo como mostra a Figura.9. +j 90 o º quadrante 1º quadrante 180º 3º quadrante 0 o /360º 4º quadrante -j 70º Figura.9: Ângulos no plano complexo... Operador j O operador j é denominado operador complexo e é definido como: j= 1 (.5) O operador +j ao multiplicar uma grandeza real move no sentido antihorário a grandeza localizada no eixo real para o eixo imaginário, rotacionando-a de +90º. De modo semelhante, multiplicando a grandeza real por j, a grandeza gira de -90º, sentido horário. ssim, j é considerado um operador rotacional.

-7 +j (j )=- + (j 3 )=-j Figura.10: Efeito do operador j Seja uma grandeza real positiva + representada sobre o eixo real. o ser aplicado o operador j tem-se: j j 3 = 4 j = ( 1) ( 1) ( ) = ( 1)() = ( 1) ( 1) ( ) = ( 1) ( j) ( ) = j = (.6) ( 1) ( 1) ( ) = ( 1) ( 1) ( ) = Observe que o operador j gira de +180º a grandeza sobre qual opera convertendo-a a um número real negativo, j 3 gira de 70º, e quando multiplicado por j 4 retorna ao lugar de origem..3. Forma Retangular e Polar forma polar e retangular são duas formas de representação de números complexos, usadas para representar grandezas fasoriais. Cada uma apresenta vantagens quando usadas na análise de circuitos, dependendo da aplicação. Como visto na seção.1, um fasor apresenta magnitude e fase. Em geral, a magnitude de um fasor é representada por uma letra itálica ou pela representação de módulo.. Um fasor é representado graficamente por uma seta desde a origem até o ponto no plano complexo..3.1 Forma Retangular Um fasor, em qualquer quadrante de um plano complexo, pode ser completamente especificado numa forma de notação cartesiana ou retangular como: -x +j +jy -jy +x = ± x ± jy. (.7) ± x representa a projeção de no eixo real; ± jy. representa a projeção de sobre o eixo imaginário. Figura.11: Fasor em diferentes quadrantes.

-8 Portanto, um fasor é uma grandeza complexa. Qualquer que seja o quadrante em que esteja situado o fasor, seu módulo é dado por: = x y + (.8) θ y y φ θ=180 o -φ -x x x -x -y φ θ=-180 o +φ -θ -y 1º quadrante º quadrante 3º quadrante 4º quadrante Figura.1: bertura angular do fasor no plano complexo. projeção do fasor no eixo horizontal é igual a x = cosθ e a projeção sobre o eixo vertical é y = senθ. O valor de θ depende do quadrante em que está o fasor. abertura angular, no 1º e 4º quadrante, que o fasor faz com o eixo real positivo de referência é dada respectivamente por: ± y θ = arctg ( x ) (.9) O ângulo θ no º e 3º quadrantes é definido respectivamente como:.3. Forma Polar θ =± 180 φ y θ =± 180 tg (.10) x O fasor quando representado na forma polar consiste da magnitude e da posição angular relativa ao eixo real, expresso como: ±θ (.11) Um fasor na forma retangular pode ser convertido para a forma polar e vice-versa. Na conversão retangular polar tem-se:

-9 +j +jy =j senθ θ +x = cosθ Figura.13: Coordenadas cartesianas de um fasor. = ± x x ± jy + y = tg ( cosθ ± jsenθ ) 1 ± ± y x (.1) = ± θ conversão polar retangular tem-se: ( cosθ ± jsenθ ) = ± x jy ± θ ± (.13).3.3 Identidade de Euler Seja o fasor representado em sua forma retangular trigonométrica: =.(cosθ + jsenθ) (.14) s funções senθ e cosθ expandidas em série: = [(1- θ! + θ4 4! - θ6 6! +...) + j(θ - θ3 3! + θ5 5! - θ7 7! +...)] (.15) O fasor pode ser re-escrito como: = (1 + jθ + ( jθ)! + ( jθ) 3 3! + ( jθ) 4 4! + ( jθ) 5 5! +...) (.16) Reconhecendo que: tem-se: e jθ = 1 + jθ + ( jθ)! + ( jθ) 3 3! + ( jθ) 4 4! + ( jθ) 5 5! +... (.17) com =.e jθ =.(cosθ + jsenθ) (.18)

-10 que representa a identidade de Euler. De modo análogo tem-se que: e jθ = (cosθ + jsenθ) (.19) e -jθ = (cosθ - jsenθ) (.0) O fasor quando representado como =.e ±jθ diz-se estar na forma exponencial. forma polar é a representação concisa da forma exponencial. =.e ±jθ ±θ (.1) Equação. apresenta as diferentes formas de representar uma onda senoidal variante no tempo por um fasor com magnitude definida pela amplitude da onda senoidal, que gira a uma velocidade angular ω, e cuja representação gráfica indica a condição no instante t=0, para um ângulo de fase que se mantém constante no tempo. = ± x ± j y =.e ±jθ ±θ (.) ssim, ondas senoidais e co-senoidais, de amplitude e freqüência definidas, encontram representação através de fasores..cos(ωt±ϕ) = Re[.e j(ωt±ϕ) ] = ±ϕ.sen(ωt±ϕ) = Im[.e j(ωt±ϕ) ] = ±ϕ (.3) Uma outra maneira de apresentar a identidade de Euler consiste na definição do fasor como: derivada de em relação a θ é dada por: = (cosθ + jsenθ) (.4) d = -senθ + jcosθ = j(cosθ +jsenθ) = j (.5) dθ Re-escrevendo a Equação.5, tem-se:

-11 d = jdθ (.6) Integrando ambos os lados da Equação.6: Ln = jθ + C (.7) constante complexa de integração C é obtida fazendo-se θ=0 na Equação (.7) onde obtém-se C=Ln. O valor de para θ=0 é obtido da Equação.4; assim, para = 1 + j0 implica em C=0. Portanto: ou Ln = jθ (.8) = e jθ (.9) O ângulo θ pode ser expresso em função do tempo: θ =ωt + ϕ..4. Operação Matemática com Grandezas Complexas Os fasores, representados por números complexos, podem ser somados, subtraídos, multiplicados e divididos, além das operações de potenciação, raiz, e logaritmo..4.1 Soma Seja os fasores e definidos como: soma de e é dada por: = a + jb (.30) = c + jd (.31) C = + = (a + c) + j(b + d) (.3) representação gráfica da soma de fasores é mostrada na Figura.13.

-1 = 3 + j1 = - j C = 5 - j1 C Figura.13: Soma de fasores..4. Subtração subtração dos fasores e é dada por: C = - = (a - c) + j(b - d) (.33) - C C - Figura.14: Subtração de fasores..4.3 Produto O produto de e é dado por: ou. = (a + jb).(c + jd) = (a.c - b.d) + j(a.d + b.c) (.34). =.e jθ1.e jθ j( θ1+ θ ) =..e =. (θ 1 +θ ) (.35) Equação.35 mostra que se sobre um fasor =.e jθ1 aplicarmos um fasor de magnitude e ângulo θ, i.é. =.e jθ = (cosθ + jsenθ ), o fasor resultante:

-13 D =..e jθ1. e jθ =. [cos(θ 1 +θ ) + jsen(θ 1 +θ )] (.36) O fasor D tem módulo., e está avançado de θ desde a posição de formando um ângulo com o eixo de referência igual a (θ 1 +θ ). Portanto, o operador e jθ = cosθ + jsenθ operando sobre um fasor faz este fasor girar de um ângulo +θ desde sua posição inicial. O operador e -jθ = cosθ - jsenθ operando sobre um vetor faz este vetor girar de um ângulo (-θ). multiplicação é mais fácil de ser operada quando as grandezas envolvidas estão na forma polar..4.4 Divisão a = + c+ jb jd = ( a+ jb)( c jd) ( c+ jd)( c jd) ou = ac + bd + c + d j bc ad c + d (.37) jθ1 e = = jθ e e ( θ1 θ) j = (θ 1 -θ ) (.38) Como na multiplicação, a divisão é mais fácil quando as grandezas estão na forma polar..4.5 Potenciação Seja n = (.e jθ ) n = n.e jn.θ n = n. n.θ (.39

-14.4.6 Raiz N-ésima n = 1/n = (.e jθ ) 1/n = 1/n. e jθ/n = 1/n θ/n (.40) s outras (n-1) raízes são obtidas somando-se πq rad a θ antes que se efetue a divisão por n, para q = 0, 1,,..., (n-1). n = n ( θ + πq) n, q = 0,1,,...(n -1) θ + πq θ + πq = n (.41) cos + jsen n n Cada raiz multiplicada por si mesma n vezes resulta no fasor..4.7 Logaritmo Ln = Ln(.e jθ ) = Ln + Lne jθ = Ln + jθ.ln e = Ln + jθ (.4) Referências [1] Floyd, T.L. Principles of Electric Circuits, 6 th Ed. Prentice Hall, 000. ISN 0-13-095997-9.97p. [] Nilsson, James W., Reidel, Susan., Circuitos Elétricos, LTC, 6 a Edição, 003. [3] Kerchner, R.M., Corcoran,G.F., Circuitos de Corrente lternada, Porto legre, Globo, 1973.