Álgebra. Polinômios.

Documentos relacionados
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

3 + =. resp: A=5/4 e B=11/4

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

Primeira Lista de Exercícios

Erivaldo. Polinômios

Funções Polinomiais com Coeficientes Complexos. Teorema do Resto. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

POLINÔMIOS. Nível Básico

Funções Polinomiais com Coeficientes Complexos. Dispositivo de Briot-Ruffini. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

GABARITO. 01) a) c) VERDADEIRA P (x) nunca terá grau zero, pelo fato de possuir um termo independente de valor ( 2).

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

. Determine os valores de P(1) e P(22).

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

QUESTÕES DE VESTIBULARES

Funções Polinomiais com Coeficientes Complexos. Quantidade de Raízes e Consequências. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

Matemática E Extensivo V. 8

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau

FICHA DE TRABALHO N.º 4 MATEMÁTICA A - 10.º ANO POLINÓMIOS

Conteúdo. 2 Polinômios Introdução Operações... 13

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

Exercícios de Aprofundamento 2015 Mat - Polinômios

Matemática A - 10 o Ano

Matemática A - 10 o Ano Ficha de Trabalho

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

m 1 Grupo A é 3, então ( P + Q R) Como o maior expoente da variável x do polinômio P + Q R Analogamente ao item a, (PQ) = 3.

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i i + 5 = i. Resolução: Resolução:

... Onde usar os conhecimentos os sobre...

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Funções Polinomiais com Coeficientes Complexos. Divisão de Funções Polinomiais. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

DIVISÃO DE POLINÔMIOS

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Equações Algébricas - Propriedades das Raízes. Teorema da Decomposição. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

DISCIPLINA: Matemática III PROFESSORA: Juliana Schivani ALUNO(a): Data: / /.

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA E SUAS TECNOLOGIAS 2º TRIMESTRE

POLINÔMIOS. x 2x 5x 6 por x 1 x seja x x 3

Polinômios. Acadêmica: Vanessa da Silva Pires

3ª série do Ensino Médio Turma. 2º Bimestre de 2018 Data / / Escola Aluno

Apostila adaptada e editada da intenert pelo Professor Luiz

Matemática 7. Capítulo 1. Complexos, Polinômios e Equações Algébricas

obs: i) Salvo menção em contrário, anel = anel comutativo com unidade. ii) O conjunto dos naturais inclui o zero.

FICHA DE TRABALHO DE MATEMÁTICA A 10.º ANO FUNÇÕES POLINOMIAIS

Exercícios de Matemática Polinômios

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

EQUAÇÕES POLINOMIAIS

SE18 - Matemática. LMAT 6B2-1- Polinômios (Operações com polinômios) Questão 1

Polinômios e Equações Polinomiais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Simulado ITA. 3. O número complexo. (x + 4) (1 5x) 3x 2 x + 5

Equações Algébricas - Propriedades das Raízes. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

1 Funções quadráticas para ajudar nas contas

O DNA das equações algébricas

Polinómios. Integração de Funções Racionais

Relações de Girard - Parte II

Universidade Portucalense Departamento de Inovação, Ciência e Tecnologia Curso Satélite - Módulo I - Matemática

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

SUMÁRIO FUNÇÕES POLINOMIAIS

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

POLINÔMIOS E EQUAÇÕES ALGÉBRICAS ANA CRISTINA DA SILVA FERREIRA

Aula 34. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

exercícios de análise numérica II

Primeira prova de Álgebra II - 30/09/2010 Prof. - Juliana Coelho

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

Polinómios. Integração de Fracções Racionais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

Exercícios de Matemática Funções Função Polinomial

1 a Lista de Exercícios MAT 3211 Álgebra Linear Prof. Vyacheslav Futorny

Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Projecto Delfos: Escola de Matemática Para Jovens 1 FICHA DE TRABALHO

Polinômios irredutíveis

Polinômios e equações algébricas 2. Fascículo 12. Unidade 38

Funções Polinomiais com Coeficientes Complexos. 3 ano E.M. Professores Cleber Assis e Tiago Miranda

4 ÁLGEBRA ELEMENTAR. 4.1 Monômios e polinômios: valor numérico e operações.

Matemática Utilizando o dispositivo de Briot-Ruffini temos: a)

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Integração por frações parciais - Parte 1

Aula: Equações polinomiais

Raízes quadrada e cúbica de um polinômio

1. A imagem da função real f definida por f(x) = é a) R {1} b) R {2} c) R {-1} d) R {-2}

Pre-calculo 2013/2014

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Técnicas de. Integração

Aulas Particulares on-line

Transcrição:

Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x + b) p(x) = (k + 6)x³ + ( + k)x + 1 c) p(x) = (k² - 4)x² + (k - )x - ) Calcular m R, para que o polinômio P(x) = (m² - 1)x³ + (m + 1)x² - x + 4 seja: a) do º grau c) do 1º grau b) do º grau 4) Determine m R, para que o polinômio P(x) = (m-4)x³+(m²-16)x²+(m+4)x+4 seja de grau. 5) O polinômio dado abaixo é de grau, para que valor de m R? p(x) = (m-4)x³ + (m²-16)x² + (m+4)x + 4 6) Dado o polinômio p(x) = x 5 - x² +, calcule: 1 a) p(0) b) p(1) c) p(-1) d) p 7) Dado o polinômio p(x) = x² + kx -, determine k, sabendo que p() = 6. 8) No polinômio p(x) = x³ - kx² + x + 1, determine k se: a) p(1) = 0 b) p() = 1 c) p(-) = 5 9) Determine k para que x = seja raiz do polinômio p(x) = kx³ + x² + x + 1. 10) Mostre que 1 e são raízes do polinômio definido por p(x) = x³ - x² - x +. 11) Determine a, b e c para que os seguintes polinômios sejam nulos: a) p(x) = (a + )x³ + (b - )x + c² - 9 b) p(x) = (a+b-5)x² + (a-b-1)x + c + 4 c) p(x) = (a+b)x³ + (a+c)x² + (b+c)x d) p(x) = (a+b)x² + (a-c)x + b - c - Álgebra 1) Determine o valor de a e b em cada caso a seguir: a) p(x) = ax² + bx e p(x) = 0 b) p(x) = ax²+bx+, p() = 4 e p() = 6 c) p(x) = ax³-4x+b, p(1)= - e p(-1) = 5 d) p(x) = (a + b)x³ - (c - b)x² + x, p(1) = 4 e p() = 1 1) Determine os valores de a, b, c e d para que p(x) = q(x) em cada caso: a) p(x) = (a + )x² + cx + q(x) = (b-4)x³ + (a-)x² +5x + d + b) p(x) = (a² - 9)x³ + x - d q(x) = (b - 6)x² + (8 - c)x + 1 c) p(x) = (a²-)x 5 - (b+c)x³ + x² + 16 q(x) = ax 5 + 5x³ + (b + c)x² + d² 14) Determine a e b, sendo e - raízes do polinômio p(x) = x³ - x² + ax + b. 15) Dois polinômios p(x) e q(x) têm graus n e m, respectivamente. Se o grau de p(x).q(x) é 7 e m - n = -1, determine o grau de p(x) + q(x). 16) Dois polinômios p(x) e q(x) têm graus iguais a n. Qual o grau da soma p(x)+q(x), sabendo que o grau de p(x).q(x) = 8 17) Determine os valores de m, n e p, de modo que sejam idênticos os polinômios: P 1 (x) = (m+n+p)x 4 -(p-1)x³+x²+(n-p)x+n e P (x) = mx³ + (p + 7)x² + 5mx + m. 18) Determine m, n e p, de modo que: (mx² + nx + p) (x +1) = x³ + x² - x - 19) Se x³ + 1 (x + 1)(x² + ax + b), para todo x real, determine os valores de a e b. 0) Sendo P 1 (x) = x³+1, P (x) = x+1 e P (x) = ax²+bx+c, determine a, b e c, para que P 1 (x) = P (x).p (x). 1) Ache um polinômio P(x), do º grau, sabendo que P(x) - P(x-1) x e P(0) = 0. ) Calcule os valores de m, n e i para os quais o polinômio dado abaixo seja identicamente nulo. P(x) = (m - 1)x³ - ( 5n - )x² + ( - i) 1 Telefone: 90608-99406166

) Se A(x) = (a + 1)x² + (b - 1)x + c e B(x) = ax² + bx - c, calcule a, b e c, para que se tenha A(x) + B(x) 0. 4) O polinômio f(x) = x³ - 6x² + mx + n tem uma raiz igual a e f(-1) = - 6. Calcule m e n. 5) Seja P(x) um polinômio do segundo grau, tal que P(0) = -0, P(1) + P() = -18 e P(1) - P() = 6. Qual o conjunto de todos os valores de x para os quais P(x) < 0. 6) Sabendo-se que P(x) = ax 4 + bx³ + c e Q(x) = ax³ + bx + c, determine os coeficientes a, b e c, sabendo que P(0) = 0, P(1) = 0 e Q(1) = 1. 7) Determine k, para que x = 1 seja raiz de P(x)=4x 4-8x³-(k+5)x²+(k-)x+5-k. 8) Se P(x) = x³ + (a - )x² +(b - 4)x - admite as raízes 1 e -1, calcule os valores de a e b. 9) Sendo P(x) = x² - x + 1, calcule: a) P(i) b) P(1 + i) c) P( - i) 0) A equação 6x² - 5x + m = 0 admite uma raiz igual a 1. O valor de m, na equação, é: 1) Sabendo que p(x) = x 4 - x³ + x² - 1, q(x) = x 5 + 1 e t(x) = 4x²- 1. Obtenha: a) p(x)+q(x) d) t(x).p(x) - q(x) b) q(x).t(x) e) (t(x))² - 16p(x) c) q(x)-t(x) ) Quais devem ser os valores de A, B e x + 5x 1 A B C C, para que = + +. x x x x + 1 x 1 ) Determine A, B e C na decomposição: 1 A Bx + C = +. x 1 x 1 x + x + 1 4) Os valores de A, B e C tais que: 8 A B C + + são: x 4x x x x + 5) Determine o quociente e o resto da divisão de f(x) = x³ + x² - x + por g(x) = x² + x +1. 6) Determine o quociente e o resto da divisão de A(x) = x 4-1 por B(x) = x + 1. 7) Determine α e β, para que seja exata a divisão de A(x) = x³+ αx²+ βx - 1 por B(x) = x²- x - 1. 8) Determine p e q, de modo que o resto da divisão de A(x) = x 4 + px³ - x² + qx +1 por B(x) = x² + x + 1 seja ax +. 9) Dividindo (x³ - 4x² + 7x - ) por um certo polinômio P(x), obtemos o quociente (x-1) e o resto (x-1). Calcule P(x). 40) Se o polinômio dado abaixo é divisível por B(x) = x + m. Calcule o quociente de A(x) por B(x). A(x) = x³ + ( + m)x² + ( + m)x + m 41) Determine as soluções da equação Q(x) = 0, onde Q(x) é o quociente da divisão de P(x) = x 4-10x³ + 4x² + 10x - 4 por x² - 6x + 5. 4) Sabendo que P(x) = x³ + Ax + B e Q(x) = x² - x + 9: a) divida P(x) por Q(x). b) determine A e B, para que a divisão seja exata. 4) Se F = x³ - x² - 11, G = x³ - x -1 e H = x + 1, determine: a) o polinômio P = (F - G):H. b) o grau do polinômio F.G 44) Calcule m e n para que polinômio A(x) = x 4 - x³ + mx² - nx + seja divisível por B(x) = x² - x -. 45) Sabe-se que A(x) = x³ + x² + mx + n é divisível por B(x) = x² + x + 1. Calcule o valor de m + n. 46) Determine m e n, de modo que o resto da divisão do polinômio y 5 - my³ + n por y³ + y² seja 5. 47) Se P(x) = x³ - 4x²+ ax + b e Q(x) = x² - x - 1 são polinômios, determine os valores de a e b, para que P(x) seja divisível por Q(x). 48) Efetue a divisão de p(x) por d(x) em cada caso a seguir: a) p(x)=x -x +6x-5 e d(x)=x -x+1 b) p(x)=x + 5x - 7x + 4 e d(x)=x + 1 Telefone: 90608-99406166

c) p(x)=5x 5 -x 4-4x -4x e d(x)=x +x d) p(x)=x -x +x-1 e d(x)=x +x-1 49) Qual o valor de k para que a divisão de p(x)=4x³ - x² + kx + por d(x)=x² -1 seja exata. 50) Calcule o valor de m e n para a divisão de p(x) por d(x) seja exata: p(x) = 8x 4 + mx³ + x² - nx + 1 d(x) = 4x² + x - 1 51) Determine os valores de p e q para que o polinômio x³ + px + q seja divisível por x² + x + 5. 5) Dividindo p(x) por d(x) = x² - 4x + 1, obtém-se quociente q(x) = x + 4 e resto r(x) = 15x + 1. Determine p(x). 5) Determine um polinômio p(x) cuja a divisão por d(x) = x - 6 resulta um quociente q(x) = - x³ - x² + 1 e resto 6. 54) Nos esquemas adiante foi aplicado o dispositivo prático de Briot-Ruffini; calcule o valor dos elementos desconhecidos em cada um deles: a) a b c d 1-1 b) -1 a b c d 4 - -1 0 55) Usando o dispositivo prático de Briot- Ruffuni, calcule o quociente e o resto da divisão de: a) P(x) = x 4-5x³+x²+x-1 por (x - ) b) P(x) = x³ - x² - 1 por (x - 1) c) P(x) = 5x² - x + por (x + ) d) P(x) = 4x 5-5x 4 + 1 por (x - 1) e) P(x) = x³ - x² + x + por (x - 1) f ) P(x) = x² - x + 1 por (x - ) 56) Obtenha o quociente e o resto nas seguintes divisões: a) p(x) = 6x³-x²+x+1 por d(x) = x - 6 b) p(x) = x 4 + x² - 1 por d(x) = x - c) p(x) = x 6-1 por d(x) = x + 1 57) Determine o quociente q(x) e o resto r(x) das divisões de p(x) por d(x): a) p(x)=x³ - x² + x + 1 e d(x)=x - 1 b) p(x) = x 5-4x 4 + e d(x) = x + c) p(x) = 5x² - x - 1 e d(x) = x + 1 d) p(x) = x 5-1 e d(x) = x - 1 58) Determine o resto da divisão do polinômio definido por P(x) = x³ +7x² - x + 1 por: a) x - b) x + c) x + 5 59) Determine o valor de a, para que o resto da divisão de P(x) = ax³ - x + 1 por x - seja 4. 60) Qual é o número real que se deve adicionar a P(x) = x³ - x² + x, para se obter um polinômio divisível por x -? 61) Determine o resto da divisão do polinômio definido por P(x) = x 8-5x³ +x² - 1 por x + 1. 6) Seja P(x) = x³ + ax² - 5x + 1. Calcule P(x) a, para que tenha resto 11. x 6) Determine b e c, de modo que o polinômio definido por P(x) = x 4 + x² + bx + c seja divisível por x - mas, quando dividido por x + deixe resto 4. 64) Quais os valores de a e b, tais que os polinômios x³ - ax² + (a + b)x - b e x³ - (a+b)x + a sejam divisíveis por x+1. 65) Dividindo-se P(x) = x³ + x² + 5x + a por x - a encontra-se para resto da divisão a³. Determine os valores de a. 66) Dividindo P(x) por x - 1, encontramos para quociente x²- x e resto m. Sendo P(-1) = 0, calcule m. 67) O polinômio P(x) = 5x³ - 4x² + px + q 1 1 é divisível por x - e P =. Calcule 8 p e q. 68) Ache a e b, para que os polinômios P(x) = x² + ax - b e Q(x) = -x³ + ax - b sejam divisíveis por x - 1. Telefone: 90608-99406166

69) Determine os valores a e b no polinômio definido por f(x) = x³ + x² + ax + b, para que f(x) + 1 seja divisível por x +1 e f(x) - 1 seja divisível por x - 1. 70) Determine o polinômio P(x) do º grau que se anula para x = 1 e que, dividido por x + 1, x - e x +, apresenta restos iguais a 6. 71) Para quais valores de m o resto da divisão de P(x) = m²x² - 5mx + 6 por (x-1) é menor que? 7) Determine o resto r(x) das divisões de p(x) por d(x) em cada caso a seguir: a) p(x) = x 4 - x³ + 1 e d(x) = x - 1 b) p(x)= x 5 - x 4 + x³ - x² e d(x)= x - 1 c) p(x) = x² - 5x + 6 e d(x) = x - d) p(x)= x 6 - x 5 - x 4 + x³ e d(x)= x +1 7) Qual o valor de m para que o resto da divisão de p(x) = x³ - x² + mx + m - 1 por d(x) = x - seja 5. 74) Determine o valor de a para que o resto da divisão de p(x) = 4x² - ax + 1 por d(x) = x - 6 seja igual a - 5. 75) Calcule k para que o polinômio dado por p(x) = x³ - kx² + 5x - 1 seja divisível por x - 1. 76) Determine a e b, sabendo que p(x) = - x² + (a - b)x e t(x) = x³ - ax² - ax + b são ambos divisíveis por x + 1. 77) Dividindo p(x) por x -, obtém-se resto 5, e, dividindo por x + 1, obtém-se resto -. Determine o resto da divisão de p(x) por (x - ).(x +1). 78) Obtenha o resto r(x) da divisão de um polinômio p(x) por (x + )(x - ), sabendo que os restos das divisões de p(x) dividido por (x + ) e por (x - ) são respectivamente, -1 e. 79) Obtenha o resto r(x) da divisão de um polinômio p(x) por (x²-9), sendo os restos da divisão de p(x) por (x+) e por (x-), são, respectivamente e -1. 80) Se os números -, a, b são as raízes da equação x³ + 5x² - x - 4 = 0, então o valor de a + b é : 81) Se - é raiz de x³ + x² - 9x - 18. A soma das outras raízes é: 8) O polinômio de coeficientes inteiros, de menor grau possível, que tem como raízes e i, é: 8) Sabendo-se que (1 + i) uma das raízes de x 4 - x³ + x² + x - = 0, as outras três raízes são: 84) Determine m e n, de modo que o polinômio P(x) = x 4 + x³ + mx² + nx - seja divisível por (x + 1).(x - ). 85) P(x) = x 4-4x³ + mx² + 4x + n é divisível por (x - 1).(x - ). Calcule o valor de 5m + n. 86) Se P(x) dividido por (x - 1) dá resto ; por (x - ) dá resto 1 e por (x - ) dá resto -4. Calcule o resto da divisão de P(x) por (x - 1).(x - ).(x - ). 87) P(x) = 4x 4-5x² - bx + a é divisível por (x² - 1). Calcule a e b. 88) Determine m e n, para que o polinômio definido por P(x)= x 4 - x³ + mx² + n seja divisível por x² - x -. 89) Forme um polinômio cujas raízes são 1, -, i e -i. 90) Decomponha em fatores do 1º grau o polinômio P(x) = x³ + x² - 7x +, sabendo que suas raízes são -, 1 e 1. 91) Se -1 é raiz de x³ + x² - x - = 0, determine as outras raízes. 9) O polinômio P(x) = x³ - x² + x + a é divisível por x - 1. Ache todas as raízes complexas de P(x). 9) Sabendo que é uma raiz simples da equação x³ + x² - 1x +10 = 0, determine seu conjunto solução. 94) Sabendo que 1 e são raízes da equação x 4-8x³ + 4x² - x +15 = 0, determine seu conjunto solução. 95) Resolva x 4-7x³ + 1x² + x - 18 = 0, sabendo que é raiz dupla da equação. 96) Sabendo que 1 é raiz dupla da equação x³+ax²-x+b, calcule o valor de a + b. 4 Telefone: 90608-99406166

97) Qual a relação entre a e b, para que 1 seja raiz dupla da equação polinomial dada por x³ + (-a -1)x² + (b + a)x - b = 0? 98) Determine as raízes das equações: a) (x - ).(x - ).(x - 4) = 0 b) (x + i).(x - i).(x + 1) = 0 c) 4(x - ).(x + ).(x + i) = 0 d) (x + i).(x - ).(x - i) = 0 99) Sabendo que uma das raízes da equação x³ - 4x² + x + 6 = 0 é o número. Determine as outras duas raízes. 100) Sabendo que - é uma das raízes da equação x³ + 4x² + x = 0, determine as outras raízes. 101) Determine as outras raízes do polinômio P(x) = x³ - x² - 9x + 9 sabendo que P(1) = 0. 10) Sabendo que - é raiz da equação x³ + ix² - 4x - 4i = 0, resolva-a. 10) Determine m para que - 1 seja raiz da equação x 4 +( m - 1 )x³ - 6m = 0. 104) Decomponha o polinômio p(x) em fatores do 1º grau, sabendo que a 1, a e a são as raízes desse polinômio: a) p(x) = x³ + 7x² + 14x + 8 e a 1 = -, a = -1 e a = -4 b) p(x) = x³ + 9x² + 7x + 7 e a 1 = a = a = - c) p(x) = x³-ix²-x+i = 0 e a 1 =a =a = i d) p(x) = 5x³ + x² - 0x - 1 e a 1 =, a = - e a = - 5 105) Resolva a equação abaixo, sabendo que o número é raiz dupla. x 4-4x³ + x² + 4x - 4 = 0 106) Mostre que - é raiz de multiplicidade três de x 4 + 7x³ +18x² + 0x + 8 = 0. 107) Determine a multiplicidade da raiz 1 na equação x 4 - x³ - x² + 5x - = 0 108) Determine o conjunto solução da e- quação x 4 - x³ - 11x² - x - 1 = 0, sabendo que i é uma de suas raízes. 109) Determine o valor de m, para que a equação x 4 - x³ + 6x² + mx + 8 = 0 tenha como uma de suas raízes i. 110) Sabendo que (1 + i) é raiz da equação x 4-7x³ + 19x² - x + 0 = 0, determine seu conjunto solução. 111) Resolva x³ - x² + 9x - 18 = 0, sabendo que uma raiz é um número imaginário puro da forma bi. 11) A equação x³ + mx² + x + n = 0, onde m e n são números reais, tem 1 + i como raiz. Calcule m e n. 11) Resolva as equações: a) x³ - 6x² - x + 0 = 0 b) x³ - x² - x + 1 = 0 c) 4x 4-4x³ - x² + 4x - 1 = 0 d) x(x - 4)² + 10x(x - ) - 8 = 0 114) Resolva: x³- 1x²+1x - = 0. 115) Determine o conjunto solução da e- quação x 4 + x³ - 7x² - x + 6 = 0. 116) Resolva: x³ - x² - x + 6 = 0. 117) Ache, se existirem, as raízes das seguintes equações: a) 6x 4-17x³ + 8x² + 5x - = 0 b) 4x³ - 5x + 1 = 0 x 4 1 118) Resolva: + 4x = (x + )² + 7. x 1 119) Determine as soluções reais da equação = x. x 8x x 4x 10) Quais são as raízes inteiras da equação x³ + 4x² + x - 4 = 0? 11) Escreva as relações de Girard para cada equação a seguir: a) x² - 5x + 7 = 0 b) x³ - 4x² - 5x + 6 = 0 c) x³ - 6x² + 5x - 8 = 0 d) x 4 - x³ + 4x² + 5x - 7 = 0 1) Calcule a soma e o produto das raízes das equações: a) x³ - 7x² + 5x + 6 = 0 b) x 4-6x³ + 8x - 1 = 0 c) x 5-4x 4 + 5x + 16 = 0 1) Determine m para que a soma das raízes de x 5 + (m - 1)x 4 + x² - x + 8 = 0 seja igual a -5. 5 Telefone: 90608-99406166

14) Determine m para que a soma das raízes de 4x 4 - (m - 1)x³ + x² - 5x + 4 = 0 seja igual a. 15) Determine m para que o produto das raízes da equação 4x³ - x + (m - 6) = 0 seja igual a -. 16) Resolva x³ - x² - x + = 0, sabendo que o produto de duas de suas raízes é. 17) Resolva x³ + x² - 4x - 4 = 0, sabendo que duas de suas raízes são simétricas. 18) Determine as raízes da equação definida por x³ + x² - 9x - 9 = 0, sabendo que duas delas são simétricas. 19) Determine as raízes da equação, em x, x³ + 7x² + 8x - 16 = 0, sabendo que duas delas são iguais. 10) Resolva x³ - x² + x - 1 = 0, sabendo que 1 + i é uma de suas soluções. 11) Resolva x³ - 7x² + 5x - 9 = 0, sabendo que - i é uma de suas raízes. 1 1 1 1) Calcule o valor de + +, sendo a, a b c b e c raízes de x³ - x² + x - 4 = 0,. 1) Se x³ - 4x² + x - 1 = 0, tem raízes a, b, c, calcule o valor de: 1 1 1 a b c a) + + c) + + ab ac bc bc ca ab b) a -1 + b -1 + c -1 14) Resolva x³ - x² - 6x + 8 = 0, sabendo que a soma de duas de suas raízes é igual a 5. 15) Determine as raízes da equação, em x, x³ - 16x² + x - 6 = 0, sabendo que o produto de duas delas é igual a unidade. 16) Resolva x³ - 11x² + 4x - 4 = 0, sabendo que a diferença entre duas de suas raízes é. 17) Dada a equação x³ - x - = 0, determine suas raízes, sabendo que uma delas é dupla. 18) Resolva x³ - 11x² + 8x - 40 = 0, sabendo que uma das raízes é igual ao dobro da outra. 19) Determine m, de modo que as raízes de x³ - 5x² - (m -1)x + = 0 verifiquem a relação a + b = 4c, sendo a, b e c as raízes da equação. 140) Resolva x³ - 15x² + 71x - 105 = 0, sabendo que suas raízes estão em P.A.. 141) Determine k de modo que as raízes da equação x³ - x² - 6x + k = 0 estejam em P.A.. 14) Dada x³ - 9x² + 6x + a = 0, determine o valor de a, para que as raízes dessa equação sejam números naturais sucessivos. 14) Sabendo que as raízes da equação x³- 14x² + 56x - 64 = 0 estão em P.G., determine seu conjunto solução. 144) Sejam - e duas raízes da equação x³ - x² + mx + n = 0, onde m, n R. Determine: a) a terceira raiz dessa equação. b) os valores de m e n. 145) As raízes de x³ - 6x² + kx + 64 = 0 estão em P.G.. Calcule o valor de k. 146) Sendo a, b e c são raízes da equação x³ + x - 1 = 0, calcule o valor de: 1 1 1 log + +. a b c 147) Os valores reais de a e b, para os quais x³ +ax² + 18 = 0 e x³ + bx + 1 = 0 têm duas raízes reais são: 148) Sabendo que ( + i) é uma das raízes da equação x³ - 14x² + mx - 10 = 0, determine: a) o valor de m. b) o valor de sua raiz real. 149) Resolva x³ - 16x² + 85x - 150 = 0, sabendo que uma das raízes tem multiplicidade. 150) 4x 5 + x 4 + 4x³ +x² + 4x + = 0 tem como raízes a, b, c, d e e. O valor de 1 1 1 1 1 + + + + é: a b c d e 151) As raízes de x³ - 9x² + x - 15 = 0 estão em progressão aritmética. Suas raízes são: 15) O produto de duas raízes da equação x³ - 19x² + 7x - 14 = 0 é 1. A soma das duas maiores raízes da equação é: 6 Telefone: 90608-99406166

1. a) º b) 1º c) grau 0. a) º(k -1); 1º(k = -1) b) º(k -); 0grau(k=-) c) º(k ±); 1º(k = -); 0 grau (k = ). a) m ±1 b) m=1 c) m=-1 4.ç m R 5. nunca 91 6. a) b) 5 c) -1 d) 7. k = 0 10 7 8. a) b) c) - 16 9. - 7 10. demonstração 11. a) a= -; b= e c= ± b) a = ; b = e c = -4 c) a = b = c = 0 d) a = -1; b = 1 e c = - 1. a) a = b = 0 b) a = 1 e b = 0 c) a = 1 e b = 11 d) a = - e b = 10 5 1. a) a=5; b=4; c=5 e d=1 b) a = ±; b = ; c = 5 e d = -1 c) a = ou a = -1; b = 8; c = -1 e d = ±4 14. a = - 4 e b = 8 15. 4º grau 16. 4º grau 17. m = 1; n = e p = - 18. m = ; n = e p = - 19. a = -1 e b = 1 0. a = c = 1 e b = -1 1. P(x) = 1 x + 1 x. m = 1 ; n = 5 e l =. a = - 1 ; b = 1 e c = 0 4. m = e n = 4 5. {x R/ x < 4 ou x > 5} 6. não tem solução 7. k = -8 8. a = 5 e b = 9. a) -i b) -1 c) -i RESPOSTAS 0. m = 1 1. a) x 5 + x 4 - x + x b) 1x 7 - x 5 + 4x - 1 c) x 5-4x + d) 4x 6-4x 5 +7x 4 +x -6x +1 e) 16x - 40x + 7. A = 1; B = - e C =. A = 1 ; b = - 1 e C = - 4. A = -; B = 1 e C = 1 5. Q(x) = x - 5 e R(x) = 1x + 7 6. Q(x) = x - x + x - 1 e R(x) = 0 7. α = 1 e β = - 8. p = 0 e q = -1 9. P(x) = x - x + 40. x + x + 41. S = (-1, 5) 4. A = 0 e B = 18 4. a) x ± 8 b) 6 44. m = -6 e n = 1 45. 46. m = 9 e n = 5 47. a = 1 e b = 48. a) x e resto 5x - 5 b) x +4x-11 e resto 15 c) 5x -7x +x e resto -x d) x - 5 e resto 14x - 6 49. k = -4 50 17 50. m = e n = 51. p = 1 e q = -10 5. x + 5 5. x 4 + x + 1x + x 54. a) a = 1; b = 1; c = -8 e d = 5 b) a = 4; b = ; c = - e d = -1 55. a) x -x -4x-5 e r=-11 b) x + x + 1 e r = 0 c) 5x - 18 e r = 56 d) 4x 4 -x -x -x-1 e r=0 e) x - x e r = x 1 1 f) - e r = 4 4 56. a) x 10 + x+7 e r=4 7 b) x + x 15 45 + x+ e 4 8 r = 17 8 c) 1 x 5-4 1 x 4 + 8 1 x - 16 1 x + 1 1 6 x - e r = - 64 64 57. a) x + x + e r = b) x 4-6x +1x -4x+48 e r = -9 c) 5x - 8 e r = 7 d) x 4 +x +x +x+1 e r=1 7 58. a) 85 b) 4 c) 8 1 59. a = 60. -1 1 61. - 6. a = 56 6. b = -1 e c = -18 64. a = e b = -4 65. a = 0 ou a = - 66. m = 6 67. p = -4 e q = 44 4 68. a = e b = 5 5 69. a = 0 e b = - 70. P(x) = x + x - 4x + 71. {m R / 1 < m < 4} 7. a) 4 b) 1 c) 0 d) 0 7. m = 74. a = 14 75. k = 6 76. a=0 e b=1 7 1 77. x + 78. n + 1 79. 1 x + 1 80. - 81. 0 8. x - x + x - 8. 1 - i; 1 e -1 84. m = -19 e n = - 85. 7 86. -x + 5x - 1 87. a = 1 e b = 0 88. m = -7 e n = 89. P(x)=x 4 +x -x +x- 90. P(x)=(x+)(x- 1 )(x-1) 91. (-, ) 9. -5,1 e 9. {-5,1, } 94. {1,, - i, + i} Telefone: 90608-99406166

95. {-1,, } 96. 1 97. a = 0 e b = -1 98. a), e 4 b) i, -i e -1 c), - e - i d) -i, e i 99. e -1 100. 0 e -1 101. ± 10. e - i 10. 1/4 104. a) (x+)(x+1)(x+4) b) (x+) c) (x-i) d) (x -)(x+)(5x+) 105. ±1 106. Usar Briot-Ruffini 107. 108. {-, 4, -i, i} 109. -1 110. {1, 4, 1 - i, 1 + i} 111. {, -i, i} 11. m = - e n = 0 11. a) {-,, 5} b) {-1, 1, 1 } c) {-1, 1, 1 } d) {-, } 114. { 1, 1, } 115. {-, -1, 1, } 116. {-,, } 117. a) {- 1, 1, 1, } 17. -, -1 e 18. -,-1 e 19. 1, -4 10. 1 - i e 1 11. e + i 1. 4 1. a) 4 b) c) 14. {-, 1, 4} 15. { 1,, } 16. {1, 4, 6} 17.{-1, } 18. {, 4, 5} 19. 5 140. {, 5, 7} 141. 8 14. -4 14. {, 4, 8} 144. m = -1 e n = -6 145. -4 146. 0 147. a = 1 e b = 148. a) b) 149. {5, 6} 150. 1 151. 1, e 5 15. 9 1 ± b) 1, 118. {, -1 + i, -1 - i} 119. {} 10. {-} 5 7 11. a) S 1 = e S = b) S 1 = 4, S = -5 e S = 6 c) S 1 =, S = 5 e S = 4 d) S 1 =, S = 4, S = -5 e S 4 = 7 1. a) S = 7 e P = - b) S = e P = -4 c) S = e P = -8 1. 8 14. 9 15. 4 16. -1, 1 e 8 Telefone: 90608-99406166