FCM 208 Física (Arquitetura)

Documentos relacionados
Estática e dinâmica dos Fluidos

Estática e dinâmica dos Fluidos

FCM 208 Física (Arquitetura)

Física a Lista de Exercícios

FCM 208 Física (Arquitetura)

FCM 208 Física (Arquitetura)

FCM 208 Física (Arquitetura)

FCM 208 Física (Arquitetura)

Universidade de São Paulo Instituto de Física de São Carlos - IFSC. FCM 208 Física (Arquitetura) Energia. Prof. Dr.

FCM 208 Física (Arquitetura)

FCM 208 Física (Arquitetura)

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 4.ED., LTC, RIO DE JANEIRO, FÍSICA 2 CAPÍTULO 16 FLUIDOS. v s

FCM 208 Física (Arquitetura)

FCM 208 Física (Arquitetura)

AI-34D Instrumentação Industrial Física Mecânica dos Fluidos

Halliday Fundamentos de Física Volume 2

FCM 208 Física (Arquitetura)

Mecânica dos Fluidos. Aula 18 Exercícios Complementares. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

UFABC Fenômenos Térmicos Prof. Germán Lugones. Aula 2: Hidrodinâmica

Física I Apêndice IV: Dinâmica da Rotações pág. XXII Hidrodinâmica

parâmetros de cálculo 4. Velocidade 5. Vazão

Biofísica Bacharelado em Biologia

Hidrodinâmica: Fluidos em Movimento

Mas Da figura, temos:

FCM 208 Física (Arquitetura)

AULA DO CAP. 15-2ª Parte Fluidos Ideais em Movimento DANIEL BERNOULLI ( )

Curso Superior de Tecnologia em Radiologia Disciplina de Fluidos e Processos Térmicos

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE ATIVIDADE SEGUNDA AVALIAÇÃO

FLUIDOS - RESUMO. A densidade de uma substância em um ponto P é definida como,

UNIVERSIDADE DE SÃO PAULO ENGENHARIA QUÍMICA LOQ4085 OPERAÇÕES UNITÁRIAS I

FÍSICA:TERMODINÂMICA, ONDAS E ÓPTICA

Hidrostática e Hidrodinâmica

SELEÇÃO DE BOMBAS HIDRÁULICAS

Profº Carlos Alberto

Curso: ENGENHARIA BÁSICA Disciplina: ESTÁTICA DOS FLUIDOS LISTA DE EXERCÍCIOS UNIDADES DE PRESSÃO:

EXERCICIOS PARA A LISTA 1 CAPITULO 15 FLUIDOS E ELASTICIDADE

LISTA DE EXERCÍCIOS - PRA FENÔMENOS DE TRANSPORTE

Notas de aulas: Lucas Xavier ( Hidrodinâmica NOÇÕES DE HIDRODINÂMICA

UNIVERSIDADE CATÓLICA DE GOIÁS. Departamento de Matemática e Física Coordenador da Área de Física

CEFET-UNIDADE DE ENSINO DE SIMÕES FILHO Curso: Petróleo & Gás Turma: Disciplina: Física Carga Horária: 30 horas Professor: Melquisedec Lourenço Aluno:

IPH a LISTA DE EXERCÍCIOS (atualizada 2017/1) Sempre que necessário e não for especificado, utilize:

2a LISTA DE EXERCÍCIOS

Prof. Renato M. Pugliese. Física II - 1º semestre de Prova 2 - GABARITO abril/14. Nome: Matr.:

Nota: Campus JK. TMFA Termodinâmica Aplicada

, e a densidade do ar é 1, 293kg / m. Resposta: 5,5 km.

Mecânica dos Fluidos Cap. 14. Prof. Dr. Oscar R. dos Santos

Movimento Uniforme Variado

Fluxo de Fluidos. Fluxo estático: O padrão do fluxo não muda com o tempo. Fluxo Laminar

LISTA DE EXERCÍCIOS. 1) A figura abaixo mostra, de forma simplificada, o sistema de freios a disco de um

AERODINÂMICA Ramo da física que trata dos fenômenos que acompanham todo movimento relativo entre um corpo e o ar que o envolve.

Objetivos. Escoamento de um fluido. O aluno deverá ser capaz de: Introduzir noções acerca do movimento dos fluidos.

Terceira lista de exercício

COLÉGIO MONJOLO ENSINO MÉDIO

FÍSICA 2 PROVA 2 TEMA 1 HIDROSTÁTICA E HIDRODINÂMICA PROF. LEANDRO NECKEL

CADERNO DE EXERCÍCIOS DE MECÂNICA DOS FLUIDOS

PSVS/UFES 2014 MATEMÁTICA 1ª QUESTÃO. O valor do limite 2ª QUESTÃO. O domínio da função real definida por 3ª QUESTÃO

Exercício 1. Exercício 2.

Exercícios sobre Quantidade de Movimento Linear

2ª Fase. 1º e 2º Anos. Leia com atenção todas as instruções seguintes.

MECÂNICA DOS FLUIDOS LISTA DE EXERCÍCIOS

Lista de Exercícios Perda de Carga Localizada e Perda de Carga Singular

Respostas a lápis ou com caneta de cor distinta à mencionada no item acima serão desconsideradas.

LISTA DE EXERCÍCIOS PARA RECAPTULAÇÃO DOS CONTEÚDOS

Lista de exercícios LOB1019 Física 2

FCM 208 Física (Arquitetura)

LISTA EXERCICIOS HIDRODINAMICA FAG PROF. ALOISIO

FÍSICA II. Justifique todas as suas respostas convenientemente Apresente uma Prova limpa e ordenada

Fluidos - Dinâmica. Estudo: Equação da Continuidade Equação de Bernoulli Aplicações

Exercícios Mecânica de Fluídos. Introdução (Estática dos fluídos)

Escoamento Interno Viscoso

Programa e Bibliografia

VESTIBULAR UFPE UFRPE / ª ETAPA

LISTA DE EXERCÍCIOS 2

Exercício 136 Dado: Exercício 137

Mecânica Geral 1 Rotação de corpos rígidos Prof. Dr. Cláudio Sérgio Sartori.

Universidade Federal do Rio de Janeiro Instituto de Física Lista 1 Física 2. prof. Daniela Szilard 23 de maio de 2016

FÍSICA - 3 o ANO MÓDULO 28 HIDROSTÁTICA: CONCEITOS E PRINCÍPIO DE STEVIN

Aula 6 Dimensionamento de grandes equipamentos de usinas termoelétricas

LISTA DE EXERCÍCIOS. Questão 1. Responda as questões abaixo:

LOQ Fenômenos de Transporte I

HIDRODINÂMICA. Princípios gerais do movimento dos fluidos. Teorema de Bernoulli

Professores: Murilo. Física. 3ª Série. 300 kg, que num determinado ponto está a 3 m de altura e tem energia cinética de 6000 J?

CESAR ALVES DE ALMEIDA COSTA - CEL. INT. R1

Tubo de Pitot. Usado para medir a vazão; Vantagem: Menor interferência no fluxo; Empregados sem a necessidade de parada;

Universidade de São Paulo Instituto de Física de São Carlos - IFSC. Capacitância. Prof. Dr. José Pedro Donoso

PROVA MODELO 1: AVALIAÇÃO DE MECÂNICA DOS FLUIDOS

Apostila de Física 16 Hidrodinâmica

O somatório das vazões volumétricas também é igual a zero. PORQUE

INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel. Fluidos. Disciplina: Física Professor: Carlos Alberto

FAÇA DE ACORDO COM O QUE SE PEDE EM CADA QUESTÃO

PONTIFICIA UNIVERSIDADE CATÓLICA DE GOIÁS PRÓ-REITORIA DE GRADUAÇÃO ESCOLA DE ENGENHARIA

CIENCIAS DE ENGENHARIA QUÍMICA MEF

Conservação da Energia

Aluno(a): nº: Turma: Data: / /2016. Matéria: Física

P L A N O D E E N S I N O. DISCIPLINA: Física Geral B SIGLA: FIS-B CARGA HORÁRIA TOTAL : 60 TEORIA: 60 PRÁTICA: 0

Disciplina Física 3. Prof. Rudson R. Alves Bacharel em Física pela UFES Mestrado IFGW UNICAMP. Prof. da UVV desde 1998 Engenharias desde 2000

Fenômenos de Transferência FEN/MECAN/UERJ Prof Gustavo Rabello 2 período 2014 lista de exercícios 06/11/2014. Conservação de Quantidade de Movimento

Transcrição:

Universidade de São Paulo Instituto de Física de São Carlos - IFSC FCM 08 Física (Arquitetura) Estática e dinâmica dos fluidos: Hidraulica Prof. Dr. José Pedro Donoso

Termas de Pompéia Por volta de 80 c.c., Caio Sérgio Orata apresentou uma idéia para cultivar ostras em águas cálidas. Sua ideia consistia em colocar uma série de tanques sobre pilares de tijolos e instalar fornalhas para circular ar quente nos tanques. Este mesmo princípio foi aplicado depois para habitações e para banhos públicos, que os romanos chamavam de termas.

O calor emanava de uma fornalha. Uma caldeira fornecia água para o banho, enquanto o ar aquecido subia pelas paredes ocas e aquecia o recinto. Coleção História em Revista: Impérios em Ascensão Editora Cidade Cultural, 1990

Considere um tanque cheio de um líquido (de densidade ρ) A pressão no fundo do tanque é: P = F/A = mg/a Se A é a área do tanque e h a altura do líquido, o volume do líquido é: V = Ah, a pressão no fundo do tanque é: P = ρvg/a = ρgh Como a pressão atmosférica P o também atua na superfície do líquido, a pressão total no fundo do tanque é: P = P o + ρgh Pressão atmosférica: P o = 1.01 10 5 N/m ou 101 k Pa Densidades: Água: ρ = 1 g/cm 3 = 1000 kg/m 3 Ar: 1. 10-3 g/cm 3 = 1. kg/m 3

Equação de Continuidade Num líquido em movimento com velocidade v, a vazão (A v) é constante: A 1 v 1 = A v Aplicações: quando a água sai da torneira, sua velocidade aumenta enquanto a área da seção reta diminui. No caso da mangueira, quando fechamos parcialmente a sua extremidade, diminuimos a área da seção reta, aumentando a velocidade do líquido. Halliday, Resnick, Walker, Fundamentals of Physics; Cutnell & Johnson, Physics

P ρ ρ ρ + ρ 1 1 1 + v1 + gh1 = P + v gh Equação de Bernoulli matemático suizo que calculou o trabalho realizado por uma força para levar um volume de líquido até uma altura h:

Aplicações 1 - Um tanque de gasolina de m.5 m.5 m esta cheio de gasolina (densidade ρ = 0.683 g/cm 3 ou 683 Kg/m 3 ). Encontre a pressão no fundo do tanque e a força exercida no fundo. Respostas: P = P o + P gasolina = 1.18 10 5 N/m ou 118 k Pa; F = 5.9 10 5 N - (a) A que altura h se elevará a água pela tubulação de um edifício se a pressão no encanamento da planta baixa for 3 10 5 N/m? Densidade da água ρ = 1 g/cm 3 = 1000 kg/m 3. Resposta: h = 30.6 m (b) Qual a pressão necessária para elevar água até o ultimo andar do Empire State Building que está a 381 m de altura? Resposta: P = 37 atm

3(a) - A água entra em uma casa através de um encanamento com diámetro interno de cm e com uma pressão de 4 10 5 Pa (cerca de 4 atm). Um encanamento co diámetro interno de 1 cm se liga ao banheiro do segundo andar, a 5 m de altura. Sabendo que no cano da entrada a velocidade é igual a 1.5 m/s, ache (a) a velocidade do escoamento, (b) a pressão e (c) a vazão volumétrica no banheiro. Respostas: (a) 6 m/s (b) 3.3 10 5 Pa (c) 0.47 litros/seg Ref: Sears & Zemansky, Física II (10 a ed) 3(b) - A água que circula numa residência vem do encanamento no solo. A água entra na casa através de um cano de 8 cm de diámetro com velocidade v = 0.6 m/s e pressão de 4 10 5 N/m. (a) Qual a velocidade da água num cano de 5 cm de diámetro no 3o andar, a 9 m de altura? (b) Qual a pressão da água no 3 o andar? Respostas: (a) 1.5 m/s, (b) 3.1 10 5 N/m = 311 k Pa

4- Uma caixa de água de 3 m de diámetro está a 3 m de altura. O encanamento horizontal que sai da base da torre tem 1 polegada de diámetro. Para suprir as necessidades de casa, este encanamento deve distribuir água à vazão de.5 litros/s ou seja, 0.005 m 3 /s. (a) Qual devera ser a pressão no encanamento horizontal (b) Um cano mais fino, de ½ polegada, transporta a água para o segundo andar, a 7. m de altura. Determine a velocidade de escoamento e a pressão da água neste cano Respostas: (a) 4 10 5 N/m ; (b) 0 m/s e 1.5 10 5 N/m Halliday, Resnick, Krane, Física, Exemplo 18- (Editora LTC)

Aplicações da Eq. de Bernoulli A forma da asa de avião (aerofólio) tem uma curvatura maior na parte de cima. Quando o avião começa a correr na pista, a velocidade do ar na parte de cima da asa é maior do que na parte de baixo. De acordo com a Eq. de Bernouilli, isto significa que a pressão no lado de cima da asa é menor que a pressão do lado de baixo da asa e, portanto, existe uma força para cima, chamada força de sustentação F F = P A = 1 ρ ( v v ) A 1 Sears & Zemansky Física II (10 a ed) Trefil & Hazen Física Viva, vol. 1

Um esquiador inclina o corpo para a frente durante um salto para produzir uma força de sustentação que ajuda a aumentar a distância percorrida A lona que cobre a carga do caminhão está plana (flat) quando o veículo está parado, mais ela se encurva para cima quando o veículo está em movimento. A força do vento cria uma diferença de pressão entre o lado de baixo e o lado de cima da lona. J.D. Cutnell & K.W. Johnson Physics (3 rd ed., 1995)

O cano de saída de uma pia possui um sifão (water trap) que retém um pouco de água, evitando assim que o mau cheiro do esgoto (sewer) chegue ao ralo. De acordo com o princípio de Bernouilli, a passagem de água no cano principal do esgoto faz a pressão diminuir, o que poderia remoner a água do sifão. Para evitar que isto aconteça, o encanamento dispõe de um suspiro (vent) que iguala as pressões dos dois lados do sifão. Trefil & Hazen. Física Viva Cutnell & Johnson, Physics

Ar em movimento: ventos Os ventos em uma cidade podem tomar caminhos inesperados. Um edifício representa um obstáculo forçando o vento a se desviar para os lados e por cima, dividindo-se em correntes de ar descendentes e obliquas. E. Hecht, Physics (Brooks Cole Publ. 1994) Os ventos defletidos por edifícios vizinhos podem convergir em rajadas. Na cidade de Chicago, há certos trechos da Michigan Av. com corrimões para os pedestres se asegurarem quando sopram ventos fortes. Um vento de 65 km/h pode impedir uma pessoa normal de caminhar, e uma turbulência de 16 km/h pode derrubar uma pessoa.

Coleção Ciência & Natureza Tempo e Clima Time Life e Ed Abril, 1995 Ao soprar em um edifício alto, o vento se divide em várias correntes de ar. Parte do ar desce pela face do edifício, chega à calçada e se converte em contracorrente. Ele vai também pela esquerda e pala direita, envolvendo o edifício e avançando para baixo, em direção à rua. O ar que bate nas laterais do edifício se torna uma corrente veloz. Os ventos defletidos por altos edifícios vizinhos podem se fundir e gerar fortes ventos de vale e de rua.

Os arquitetos podem testar os efeitos de um edifício alto sobre os ventos com uma maquete em um tunel de vento. A fumaça mostra as correntes de ar. Os edifícios altos criam turbulências ao alterar a rota dos ventos estáveis de superfície. Eles obrigam o ar a se elevar, no processo conhecido como ascensão orográfica. Na foto, várias linhas de fumaça mostram os padrões de fluxo atmosférico em torno de maquetes de um edifício pequeno (em cima) e de um edifício alto (embaixo). Nos dois casos, parte do vento que chega ao edifício é defletida para o alto formando torvelinhos e redemoinhos.

B. Walpole, Ciência Divertida: Ar (Melhoramentos, 1991)

Tempestade (furacão). A pressão no exterior caiú bruscamente, ficando muito menor que a pressão interna na residência. A diferença das pressões arrancou o telhado. Se os ocupantes tiverem deixado várias janelas abertas, de forma a igualar as pressões, isso não teria ocorrido. E. Hecht, Physics (Brooks & Cole, 1994)

5 -Quando o vento sopra forte sobre um telhado, a diferença entre a pressão atmosférica P o no interior de uma casa e a pressão reduzida sobre o telhado pode arrancar o telhado. Imagine que um vento de 100 km/h sopre sobre um telhado de 15 m 15 m. Qual a diferença de pressão entre o interior e o exterior da casa que tende a arrancar o teto? Qual o módulo da força devida a esta diferença de pressão sobre ele? Compare esta força com o peso do telhado. Resposta: F = ½ ρv = 1.14 10 5 N 6 As janelas de um edifício medem 4.3 5. m. Num dia de tempestade o vento esta soprando a 100 km/h paralelamente a uma janela do 30 o andar. Calcule a força resultante sobre a janela. Resposta: aprox. 10 4 N (equivalente ao peso de 1 tonelada!) P. Tipler, Física, Volume 1 Resnick Halliday Krane, Física

Energia cinética de uma coluna de vento: 1 1 1 E = mv = ρ Vv = ( ρv ) V Fluxo de ar através da coluna: Volume A x x Fluxo = = = A = tempo t t Av A taxa com que a energia é transferida fornece a potência P: R.A. Serway, J.W. Jewett, Princípios de Física (Thomson, 004) P = Energia Volume Volume tempo = 1 1 3 ( ρ v )( Av) = ρv A

Aplicação Qual a potência fornecida por um gerador eólico se a velocidade do vento for 10 m/s. O comprimento das pás é R = 40 m. Considere uma eficiência de 17% Solução: Área do catavento : A = πr = 5 10 3 m Potência: 3 3 ( 1.)( 5 10 )( 10) MW 3 1 P = 1 ρav = = 3 Potência disponivel: 0.17(3) 0.5 MW Potência gerada por outras fontes de energia: Uma usina Termoelétrica gera 150 MW. Seriam necessárias 300 geradores eólicos para competir com a potência gerada por uma Termoelétrica. Um reator nuclear gera 1 GW e uma tonelada de carvão gera apenas 170 kw. R.A. Serway, J.W. Jewett, Princípios de Física (Thomson, 004)