1. 3 2. 4 3. 4 4. 5 5. 6 6. 8 7. 9 8. 12 9. 16 10. 17 11. O



Documentos relacionados
2015 Dr. Walter F. de Azevedo Jr. Lei de Bragg e Espaço Recíproco

DIFRAÇÃO DE RAIOS X DRX

Formas regulares e simétricas assim como a ordenação das partículas que os formam. Cristalografia e Difração em Raio X - Michele Oliveira

EFEITO COMPTON. J.R. Kaschny

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

Física IV. Difração. Sears capítulo 36. Prof. Nelson Luiz Reyes Marques. Capítulo 36 Difração

UNIDADE 4 - ESTRUTURA CRISTALINA

DRIFRAÇÃO DE RAIOS-X

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Difração. Espectrometria por Raios X 28/10/2009. Walmor Cardoso Godoi, M.Sc.

Aula 8 Fótons e ondas de matéria II. Física Geral F-428

Cristalização e Caracterização Estrutural por Difração de Raios X do composto β-ciclodextrina com um agonista do receptor D2 da dopamina

6. Geometria, Primitivas e Transformações 3D

Aula Prática 1. Análise de Difração de Raios X (DRX) Centro de Engenharia Modelagem e Ciências Sociais Aplicadas

UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA TÉCNICAS DE ANÁLISE

NOTAS DE AULAS DE FÍSICA MODERNA

POTENCIAL ELÉTRICO. por unidade de carga

Biologia Estrutural. Cálculo da Densidade Eletrônica. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

Biologia Estrutural. Cálculo dos Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

Ponto, reta e plano no espaço tridimensional, cont.

ONDAS MECÂNICAS, ONDA ELETROMAGNETICA E ÓPTICA FÍSICA

O degrau de potencial. Caso II: energia maior que o degrau

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Sumário. Prefácio... xi. Prólogo A Física tira você do sério? Lei da Ação e Reação... 13

Análise Dimensional Notas de Aula

ESTRUTURAS CRISTALINAS - TEORIA

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Tópicos de Física Moderna ano 2005/2006

Roteiro 23 Difração e Interferência de ondas bidimensionais num meio líquido

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

LENTES E ESPELHOS. O tipo e a posição da imagem de um objeto, formada por um espelho esférico de pequena abertura, é determinada pela equação

RESUMO 2 - FÍSICA III

( ) ( ) ( ( ) ( )) ( )

Prof. João Maria Soares UERN/DF/Mossoró

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

Um capacitor não armazena apenas carga, mas também energia.

Estrutura de Sólidos Cristalinos. Profa. Dra Daniela Becker

Arranjos Atômicos 26/3/2006 CM I 1

2015 Dr. Walter F. de Azevedo Jr. Fatores de Estrutura

Propriedades Corpusculares da. First Prev Next Last Go Back Full Screen Close Quit

Polarização de Ondas Eletromagnéticas Propriedades da Luz

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

1 Módulo ou norma de um vetor

18 a QUESTÃO Valor: 0,25

Hoje estou elétrico!

Método de Laue. Um monocristal é irradiado por um feixe de raio-x. A figuras de difração resultante é registrada em um filme para raio-x e analisada.

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

GABARITO DO GUIA DE ESTUDO 3 POLARIZAÇÃO

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

DIFRAÇÃO DE RAIO X. Daiane Bueno Martins

Além do Modelo de Bohr

Biologia Estrutural. Simetria. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

Seção de choque diferencial

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

22/Abr/2015 Aula /Abr/2015 Aula 14

Biologia Estrutural. Fatores de Estrutura. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br Dr. Walter F. de Azevedo Jr.

UFJF CONCURSO VESTIBULAR 2012 GABARITO DA PROVA DE FÍSICA

4.2 Produto Vetorial. Orientação sobre uma reta r

EFEITO FOTOELÉTRICO. J.R. Kaschny

Física. Resolução. Q uestão 01 - A

AS LEIS DE NEWTON PROFESSOR ANDERSON VIEIRA

Cap. 7 - Fontes de Campo Magnético

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

APLICAÇÕES DE NÚMEROS COMPLEXOS

Unidade: Vetores e Forças. Unidade I:

Rotação de Espelhos Planos

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Capítulo 1. x > y ou x < y ou x = y

2.1: Espalhamento de Raios X

Lentes e formação de imagem

1.5 O oscilador harmónico unidimensional

I - colocam-se 100 g de água fria no interior do recipiente. Mede-se a temperatura de equilíbrio térmico de 10ºC.

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

c) A corrente induzida na bobina imediatamente após a chave S ser fechada terá o mesmo sentido da corrente no circuito? Justifique sua resposta.

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

29/Abril/2015 Aula 17

Plano Curricular de Matemática 3.º Ano - Ano Letivo 2015/2016

Espectometriade Fluorescência de Raios-X

1 Fibra Óptica e Sistemas de transmissão ópticos

Lentes de vidro comprimento focal fixo Para: - Focar - Ampliar a Imagem - Controlar a Intensidade de Iluminação Alteração da posição relativa entre o

Seleção de comprimento de onda com espectrômetro de rede

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Aula 18 Elipse. Objetivos

Biologia Estrutural. Espaço Recíproco e a Esfera de Ewald. Prof. Dr. Walter Filgueira de Azevedo Jr. wfdaj.sites.uol.com.br

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

Tópico 8. Aula Prática: Sistema Massa-Mola

Circuitos CA I. 1 Resumo da aula anterior. Aula 6. 5 de abril de 2011

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

3 Espectroscopia no Infravermelho 3.1. Princípios Básicos

QUIMICA ORGÂNICA BÁSICA

Energia e Momento Linear do Campo Eletromagnético

Espectroscopia de Raios X

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Questão 1. Questão 2. Resposta. Resposta

Capítulo 1 - Estática

Transcrição:

1 DIFRAÇÃO DE RAIOS X Prof. Dr. Walter Filgueira de Azevedo Jr. Laboratório de Sistemas Biomoleculares. Departamento de Física-Instituto de Biociências, Letras e Ciências Exatas-UNESP, São José do Rio Preto. SP. www.biocristalografia.df.ibilce.unesp.br 2004

Índice 1. Introdução... 3 2. Espalhamento Thomson... 4 3. Espalhamento Comptom... 4 4. Espalhamento por elétrons... 5 5. Fator de espalhamento atômico... 6 6. Espalhamento de raios X por uma molécula... 8 7. Espalhamento de raios X por um cristal... 9 8. Espaço recíproco... 12 9. Lei de Friedel... 16 10. Densidade eletrônica... 17 11. O problema da fase... 18 12. Referências Bibliográficas... 18 2

1. Introdução Neste texto discutiremos alguns tópicos relacionados à difração de raios X, destacando alguns conceitos básicos relevantes para estudos cristalográficos. Descartaremos discussões sobre a simetria do retículo direto, sendo que para interpretação da difração usaremos o espaço recíproco. Inicialmente consideraremos o espalhamento por elétrons (Thomson e Compton) depois analisaremos o espalhamento por átomos, até a consideração final da difração por um cristal. A seguir definiremos espaço recíproco e introduziremos o conceito de esfera de Ewald. Finalmente formulamos o problema da fase que será a base para a discussão dos métodos de resolução de estrutura. 3

2. Espalhamento Thomson O campo elétrico oscilante associado ao feixe de raios X que incide sobre um elétron, obriga este elétron a oscilar em torno da sua posição de equilíbrio. Sabemos que toda partícula carregada acelerada emite radiação. Assim o elétron, submetido a um campo elétrico oscilante, emite uma onda eletromagnética, que possui o mesmo comprimento de onda da radiação incidente (espalhamento elástico). A intensidade do feixe de raios X espalhado por um elétron de carga -e e massa m a uma distância r do elétron é dada por, 4 onde Io é a intensidade do feixe incidente e 2θ o ângulo de espalhamento da radiação, sendo a onda eletromagnética plana e polarizada (Cullity, 1956; Blundell and Johnson, 1976). I= Io 2 r e 4 m 2 c 4 ( 1 + cos 2 2 2 θ ), 3. Espalhamento Comptom Há uma forma completamente diferente pela qual um elétron pode espalhar raios X, conhecida como efeito Compton. Esse efeito ocorre quando raios X incidem sobre elétrons livres ou fracamente ligados e pode ser entendido a partir da teoria quântica. Assim a partir da conservação do momento e da energia da colisão do fóton com o elétron, obtemos a expressão abaixo, λ= 0.0243(1-cos2 θ) (Å) onde 2θ é o ângulo de espalhamento e λ é a diferença entre o comprimento de onda da radiação espalhada e incidente. Assim temos que a radiação espalhada possui um comprimento de onda maior que o da radiação incidente (espalhamento inelástico), devido à transferência de energia do fóton para o elétron. Experimentalmente encontra-se que a radiação espalhada pelos materiais

consiste de duas partes. A primeira parte é aquela associada ao espalhamento Thomson e possui o mesmo comprimento de onda da radiação incidente; a segunda parte tem um comprimento de onda maior que a radiação incidente, com o aumento do comprimento de onda sendo dependente do ângulo de espalhamento (Cullity, 1956). 5 4. Espalhamento por elétrons Para analisar o espalhamento de raios X por elétrons vamos considerar a geometria de um experimento típico de espalhamento, como aquele mostrado na figura 1. Nele temos um feixe raios X colimados incidindo sobre um elétron, localizado na origem do sistema de coordenadas. Um vetor unitário, so, descreve a direção da radiação incidente. A direção de espalhamento é indicada por outro vetor unitário, s, e o ângulo de espalhamento é 2θ. Na figura 2, temos o vetor de espalhamento S, que é dado pela expressão, S = s - s o (1) λ A partir da figura 2, vemos que o módulo S, é função do ângulo de espalhamento, como segue, S = 2sen θ λ (2)

6 Figura 1. Espalhamento de raios X por um elétron. O valor do módulo de S pode variar de 0 a 2/λ. Desta forma, o vetor S está descrito num espaço onde cada eixo de seu sistema de coordenadas tem dimensão do recíproco da distância (Drenth, 1994). Este espaço de coordenadas é chamado espaço recíproco. 5. Fator de espalhamento atômico Considerando que um elétron isolado espalha raios X com intensidade I, seria de se esperar, que num átomo de Z elétrons teríamos uma intensidade ZI. Porém, devido às distâncias entre os elétrons num átomo serem da ordem do comprimento de onda do raio X, as ondas que eles espalham interferem umas com outras, de forma que só teremos uma intensidade ZI na direção de incidência do raio X. Para o espalhamento em outras direções temos interferência parcialmente destrutiva, assim, a amplitude total cai com o aumento do ângulo de espalhamento.

7 Figura 2. Composição do vetor de espalhamento S. O fator de espalhamento atômico é definido como a relação entre a amplitude espalhada por um átomo(ea) e a amplitude espalhada por um elétron(ee) isolado, sob condições idênticas, f = E a E. e (3) O valor máximo de f é Z (número atômico do átomo) e ocorre quando os elétrons espalham em fase, na direção de incidência (2θ = 0). O fator de espalhamento atômico também depende do comprimento de onda da radiação incidente. Para um valor fixo de θ, f será menor para comprimentos de onda mais curtos, visto que, a diferença de caminho será maior com relação ao comprimento de onda, levando a uma maior interferência. Considerando um átomo esférico com o seu centro coincidente com a origem do sistema de coordenadas, temos que, a onda total espalhada por um pequeno volume dv numa posição r relativa à onda espalhada na origem terá uma amplitude proporcional a ρ(r)dv e uma fase 2πr.S, ou seja, a amplitude da onda espalhada será igual a ρ(r)exp(2πir.s)dv. Conseqüentemente a onda total espalhada por um átomo é calculada pela soma das ondas espalhadas pelos elementos de volume dv f( S) = ρ( r) exp (2πi r.s) dv. (4) vol.do atomo

A expressão acima representa o fator de espalhamento atômico. Curvas do espalhamento atômico para diversos átomos estão tabeladas no Volume III das Internartional Tables for X-Ray Crystallography. 8 6. Espalhamento de raios X por uma molécula Analisaremos agora o espalhamento de raios X de um conjunto de átomos colocados em posições definidas pelos vetores posição ri. Figura 3. Posições atômicas em uma cela unitária. Consideremos o átomo 1 na figura 3 que está a uma distância r1 da origem (O). Este deslocamento do centro do átomo significa que a distância r na equação (4) é substituída por r + r1. Assim temos que o espalhamento do átomo 1 será dado pela seguinte expressão, f 1 = ρ ( r)exp(2 π i( r 1 + r). S)dv = vol.do atomo = f 1 exp(2 π r 1.S), onde, f 1 = ρ ( r )exp(2 π i r.s )dv. vol.do atomo

Expressões similares podem ser obtidas para os outros átomos. A onda total espalhada por todos os átomos é dada pela soma vetorial das contribuições de cada átomo (figura 4), 9 G(S) = N rj. f jexp(2 π i S). (5) j=1 7. Espalhamento de raios X por um cristal A fim de obtermos a expressão para o espalhamento por um cristal, primeiro consideramos o espalhamento de um cristal unidimensional, que é composto de um arranjo linear de celas unitárias com um espaçamento a entre elas. A amplitude total espalhada pelo cristal será a soma das ondas espalhadas por cada cela unitária. A amplitude da onda espalhada pela primeira cela unitária relativa a origem é simplesmente G(S). A amplitude espalhada pela segunda cela unitária relativa à mesma origem é G(S)exp(2πia.S), visto que, todas as distâncias estão deslocadas pelo vetor a. A amplitude da onda espalhada pela n-ésima cela unitária é G(S)exp 2πi(n-1)a.S. Conseqüentemente a amplitude total espalhada é, T F(S) G(S) exp2 π i(n-1) a.s =, n=1 onde T é o número total de celas unitárias.

10 Figura 4. Diagrama de Argand mostrando a soma vetorial. A maneira que cada uma das contribuições individuais se somam pode ser vista na figura 5. A onda de cada cela unitária está fora de fase com sua vizinha por uma quantidade de 2πa.S. Assim, conforme o número de celas unitárias aumenta, a amplitude total espalhada, F(S), fica da mesma ordem de G(S), que para raios X é muito pequena para ser observada (figura 5). O espalhamento só será observado quando a diferença de fase entre as ondas espalhadas, por celas unitárias sucessivas, for um múltiplo inteiro de 2π (figura 6), ou seja, a.s = h, onde h é um número inteiro. Sob estas circunstâncias as ondas se somam para formar uma onda espalhada mais intensa, que é proporcional em magnitude a T. G(S). Em resumo, para uma rede unidimensional, só observamos espalhamento quando a.s=h. Quando o problema é estendido para três dimensões, com uma cela unitária definida pelos vetores a, b e c, a condição para ocorrer a difração é que as condições a.s = h, b.s = k e c.s = l sejam simultaneamente satisfeitas. Estas condições correspondem às conhecidas equações de Laue (Blundell & Johnson, 1976).

11 Figura 5. Diagrama de Argand ilustrando o espalhamento total de uma molécula num cristal. Figura 6. Diagrama de Argand, ilustrando a situação, onde a diferença de fase é um múltiplo inteiro de 2π. Assim podemos reescrever a amplitude total da seguinte forma, N F(S) = f j exp2π i ( r j.s), (6) j=1

12 onde: rj = axj + byj + czj e xj,yj,zj são as coordenadas fracionárias do j-ésimo átomo. Sendo que a constante de proporcionalidade, T, foi omitida. As coordenadas fracionárias(x,y,z), são definidas como, x = X/a, y = Y/b e z = Z/c, onde: X,Y,Z são as coordenadas absolutas do átomo na cela unitária de eixos a,b e c. Considerando as equações de Laue temos que, rj.s= xja.s + yjb.s +zjc.s = hxj + kyj + lzj, portanto, F(hkl) = N f j exp 2 π i(hx j + ky j + lz j ), (7) j=1 onde a.s, b.s e c.s foram substituídos por h,k,l no lado esquerdo da equação. A equação (7) é conhecida como equação do fator de estrutura. Ela representa uma amostragem da transformada G(S) nos pontos hkl do retículo recíproco. Se as posições de todos os átomos na cela unitária são conhecidas então o correspondente padrão de difração pode ser calculado. 8. Espaço recíproco Para cada retículo cristalino é possível construir um retículo recíproco, assim chamado porque muitas das suas propriedades são recíprocas às propriedades do retículo cristalino. Considerando um retículo cristalino que possua uma cela unitária definida pelos vetores a, b, c definimos uma cela unitária do retículo recíproco pelos vetores, a *, b *, c * dados por:

1 * a = ( b c), V x (8) b * = 1 V (x) ca, (9) 13 * c = 1 ( ab x ), (10) V onde V é o volume da cela unitária. Neste retículo recíproco podemos construir um vetor H, desenhado a partir da origem até um ponto interno a este retículo, com coordenadas h,k,l, e perpendicular ao plano do retículo cristalino cujos índices de Miller são h,k,l, como mostra a figura 7. Este vetor pode ser expresso pela seguinte equação, H = h a * +k b * +l c *. (11) Uma outra propriedade do vetor H que podemos destacar é que seu módulo é igual ao recíproco da distância interplanar, onde d(h,k,l) é a distância interplanar (h,k,l). Para considerar as condições em que ocorre a difração, devemos determinar a diferença de fase entre os raios espalhados em A1 e A2 (figura 8). Sendo δ a diferença de caminho ótico dos raios espalhados por A1 e A2, r é o vetor posição dado por r= xa+yb+zc, então H= 1 d(h,k,l). (12) δ = r.s-r.s o = r.(s-s o ). (13)

14 Figura 7. Esfera de Ewald. Assim temos a seguinte diferença de fase, φ πδ = 2 r.(s- s =2 π o ) =2π r.s. (14) λ λ Relacionamos agora a difração com o retículo recíproco expressando o vetor S como um vetor desse retículo, s-s o = a * + b * + c * h k l. (15) λ Até este ponto nenhuma restrição foi feita aos índices h,k,l. Eles podem assumir qualquer valor, inteiro ou não, a diferença de fase fica então, * * φ = 2 π(x a+y b+z c).(h a +k b +l c * ). (16)

15 A condição para a difração ocorrer(equações de Laue) é que o vetor S esteja S s-s o * * * = = h a +k b +lc λ (17) sobre um ponto do retículo recíproco, onde h, k e l são inteiros (figuras 7 e 8). As equações de Laue e Bragg podem ser derivadas da equação 17. As primeiras são obtidas a partir do produto escalar da equação pelos vetores a, b e c. Por exemplo, obtemos assim: a.s= a. (h a * +k b* +l c * )=h (18) a.s= h, b.s = k, c.s=l. (19) Conhecidas como equações de Laue (ou condições de Laue). Quando as três equações são satisfeitas, um feixe de raios X difratado será produzido. Figura 8. Diferença de caminho ótico. Podemos considerar o feixe de raios X, s, como se fosse refletido por um conjunto de planos perpendiculares a S. Na realidade a equação (17) estabelece que S seja perpendicular aos planos (h,k,l). Sendo θ o ângulo entre s(ou so) e esses

planos. Assim temos que 16 2sen θ s-s 1 = o = H = (20) λ λ d(hkl) ou λ = 2d(hkl) sen θ. (21) As condições para difração expressas pela equação (17) podem ser representadas graficamente pela construção de Ewald, mostrada pela figura 7. O vetor so/λ é desenhado paralelo ao feixe incidente. O ponto O é tomado como origem do retículo recíproco. Uma esfera de raio 1/λ é desenhada em torno de C (esfera de Ewald). Assim a condição para ocorrer difração a partir dos planos (h,k,l) é que o ponto P(h,k,l) toque a superfície da esfera de Ewald (figura 7), e a direção do feixe difratado (s/λ) é encontrada juntando-se C a P. 9. Lei de Friedel A lei de Friedel relaciona uma reflexão de índices h,k,l com a reflexão -h,-k,- l. A relação é deduzida da seguinte maneira, consideremos o fator de estrutura da reflexão de índices (h,k,l), F(h,k,l), como segue, F(hkl) = N f j exp 2 π i ( hx j + ky j + lz j), j=1 e o fator de estrutura da reflexão de índices (-h, k-, -l), F(-h,-k,-l) = N f j exp2 π i(- hx j - ky j - lz j), j=1 tomando-se o módulos para os fatores de estrutura das reflexões de índices (h,k,l) e (-h, -k, -l), temos que os módulos são iguais; F(h,k,l)=F(-h,-k,-l). E as fases(α)

seguem a seguinte relação, α(h,k,l)=-α(-h,-k,-l). Conseqüentemente o padrão de difração registrado será centrossimétrico (I(h,k,l) = I(-h,-k,-l)), mesmo que a estrutura não possua um centro de simetria. Desvios da lei de Friedel ocorrem no caso de espalhamento anômalo e em tais casos as pequenas diferenças podem ser usadas para fornecer informações sobre a fase. 17 10. Densidade eletrônica O padrão de difração é a transformada de Fourier da densidade eletrônica da estrutura e inversamente a densidade eletrônica da estrutura é a transformada de Fourier do padrão de difração. Para mostrar isto, podemos reescrever a equação do fator de estrutura (equação 7) em termos de uma integral sobre o volume da cela unitária(v). N F(S) = f exp 2 π i( r.s) j=1 j j = ρ ( r)exp 2 π i( r.s)dv, V onde S é usado para representar a posição no espaço recíproco e ρ(r) é densidade eletrônica. Multiplicando ambos os lados por (exp-2πi(r'.s)) e integrando sobre o volume recíproco (V * =1/V), temos que, * ρ ( r) = F(S) exp - 2 π i( r.s)dv, * V onde dv * é o elemento de volume no espaço recíproco. A integração pode se substituída por uma somatória, visto que, F(S) não é contínuo e é diferente de zero somente nos pontos do retículo recíproco. Conseqüentemente, ρ(xyz) = 1 (hkl)exp-2 π i(hx + ky + lz). V F (22) h= - k=- l= -

18 Desta forma se os fatores de estrutura, F(h,k,l), são conhecidos para todas as reflexões, h,k,l, então a densidade eletrônica, ρ(x,y,z), pode ser calculada para cada ponto x,y,z, na cela unitária (Drenth, 1994). A densidade eletrônica representa a estrutura do cristal. 11. O problema da fase Para calcular a densidade eletrônica é necessário o conhecimento do módulo, F(hkl), e da fase, α(hkl), do fator de estrutura. Isto é enfatizado quando reescrevemos a equação 22, como segue, ρ (xyz) = 1 F(hkl)exp i α (hkl) exp - 2 π i(hx + ky + lz). V h= - k= - l= - Durante um experimento de difração de raios X, só se registram as intensidades, sendo que toda a informação sobre a fase é perdida. Portanto é impossível determinar a estrutura diretamente das medidas do padrão de difração, visto que parte da informação está perdida (Drenth, 1994; McRee, 1994). O problema da determinação da fase é o problema básico em qualquer determinação de estrutura. Há quatro principais métodos para resolução do problema da fase: substituição molecular, substituição isomórfica múltipla, dispersão anômala múltipla e métodos diretos. 12. Referências bibliográficas Blundell, T. L. & Johnson, L. N. Protein Crystallography. Academic Press, USA, (1976). Cullity, B. D. Elements of X-ray crystallography. Addison-Wesley Publishing Company, Inc. USA,(1956). Drenth, J. Principles of Proteins X-Ray Crystallography. Springer-Verlag. New York. USA, (1994). McRee, D.E. Practical Protein Crystallography. Academic Press, Inc. San Diego, USA,(1994).