Lista de Exercicios 1. Medidas Resumo. Estimação. Distribuições Amostrais

Tamanho: px
Começar a partir da página:

Download "Lista de Exercicios 1. Medidas Resumo. Estimação. Distribuições Amostrais"

Transcrição

1 Introcução à Inferência Estatística. Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 15 de agosto de 007 Lista de Exercicios 1 Medidas Resumo. Estimação. Distribuições Amostrais 1 Medidas Resumo Exercício 1. Na linha de produção de uma grande montadora de veículos, existem 7 verificações do controle de qualidade. Sorteamos alguns dias do mês e anotamos o número de OKs recibidos pelos veículos produzidos nesses dias, i.e., em quantos dos controles mencionados o automóvil foi aprovado. Os resultados foram ((x, y), x =número de aprovações, y =freqüência): (4, 16), (5, 359), (6, 1685), (7, 4764). (i) Determine a média, moda e mediana do número de aprovações por automóvel produzido. (ii) Calcule a variância. (ii) Crie uma nova variável reprovações, indicando o número de verificações não OKs no vehículo. Determine média, moda, mediana e variância dessa variável. (iv) Cada reprovação implica em custos adicionais para a montadora, tendo em vista a necessidade de corrigir o defito apontado. Admitindo um valor básico de R$ 00,00 por cada item reprovado num vehículo, calcule a média e a variância da espesa adicional por automóvel produzido. Estimadores: Estimação Pontual Exercício. Seja S, o estimador para a variância de uma certa população, σ, baseado na amostra X = X 1,..., X n, S = 1 n 1 n (X i X) onde X = n 1 n i=1 X i. (i) Verifique se S é viciado ou não. i=1 Exercício 3. Foram sorteadas 15 famílias com filhos num certo bairro e observado o número de crianças de cada família, matriculadas na escola. Os dados foram 1, 1

2 1,, 0,, 0,, 3, 4, 1, 1,, 0, 0, e. Obtenha as estimativas correspondentes aos seguintes estimadores da média de crianças na escola nesse bairro, mínimo + máximo µ 1 =, µ = (X 1 + X ), µ 3 = X. Qual deles é o melhor estimador da média e por quê? Exercício 4. Seja X 1, X, X 3 uma amostra aleatória de uma população exponencial com média θ, isto é, E[X i ] = θ, i = 1,, 3. Cosidere os estimadores θ 1 = X, θ = X 1, θ3 = X 1 + X. (i) Demostrar que nenhum dos três estimadores é viesado. (ii) Qual dos estimadores tem menor variância? Lembrar que no caso exponencial Var(X i ) = θ. Exercício 5. Suponha que Y tem distribuição Binomial-(n, p). (i) Demostre que p = y/n é um estimador não viesado para p. Calcule a variância de p. Exercício 6. Demostrar que E[( θ θ) ] = Var( θ) + v, (1) onde v = E[ θ] θ é o vicio. Esta quantidade é conhecida como o erro quadrático médio de um estimador. (Dica: escrever ( θ θ) = [ θ E[ θ] ] + [ E[ θ] θ ] ). Exercício 7. Seja X = X 1, X,..., X n uma amostra aleatória da uma população com densidade Gamma-(α, β), com α =, e β desconhecido, isto é, x e x/β se x > 0, f(x) = β 0 se x 0. (i) Obtenha o estimador de máxima verosimilhança para β. (ii) Calcular E[ β]. É β viciado para β? Exercício 8. Suponha que a demanda por certa peça, numa loja de autopeças, siga o seguinte modelo P (X = k) = Φ k, k = 1,, 3, 4. k! (i) Encontre o valor de Φ. (ii) Calcule a demanda esperada. (iii) Qual é a variabilidade da demanda. (iv) Encontre o estimador de máxima verosimilhança Φ para Φ. (v) verifique se Φ é não viciado. (vi) Verifique se Φ é consistente.

3 Exercício 9. Certa população tem distribuição uniforme no intervalo I = (θ 1/, θ + 1/), θ R, tal que a sua densidade é f X (x; θ) = 1 se θ I e f X (x; θ) = 0 no caso contrario. Uma amostra iid de tamanho 3, X 1, X, X 3 é considerada e apartir desta são definidos os seguintes estimadores para θ, G = X 1 X X 3 K = X 1 X X 3 T = 1 (G + K) (i) Mostre que T é um estimador não viciado para a média da população. (ii) Determine os valores de Var(G), Var(K) e Cov(G, K). (iii) Mostre que Var(T ) < Var( X) (o qual representa um exemplo onde X não é o melhor estimador não viciado da para a média da população!). (iv) Verifique se T é suficiente. 3 Distribuições Amostrais Os seguintes exercícios dois apresentam duas propriedades da distribuição normal muito utilizados durante o curso. Estes deveram ser entregues no dia da primeira prova. Exercício 10. Seja X uma variável aleatória normal com média µ e variância σ. Mostre que a variável aleatória Z = X µ σ tem distribuição normal com média 0 e variância 1. (Esta distribuição é conhecida como a normal padrão.) Exercício 11. Seja X 1 uma variável aleatória normal com média µ 1 e variância σ1, e X normal com média µ e variância σ. Mostre que Y = X 1 + X é normal com média µ 1 +µ e variância σ1 +σ. Dica: se as densidades de X 1 e X são f X1 e f X respectivamente, então a distribuição de Y é calculada utilizando a convolução das densidades f Y = f X1 f X definida por f Y (y) = (f X1 f X )(y) = + f X1 (y x)f X (x) dx Observe que no curso de Teoria de Probabilidade já foram consideradas convoluções a fim de calcular a distribuição da soma de variáveis Poisson e Binomiais. Exercício 1. Uma variável de Bernoulli com probabilidade de sucesso p é amostrada, de forma, independente, duas vezes. Apresente a função de probabilidade da média amostral. 3

4 Exercício 13. Uma variável aleatória assume quatro valores (-, -1, 1, ) com igual probabilidade. Para uma amostra de tamanho dois, obtenha a distribuição de S e verifique se ele é não viesado para estimar a variância σ da variável. Exercício 14. Supõe-se que o consumo mensal de água por residência em um certo bairro de Ribeirão Preto tem distribuição Normal com média 10 e desvio padrão (em m 3 ). Para uma amostra de 5 dessas residências, qual é a probabilidade de a média amostral não se afastar da verdadeira média por mais de 1 m 3? Exercício 15. Coleta-se uma amostra de 10 observações independentes de uma N(, ). Determine a probabilidade de a média amostral: (i) ser inferior a 1; (ii) ser superior a,5; (iii) estar entre 0 e. Exercício 16. Um fabricante afirma que sua vacina contra gripe imuniza em 80% dos casos. Uma amostra de 5 indivíduos que tomaram a vacina foi sorteada e testes foram feitos para verificar a imunização ou não desses indivíduos. Se o fabricante estiver correto, qual é a probabilidade da proporção de imunizados na mostra ser inferior à 0,75? E superior à 0,85? 4 Estimadores Suficientes Exercício 17. Seja X 1,..., X n uma amostra i.i.d. de uma população Poisson(λ). Seja λ = i X i um estimador para o parâmetro λ. Diga se λ é suficiente para λ. Exercício 18. Seja U 1,..., U n uma amostra i.i.d. de uma população uniforme no intervalo [0, a]. Diga se â = max{u 1,..., U n } é suficiente para a. Exercício 19. Encontrar um estatístico suficiente para uma amostra aleatória i.i.d. da distribuição com densidade f Y (y) = θy θ 1, 0 < y 1, θ > 0. Exercício 0. Encontrar um estatístico suficiente para uma amostra i.i.d. distribuição e 1/c, c R. da 5 Extra: Mínima Variância (Cramér-Rao) 1 Exercício 1. Seja X 1, X,..., X n uma amostra iid de uma população Bernoulli(θ). Encontre um estimador não viciado é de mínima variância para θ. Lembre que se X Bernoulli(θ), então X {0, 1} e P(X = 1) = θ, P(X = 0) = 1 θ, e também E[X] = θ, Var(X) = θ(1 θ). 1 Esta seção é realmente opcional. 4

5 Observação: O objetivo é encontrarnos uma cota inferior para o erro quadratico médio de um estimador (veja (1)). A cota é estabelecida pelo seguinte resultado. Lemma. Um estimador ˆθ não viciado é de mínima variância se este alcança a cota de Kramer-Rao, i.e., se e satisfeita com igualdade. Var(ˆθ) { E [ ]} l Demonstração. Suponha que X 1 = x 1,..., X n = x n é iid, com densidade f X (x θ) derivável respeito de θ Θ R. Neste caso a densidade conjunta em x = x 1,..., x n é n L(x, θ) = f X (x i θ). Se 1 = i=1 L(x, θ)dx e derivável respeito de θ considerando o sinal da integral, então L(x, θ) L(x, θ) L(x, θ) 0 = dx = L(x, θ) dx [ ] l(x, θ) l(x, θ) = L(x, θ)dθ = E. () já que se l(x, θ) = lnl(x, θ), então l(x, θ)/ = (1/L(x, θ)) L(x, θ)/. Seja v = E[ˆθ] θ o vicio do estimador ˆθ, e T (X 1,..., X n ) a função que define o estimador ˆθ. Então derivando respeito de θ temos 1 + v = E[ T (X 1,..., X n ) ] = T (x)l(x, θ)dx. Mais uma vez, se a ordem das operações de derivação e integração pode ser trocada, então [ ] 1 + v L(x, θ) l(x, θ) = T (x) dx = E T (x). Diretamente deste último resultado e de () temos que [ ] (T 1 + v l(x, θ) = E (x) θ), e entao da desigualdade de Cauchy-Schwarz (1 + v ) E [ T (x) θ ] E [ l(x, θ) ]. Sejam ξ e η duas variaáveis aleatórias, então (E[ ξη ]) (E[ξ]) (E[η]). 5

6 Finalmente se ˆθ é não viciado, então v = 0 já que v = 0, logo 1 E [ T (x) θ ] [ ] l(x, θ) E, sendo E [ T (x) θ ] = Var(ˆθ). 6 Respostas 1. Para a variável lucro temos Lucro p i 4/6 1/6 1/6. µ =, 4; Var(custo) = 0, (i) x = 6, 60, m d = 7, m o = 7. (ii) var x = 0, 44. (iii) R: Reprovações, r = 0, 40, m d (R) = m o (R) = 0, e var x (R) = 0, 45. (iv) D: Despesa: d = 80, varx (D) = O estimador µ 3 é melhor por usar todas as observações disponíveis, além de ser não viciado e consistente. As estimativas são: µ 1 =, µ = 1 e µ 3 = 1, (i) Φ = 1/6, (ii) E[X] =, 11, (iii) Var(X) = 0, Descreva os eventos possíveis em duas retiradas de uma Bernoulli e a partir daí obtenha 13. X 0 1 p i (1 p) p(1 p) p S 0 1/ 9/ 8 p i 1/4 1/4 1/4 1/8 1/8 E[S ] = 5/, que é a variância da população. 14. Temos X Φ(10; 4/5), e a probabilidade desejada é 0, Temos X Φ(; /10), então: (i) 0,015. (ii) 0,1315. (iii) 0, ,643 e 0,643. Use aproximação Normal para considerar p Φ(0, 8; 0, 16/5). 6

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL.

Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. Introdução à Inferência Estatística Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 5 de setembro de 004 Lista de Exercicios 1 MEDIDAS RESUMO. ESTIMAÇÃO PONTUAL. 1 Medidas Resumo DISTRIBUIÇÕES

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Estimação: (A) Propriedades e Distribuições Amostrais

Estimação: (A) Propriedades e Distribuições Amostrais Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25 3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:

Leia mais

MAE0212 Introdução à Probabilidade e Estatística II

MAE0212 Introdução à Probabilidade e Estatística II MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6..

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo

Leia mais

6. Amostragem e estimação pontual

6. Amostragem e estimação pontual 6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

DISTRIBUIÇÃO AMOSTRAL DA

DISTRIBUIÇÃO AMOSTRAL DA DISTRIBUIÇÃO AMOSTRAL DA PROPORÇÃO Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 25 de setembro de 2017 Distribuição amostral da proporção

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Estimação pontual Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Introdução Exemplo Desejamos comprar um

Leia mais

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências Estatística Aplicada

Leia mais

Inferência estatística

Inferência estatística Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória

Leia mais

Distribuições amostrais

Distribuições amostrais Distribuições amostrais Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma

Leia mais

Lucas Santana da Cunha e 30 de julho de 2018 Londrina

Lucas Santana da Cunha e 30 de julho de 2018 Londrina Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 e 30 de julho de 2018 Londrina 1 / 18 Já se discutiu a diferença entre estimador e parâmetro: População Amostra Média

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 09 Teoria das Filas aplicadas a Sistemas Computacionais Aula 09 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B.

a) o time ganhe 25 jogos ou mais; b) o time ganhe mais jogos contra times da classe A do que da classe B. Universidade de Brasília Departamento de Estatística 5 a Lista de PE. Um time de basquete irá jogar uma temporada de 44 jogos. desses jogos serão disputados contra times da classe A e os 8 restantes contra

Leia mais

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%

LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100% . Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas

Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 3 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 2 3 4 5 6 7 8 9 0 2 3 4 5 e 6 Introdução à probabilidade (eventos, espaço

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva pessoal.utfpr.edu.

Probabilidade e Estatística. stica. Prof. Dr. Narciso Gonçalves da Silva  pessoal.utfpr.edu. Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva pessoal.utfpr.edu.br/ngsilva Distribuição Uniforme Uma variável aleatória contínua X está

Leia mais

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente. 1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS Julgue os itens que se seguem, acerca da estatística descritiva. 51 Na distribuição da quantidade de horas trabalhadas por empregados de certa empresa, é sempre possível determinar

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de

Leia mais

Prof. Eduardo Bezerra. 6 de abril de 2018

Prof. Eduardo Bezerra. 6 de abril de 2018 Distribuições Amostrais Prof. Eduardo Bezerra Inferência Estatística 6 de abril de 2018 Eduardo Bezerra (CEFET/RJ) Distribuições Amostrais 1 / 19 Roteiro 1 2 3 Eduardo Bezerra (CEFET/RJ) Distribuições

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS quantidade São Paulo (j = 1) Rio de Janeiro (j = 2) Minas Gerais (j = 3) Rio Grande do Sul (j = 4) total casos novos (X, em milhões) casos pendentes (Y, em milhões) processos

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Solução dos Exercícios - Capítulos 1 a 3

Solução dos Exercícios - Capítulos 1 a 3 Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2 Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra

Leia mais

Estatística Descritiva e Exploratória

Estatística Descritiva e Exploratória Gledson Luiz Picharski e Wanderson Rodrigo Rocha 9 de Maio de 2008 Estatística Descritiva e exploratória 1 Váriaveis Aleatórias Discretas 2 Variáveis bidimensionais 3 Váriaveis Aleatórias Continuas Introdução

Leia mais

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Engenharia Prof. Mariana Albi 8 a Lista de Exercícios Assuntos: Inferência Estatística.

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Tiago Viana Flor de Santana

Tiago Viana Flor de Santana ESTATÍSTICA BÁSICA DISTRIBUIÇÃO NORMAL DE PROBABILIDADE (MODELO NORMAL) Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ tiagodesantana@uel.br sala 07 Curso: MATEMÁTICA Universidade Estadual

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

3 2σ 2] = σ 2 C = 1 6

3 2σ 2] = σ 2 C = 1 6 GET008 - Estatística II Lista de Exercícios Inferência para uma população Profa. Ana Maria Farias. Seja X, X,, X 6 uma amostra aleatória simples de tamanho 6 de uma população Nµ; σ. Determine o valor da

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Uma variável aleatória X tem uma distribuição normal se sua fdp for do tipo: f(x) 1.e 1 2. x µ σ 2, x R 2π. σ com - < µ < e σ >

Leia mais

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2

SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2 SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Lei dos Grandes Números e Teorema Central do Limite 02/14 1 / 9 Lei dos Grandes Números Lei

Leia mais

5. PRINCIPAIS MODELOS CONTÍNUOS

5. PRINCIPAIS MODELOS CONTÍNUOS 5. PRINCIPAIS MODELOS CONTÍNUOS 2019 5.1. Modelo uniforme Uma v.a. contínua X tem distribuição uniforme com parâmetros e ( < ) se sua função densidade de probabilidade é dada por f ( x )={ 1 β α, α x β

Leia mais

Modelos de Distribuição PARA COMPUTAÇÃO

Modelos de Distribuição PARA COMPUTAÇÃO Modelos de Distribuição MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Distribuições Discretas Bernoulli Binomial Geométrica Hipergeométrica Poisson ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO

Leia mais

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3;

{ C(1 x 2 ), se x ( 1, 1), f(x) = Cxe x/2, se x > 0, x + k, se 0 x 3; 0, c.c. k, se 1 < x 2; kx + 3k, se 2 < x 3; Universidade de Brasília Departamento de Estatística 4 a Lista de PE 1. Seja X uma variável aleatória com densidade { C(1 x 2 ), se x ( 1, 1), 0, se x / ( 1, 1). a) Qual o valor de C? b) Qual a função

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

Capítulo 2. Variáveis Aleatórias e Distribuições

Capítulo 2. Variáveis Aleatórias e Distribuições Capítulo 2 Variáveis Aleatórias e Distribuições Experimento Aleatório Não existe uma definição satisfatória de Experimento Aleatório. Os exemplos dados são de fenômenos para os quais modelos probabilísticos

Leia mais

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o

3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.

Leia mais

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A Site:

Introdução à probabilidade e à estatística II. Prof. Alexandre G Patriota Sala: 298A   Site: Introdução à probabilidade e à estatística II Revisão Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Estatística Estatística: É uma ciência que se dedica

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Variável Aleatória Contínua e Distribuição Contínua da Probabilidade Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 2019 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Algoritmo para simular uma fila Medidas de interesse Média amostral Aula de hoje Teorema do Limite Central Intervalo de Confiança Variância amostral

Leia mais

CE219 - Controle Estatístico de Qualidade

CE219 - Controle Estatístico de Qualidade CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 96 Aula 2 - Métodos estáticos para

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2018

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2018 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2018 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:

Leia mais

Introdução à Bioestatística Turma Nutrição

Introdução à Bioestatística Turma Nutrição Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Explicar os conceitos gerais de estimação de

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Variáveis Aleatórias Discretas

Variáveis Aleatórias Discretas Variáveis Aleatórias Discretas Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Definição Uma variável aleatória é uma função definida

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Variáveis Aleatórias Contínuas

Variáveis Aleatórias Contínuas Variáveis Aleatórias Contínuas Bacharelado em Administração - FEA - Noturno 2 o Semestre 2017 MAE0219 (IME-USP) Variáveis Aleatórias Contínuas 2 o Semestre 2017 1 / 35 Objetivos da Aula Sumário 1 Objetivos

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuição Amostral da Média Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Inferência para Duas Populações

Inferência para Duas Populações Universidade Federal Fluminense Instituto de Matemática e Estatística Inferência para Duas Populações Ana Maria Lima de Farias Fábio Nogueira Demarqui Departamento de Estatística Março 2017 Sumário 1 Inferência

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Aula Valor esperado como solução do problema do menor erro quadrático médio e Quantis 03/14 1 / 15 Valor esperado como solução

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Profa. Airlane P. Alencar e Prof. Francisco Marcelo M. da Rocha 11 de Setembro de 2018 Alencar, A.P. e Rocha, F.M.M. (IME-USP e EPPEN - UNIFESP) Estatística I 11 de

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário Se a integração analítica não é possível ou

Leia mais

Inferências bayesianas com probabilidade

Inferências bayesianas com probabilidade Inferências bayesianas com probabilidade Qual é a relação entre inferência bayesiana e as distribuições probabiĺısticas recém descritas? Essa conexão é feita ao se estimar parâmetros da distribuição probabiĺıstica

Leia mais

Introdução à Probabilidade e à Estatística II

Introdução à Probabilidade e à Estatística II Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA

6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 6. NOÇÕES DE INFERÊNCIA ESTATÍSTICA 214 Problemas de inferência Inferir significa fazer afirmações sobre algo desconhecido. A inferência estatística tem como objetivo fazer afirmações sobre uma característica

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS As variáveis aleatórias X e Y seguem uma distribuição de Bernoulli com probabilidade de sucesso igual a 0,4. Considerando S = X + Y e que os eventos aleatórios A = [X = 1] e B

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1).

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1). 1 Considere Y N1, 1 e X Y y Ny, 4. A quantidade de interesse é θ P X > 1. a Explique como obter uma estimativa de θ via simulação. Solução: Uma maneira simples de obter uma estimativa de θ é simulando

Leia mais

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE

Funções Geradoras de Variáveis Aleatórias. Simulação Discreta de Sistemas - Prof. Paulo Freitas - UFSC/CTC/INE Funções Geradoras de Variáveis Aleatórias 1 Funções Geradoras de Variáveis Aleatórias Nos programas de simulação existe um GNA e inúmeras outras funções matemáticas descritas como Funções Geradoras de

Leia mais