MAE0212 Introdução à Probabilidade e Estatística II

Tamanho: px
Começar a partir da página:

Download "MAE0212 Introdução à Probabilidade e Estatística II"

Transcrição

1 MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6.. Média amostral ˆµ = 6., conança γ = 1 = 90%. Logo calculamos 1 = 1 0, 1 = 0.95, então z 0.95 = Portanto o intervalo de conança é: IC 90% = 6. ± = 6. ± (b) A probabilidade P (ɛ) é também denominada coeciente de conança do intervalo, que normalmente é denotada pela letra grega γ (gama). Neste caso ɛ = 0.01 e γ = 0.90, então P( ˆX µ 0.01) = Portanto 0.90 = P ( 0.01 σ/ n ˆX ) µ σ/ n 0.01 σ/ n 1

2 Como ˆX N(µ, σ /n) temos que, para n grande, a variável aleatória Z = ˆX µ σ/ tem distribuição N(0, 1). n Deste modo, para n grande, 0.90 = P em que Z N(0, 1). Então ( 0.01 σ/ n Z 0.01 ) σ/ n, n = ( ) z1 σ Para uma conança de 90%, isto é, = 5%, temos que = (veja parte (a)). Além disso o desvio padrão é conhecido σ =. Portanto ( ) n = = (c) Se µ, σ são desconhecidos usamos a distribuição t-student. O nivel de conança é o mesmo γ = 0.90 e o tamanho da amostra é n = 9. Calculamos a variância Ŝ = Logo 1 = 0.95, então t 0.95 = Assim o intervalo de conança é IC 90% = 6. ± = 6. ± Exercicio Para estimar a média µ desconhecida de uma população, foram propostos dois estimadores não viesados independentes ˆµ 1 e ˆµ, de tal sorte que V ar(ˆµ 1 ) = V ar(ˆµ )/3. Considere os seguintes

3 estimadores ponderados de µ: T 1 = (ˆµ 1 + ˆµ )/, T = (4ˆµ 1 + ˆµ )/5, T 3 = ˆµ 1. ( ) ˆµ1 + ˆµ (a) E(T 1 ) = E = µ + µ = µ. ( ) 4ˆµ1 + ˆµ E(T ) = E = 4µ + µ = µ. 5 5 E(T ) = E(ˆµ 1 ) = µ. (b) Portanto os três estimadores são não viesados. ( ) ˆµ1 + ˆµ V ar(t 1 ) = V ar = V ar(ˆµ 1 ). ( ) 4ˆµ1 + ˆµ V ar(t ) = V ar = V ar(ˆµ 1). V ar(t 3 ) = V ar(ˆµ 1 ). Portanto temos V ar(t ) V ar(t 1 ) = V ar(t 3 ). Exercicio 3 Suponha que a distribuição populacional é uniforme no intervalo (0, θ), onde θ é desconhecido. Uma amostra de observações é escolhida X 1,..., X n. (a) E( ˆX) = 1 (E(X 1) + + E(X n )) = θ. V ar( ˆX) = 1 n (V ar(x 1) + + V ar(x n )) = θ 1n. Escolhemos o estimar ˆθ = ˆX. Como E(ˆθ) = θ o estimar é não viesado. Como V ar(ˆθ) = θ 1n e V ar(ˆθ) 0, quando n, então o estimador é consistente. 3

4 (b) Dena o estimador ˆθ (1) = max{x 1,..., X n }, então E(ˆθ (1) ) = θ 0 x nxn 1 dx = n θ n θ n θ 0 x n dx = nθ n + 1. Como E(ˆθ (1) ) θ o estimar é viesado. V ar(ˆθ (1) ) = θ 0 x nxn 1 θ n dx n θ (n + 1) = nθ (n + 1) (n + ). Qual dos estimadores ˆθ ou ˆθ (1) você usaria como estimador? Para comparar formalmente estimadores, calcula-se o erro quadratico médio (EQM) do estimador T denido por EQM(T, θ) = E(T θ) = V ar(t ) + (E(T ) θ). Escolham aquele que tem menor erro quadrático médio (EQM). Estimador ˆθ: EQM(ˆθ, θ) = θ 1n + (E(ˆθ) θ) = θ 1n. Estimador ˆθ (1) : EQM(ˆθ (1), θ) = = = ( ) nθ n + 1 θ nθ (n + 1) (n + ) + nθ (n + 1) (n + ) + θ ( ) (n + 1) n θ n (n + 1) θ (n + 1).

5 Observamos que EQM(ˆθ (1), θ) converge para zero mas rápido que EQM(ˆθ, θ), isto é, EQM(ˆθ (1), θ) EQM(ˆθ, θ), para n. Exercicio 4 (a) Calcule o intervalo de conança para a média de uma N(µ, σ ) em cada um dos casos abaixo. n = 100, ˆµ = 170, σ = 15, 1 = 95%. Logo 1 = 0.975, entao z = Portanto o intervalo de conança será IC 95% = 170 ± z = 170 ±.94. n = 184, ˆµ = 165, σ = 30, 1 = 85%. Logo 1 = 0.95, entao z 0.95 = Portanto o intervalo de conança será IC 85% = 165 ± z = 165 ± n = 5, ˆµ = 180, σ = 30, 1 = 70%. Logo 1 = 0.85, entao z 0.85 = Portanto o intervalo de conança será IC 70% = 5 ± z = 180 ±.07. 5

6 (b) de válvulas fabricadas por uma companhia retira-se uma amostra de 400 válvulas, e obtém-se a vida média de 800 horas e o desvio padrão de 100 horas. (b 1 ) Qual o intervalo de conança de 99% para a vida média da população? Então: 1 = 99% = 1% 1 = Observando na tabela Normal: z = = = =.575 Obtemos assim o intervalo de conança: IC 99% = 800 ± z = 800 ± (b ) Com que conança dir-se-ia que a vida média é 800 ± 0.98? P ( ˆµ µ 0.98) Então: Daí: = = σ = = = 5% 6

7 (b 3 ) Que tamanho deve ter a amostra para que seja de 95% a conança na estimativa 800 ± 7.84? 0.95 = γ = 1 = 5% Como e também: = z 0,975 = 1.96 z n = 7.84 Então temos que: n = z σ 7.84 n = 5 = 65 7

Estimação: (A) Propriedades e Distribuições Amostrais

Estimação: (A) Propriedades e Distribuições Amostrais Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia

DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:

Leia mais

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25

3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25 3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.

Leia mais

Estatística II. Intervalo de Confiança Lista de Exercícios

Estatística II. Intervalo de Confiança Lista de Exercícios Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências Estatística Aplicada

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Estimação pontual Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Introdução Exemplo Desejamos comprar um

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo

Leia mais

6. Amostragem e estimação pontual

6. Amostragem e estimação pontual 6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um

Leia mais

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas

Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2

Leia mais

Distribuições Amostrais - Tamanho da Amostra

Distribuições Amostrais - Tamanho da Amostra Distribuições Amostrais - Tamanho da Amostra Prof. Eduardo Bezerra Inferência Estatística 21 de Setembro de 2018 Eduardo Bezerra (CEFET/RJ) Tamanho da Amostra 1 / 10 Motivação Suponha que queremos estimar

Leia mais

MAB-515 Avaliação e Desempenho (DCC/UFRJ)

MAB-515 Avaliação e Desempenho (DCC/UFRJ) MAB-515 Avaliação e Desempenho (DCC/UFRJ) Aula 7: Intervalos de Confiança 13 de novembro de 2012 1 2 3 4 Percentil 100p%-percentil O ponto t 0 tal que t 0 = F 1 X (p) = min{t : F X (t) p}, 0 < p < 1 é

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Distribuição Amostral e Estimação Pontual de Parâmetros

Distribuição Amostral e Estimação Pontual de Parâmetros Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra

Leia mais

Aula 9: Introdução à Inferência Estatística

Aula 9: Introdução à Inferência Estatística Aula 9: Introdução à Inferência Estatística Professor: José Luiz Padilha da Silva email: jlpadilha@ufpr.br Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da

Leia mais

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1).

1) Considere Y N(1, 1) e X Y = y N(y, 4). A quantidade de interesse é θ = P (X > 1). 1 Considere Y N1, 1 e X Y y Ny, 4. A quantidade de interesse é θ P X > 1. a Explique como obter uma estimativa de θ via simulação. Solução: Uma maneira simples de obter uma estimativa de θ é simulando

Leia mais

Lista de Exercicios 1. Medidas Resumo. Estimação. Distribuições Amostrais

Lista de Exercicios 1. Medidas Resumo. Estimação. Distribuições Amostrais Introcução à Inferência Estatística. Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 15 de agosto de 007 Lista de Exercicios 1 Medidas Resumo. Estimação. Distribuições Amostrais 1

Leia mais

ESTIMAÇÃO DE PARÂMETROS

ESTIMAÇÃO DE PARÂMETROS ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.

Leia mais

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5

MAE Introdução à Probabilidade e Estatística II Resolução Lista 5 MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão

Leia mais

308 CAPfTU LO 11 - ESTIMAÇÃO Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por ( 11.40) e um r

308 CAPfTU LO 11 - ESTIMAÇÃO Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por ( 11.40) e um r 308 CAPfTU LO 11 - ESTIMAÇÃO Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por ( 11.40) e um r fixo, os intervalos que podemos obter para amostras

Leia mais

Inferência estatística

Inferência estatística Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória

Leia mais

Intervalos Estatísticos para uma única Amostra - parte I

Intervalos Estatísticos para uma única Amostra - parte I Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.

Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017. Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem

Leia mais

6- Probabilidade e amostras: A distribuição das médias amostrais

6- Probabilidade e amostras: A distribuição das médias amostrais 6- Probabilidade e amostras: A distribuição das médias amostrais Anteriormente estudamos como atribuir probabilidades a uma observação de alguma variável de interesse (ex: Probabilidade de um escore de

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuição Amostral da Média Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Pós Graduação em Saúde da Mulher e da Criança IFF FIOCRUZ Baseado nas aulas de M.

Leia mais

Introdução em Probabilidade e Estatística II

Introdução em Probabilidade e Estatística II Introdução em Probabilidade e Estatística II Lista 7 Exercicio Em estudo genético um gene A foi destacado para detectar uma doença. Se dita que em pessoas doentes (pacientes) este gene mostra atividade

Leia mais

MAE0229 Introdução à Probabilidade e Estatística II

MAE0229 Introdução à Probabilidade e Estatística II Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de

Leia mais

Introdução à Probabilidade e à Estatística II

Introdução à Probabilidade e à Estatística II Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36

Leia mais

INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS

INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de outubro de 2017 Há situações em que o interesse do

Leia mais

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados

Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Profa. Airlane P. Alencar e Prof. Francisco Marcelo M. da Rocha 11 de Setembro de 2018 Alencar, A.P. e Rocha, F.M.M. (IME-USP e EPPEN - UNIFESP) Estatística I 11 de

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Prof. Dr. Francisco Marcelo M. da Rocha 10 de Setembro de 2018 Rocha, F.M.M. (EPPEN - UNIFESP) Estatística I 10 de Setembro de 2018 1 / 60 Índice 1 Objetivo da Aula

Leia mais

Estatística Aplicada

Estatística Aplicada Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em

Leia mais

Distribuições por Amostragem

Distribuições por Amostragem Distribuições por Amostragem Departamento de Matemática Escola Superior de Tecnologia de Viseu (DepMAT ESTV) Distribuições por Amostragem 2007/2008 1 / 27 Introdução: População, amostra e inferência estatística

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Exercícios de revisão para a 3 rofa. Ana Maria Farias 2018-1 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade da idade de

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Y i : Quantidade de interesse. X i : Variável auxiliar. Estimadores do tipo razâo. População de U de N unidades. Unidade i: (X i, Y i )

Y i : Quantidade de interesse. X i : Variável auxiliar. Estimadores do tipo razâo. População de U de N unidades. Unidade i: (X i, Y i ) Estimadores do tipo razâo População de U de N unidades Unidade i: (X i, Y i ) Y i : Quantidade de interesse X i : Variável auxiliar Temos para uma amostra AASc de tamanho n x : média amostra de X ȳ : média

Leia mais

Gabarito - Lista 5 - Questões de Revisão

Gabarito - Lista 5 - Questões de Revisão Gabarito - Lista 5 - Questões de Revisão Monitores: Camila Steffens e Matheus Rosso Parte I - Teoria assintótica 1. Enuncie a lei dos grandes números e o teorema central do limite. A LGN em sua expressão

Leia mais

PE-MEEC 1S 09/ Capítulo 7 - Estimação por intervalos. 7.2 Intervalos de. confiança para. média de uma. normal 7.

PE-MEEC 1S 09/ Capítulo 7 - Estimação por intervalos. 7.2 Intervalos de. confiança para. média de uma. normal 7. Capítulo 7 - Estimação por intervalos 7.1 Noções básicas 7.2 Intervalos de confiança para a média de uma população normal 7.3 Intervalos de confiança para a diferença de duas médias de populações normais

Leia mais

Estatística Aplicada II. } Estimação e Intervalos de Confiança

Estatística Aplicada II. } Estimação e Intervalos de Confiança Estatística Aplicada II } Estimação e Intervalos de Confiança 1 Aula de hoje } Tópicos } Revisão } Estimação } Intervalos de Confiança } Referências } Barrow, M. Estatística para economia, contabilidade

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros OBJETIVOS DE APRENDIZAGEM Depois de um cuidadoso estudo deste capítulo, você deve ser capaz de: 1.Explicar os conceitos gerais de estimação de

Leia mais

Introdução à Inferência Estatística

Introdução à Inferência Estatística Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 8 Inferência Estatística stica Estimação de Parâmetros Média Referencia: Estatística Aplicada às Ciências Sociais, Cap. 9 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 22. Estimação

Leia mais

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2

X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2 Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,

Leia mais

Heleno Bolfarine Mônica Carneiro Sandoval ESTATÍSTICA

Heleno Bolfarine Mônica Carneiro Sandoval ESTATÍSTICA Heleno Bolfarine Mônica Carneiro Sandoval INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA V VI CONTEÚDO PREFÁCIO... iv CAPÍTULO 1. ELEMENTOS BÁSICOS... 1 1.1. Alguns Modelos Especiais........1 1.1.1. O modelo normal...1

Leia mais

Capítulo 4 Inferência Estatística

Capítulo 4 Inferência Estatística Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de

Leia mais

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012

PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012 PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.

Leia mais

Solução dos Exercícios - Capítulos 1 a 3

Solução dos Exercícios - Capítulos 1 a 3 Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como

Leia mais

AULA 7 - Inferência em MQO: ICs e Testes de

AULA 7 - Inferência em MQO: ICs e Testes de AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos

Leia mais

Teorema central do limite e es/mação da proporção populacional p

Teorema central do limite e es/mação da proporção populacional p Teorema central do limite e es/mação da proporção populacional p 1 RESULTADO 1: Relembrando resultados importantes Seja uma amostra aleatória de tamanho n de uma variável aleatória X, com média µ e variância

Leia mais

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

Bioestatística e Computação I

Bioestatística e Computação I Bioestatística e Computação I Distribuição Amostral da Média Maria Virginia P Dutra Eloane G Ramos Vania Matos Fonseca Variável aleatória numérica parâmetros desconhecidos média desvio padrão estimativa

Leia mais

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza

Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes

Leia mais

1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos.

1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos. GET00172 - Fundamentos de Estatística Aplicada Gabarito da Lista de Exercícios Inferência rofa. Ana Maria Farias 1. a Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus

Leia mais

Inferência Estatística:

Inferência Estatística: Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos

Leia mais

Testes de Hipóteses II

Testes de Hipóteses II Testes de Hipóteses II Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 6a AULA 06/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 5a aula (06/04/2015) MAE229 1 / 23 1. Teste para

Leia mais

Análise de Dados e Simulação

Análise de Dados e Simulação Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Análise Estatística. Análise Estatística Motivação: Fila de 1 servidor. Clientes chegam em um banco (sistema)

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições

Leia mais

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida

Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução

Leia mais

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística

Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística

CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal

Leia mais

CC-226 Aula 07 - Estimação de Parâmetros

CC-226 Aula 07 - Estimação de Parâmetros CC-226 Aula 07 - Estimação de Parâmetros Carlos Henrique Q. Forster - Instituto Tecnológico de Aeronáutica 2008 Estimação de Parâmetros Para construir o classificador bayesiano, assumimos as distribuições

Leia mais

3 2σ 2] = σ 2 C = 1 6

3 2σ 2] = σ 2 C = 1 6 GET008 - Estatística II Lista de Exercícios Inferência para uma população Profa. Ana Maria Farias. Seja X, X,, X 6 uma amostra aleatória simples de tamanho 6 de uma população Nµ; σ. Determine o valor da

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução O curso foi dividido em três etapas:

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Algoritmo para simular uma fila Medidas de interesse Média amostral Aula de hoje Teorema do Limite Central Intervalo de Confiança Variância amostral

Leia mais

CE219 - Controle Estatístico de Qualidade

CE219 - Controle Estatístico de Qualidade CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 96 Aula 2 - Métodos estáticos para

Leia mais

AULA 03 Estimativas e tamanhos amostrais

AULA 03 Estimativas e tamanhos amostrais 1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade

Leia mais

Estimador: combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população.

Estimador: combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população. Objetivo: tirar conclusões sobre uma população com base na informação de uma amostra. estimação testes de hipóteses Parâmetro metro: quantidades desconhecidas da população e sobre as quais temos interesse.

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos

Leia mais

ESTATÍSTICA COMPUTACIONAL

ESTATÍSTICA COMPUTACIONAL ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron

Leia mais

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.

3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente. 1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-

Leia mais

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR

Leia mais

Introdução à Bioestatística Turma Nutrição

Introdução à Bioestatística Turma Nutrição Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição

Leia mais

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade

x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)

Leia mais

Regressão Linear - Parte I

Regressão Linear - Parte I UFPE - Universidade Federal de Pernambuco Curso: Economia Disciplina: ET-406 Estatística Econômica Professor: Waldemar Araújo de S. Cruz Oliveira Júnior Regressão Linear - Parte I 1 Introdução Podemos

Leia mais

Introdução à probabilidade e estatística II

Introdução à probabilidade e estatística II Introdução à probabilidade e estatística II Testes de hipóteses para duas médias populacionais Prof. Alexandre G Patriota Sala: 98A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Testes de hipóteses

Leia mais

Análise de Regressão EST036

Análise de Regressão EST036 Análise de Regressão EST036 Michel Helcias Montoril Instituto de Ciências Exatas Universidade Federal de Juiz de Fora Distribuição beta não central; Coef. de determinação; Quando X for aleatório. Distribuição

Leia mais

x P(X = x) 0,1 0,7 0,2

x P(X = x) 0,1 0,7 0,2 GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade

Leia mais

Inferência Estatística

Inferência Estatística Inferência Estatística Estimação Intervalar Média e Proporção Estimação Pontual x Estimação Intervalar Exemplo Inicial: Um estudo pretende estimar o valor de µ, a renda média familiar dos alunos da UFMG.

Leia mais

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM

Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,

Leia mais

Inferência para duas populações

Inferência para duas populações Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões

Leia mais

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Testes de Hipóteses Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais

Leia mais