MAE0212 Introdução à Probabilidade e Estatística II
|
|
|
- Adriano Sampaio
- 6 Há anos
- Visualizações:
Transcrição
1 MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6.. Média amostral ˆµ = 6., conança γ = 1 = 90%. Logo calculamos 1 = 1 0, 1 = 0.95, então z 0.95 = Portanto o intervalo de conança é: IC 90% = 6. ± = 6. ± (b) A probabilidade P (ɛ) é também denominada coeciente de conança do intervalo, que normalmente é denotada pela letra grega γ (gama). Neste caso ɛ = 0.01 e γ = 0.90, então P( ˆX µ 0.01) = Portanto 0.90 = P ( 0.01 σ/ n ˆX ) µ σ/ n 0.01 σ/ n 1
2 Como ˆX N(µ, σ /n) temos que, para n grande, a variável aleatória Z = ˆX µ σ/ tem distribuição N(0, 1). n Deste modo, para n grande, 0.90 = P em que Z N(0, 1). Então ( 0.01 σ/ n Z 0.01 ) σ/ n, n = ( ) z1 σ Para uma conança de 90%, isto é, = 5%, temos que = (veja parte (a)). Além disso o desvio padrão é conhecido σ =. Portanto ( ) n = = (c) Se µ, σ são desconhecidos usamos a distribuição t-student. O nivel de conança é o mesmo γ = 0.90 e o tamanho da amostra é n = 9. Calculamos a variância Ŝ = Logo 1 = 0.95, então t 0.95 = Assim o intervalo de conança é IC 90% = 6. ± = 6. ± Exercicio Para estimar a média µ desconhecida de uma população, foram propostos dois estimadores não viesados independentes ˆµ 1 e ˆµ, de tal sorte que V ar(ˆµ 1 ) = V ar(ˆµ )/3. Considere os seguintes
3 estimadores ponderados de µ: T 1 = (ˆµ 1 + ˆµ )/, T = (4ˆµ 1 + ˆµ )/5, T 3 = ˆµ 1. ( ) ˆµ1 + ˆµ (a) E(T 1 ) = E = µ + µ = µ. ( ) 4ˆµ1 + ˆµ E(T ) = E = 4µ + µ = µ. 5 5 E(T ) = E(ˆµ 1 ) = µ. (b) Portanto os três estimadores são não viesados. ( ) ˆµ1 + ˆµ V ar(t 1 ) = V ar = V ar(ˆµ 1 ). ( ) 4ˆµ1 + ˆµ V ar(t ) = V ar = V ar(ˆµ 1). V ar(t 3 ) = V ar(ˆµ 1 ). Portanto temos V ar(t ) V ar(t 1 ) = V ar(t 3 ). Exercicio 3 Suponha que a distribuição populacional é uniforme no intervalo (0, θ), onde θ é desconhecido. Uma amostra de observações é escolhida X 1,..., X n. (a) E( ˆX) = 1 (E(X 1) + + E(X n )) = θ. V ar( ˆX) = 1 n (V ar(x 1) + + V ar(x n )) = θ 1n. Escolhemos o estimar ˆθ = ˆX. Como E(ˆθ) = θ o estimar é não viesado. Como V ar(ˆθ) = θ 1n e V ar(ˆθ) 0, quando n, então o estimador é consistente. 3
4 (b) Dena o estimador ˆθ (1) = max{x 1,..., X n }, então E(ˆθ (1) ) = θ 0 x nxn 1 dx = n θ n θ n θ 0 x n dx = nθ n + 1. Como E(ˆθ (1) ) θ o estimar é viesado. V ar(ˆθ (1) ) = θ 0 x nxn 1 θ n dx n θ (n + 1) = nθ (n + 1) (n + ). Qual dos estimadores ˆθ ou ˆθ (1) você usaria como estimador? Para comparar formalmente estimadores, calcula-se o erro quadratico médio (EQM) do estimador T denido por EQM(T, θ) = E(T θ) = V ar(t ) + (E(T ) θ). Escolham aquele que tem menor erro quadrático médio (EQM). Estimador ˆθ: EQM(ˆθ, θ) = θ 1n + (E(ˆθ) θ) = θ 1n. Estimador ˆθ (1) : EQM(ˆθ (1), θ) = = = ( ) nθ n + 1 θ nθ (n + 1) (n + ) + nθ (n + 1) (n + ) + θ ( ) (n + 1) n θ n (n + 1) θ (n + 1).
5 Observamos que EQM(ˆθ (1), θ) converge para zero mas rápido que EQM(ˆθ, θ), isto é, EQM(ˆθ (1), θ) EQM(ˆθ, θ), para n. Exercicio 4 (a) Calcule o intervalo de conança para a média de uma N(µ, σ ) em cada um dos casos abaixo. n = 100, ˆµ = 170, σ = 15, 1 = 95%. Logo 1 = 0.975, entao z = Portanto o intervalo de conança será IC 95% = 170 ± z = 170 ±.94. n = 184, ˆµ = 165, σ = 30, 1 = 85%. Logo 1 = 0.95, entao z 0.95 = Portanto o intervalo de conança será IC 85% = 165 ± z = 165 ± n = 5, ˆµ = 180, σ = 30, 1 = 70%. Logo 1 = 0.85, entao z 0.85 = Portanto o intervalo de conança será IC 70% = 5 ± z = 180 ±.07. 5
6 (b) de válvulas fabricadas por uma companhia retira-se uma amostra de 400 válvulas, e obtém-se a vida média de 800 horas e o desvio padrão de 100 horas. (b 1 ) Qual o intervalo de conança de 99% para a vida média da população? Então: 1 = 99% = 1% 1 = Observando na tabela Normal: z = = = =.575 Obtemos assim o intervalo de conança: IC 99% = 800 ± z = 800 ± (b ) Com que conança dir-se-ia que a vida média é 800 ± 0.98? P ( ˆµ µ 0.98) Então: Daí: = = σ = = = 5% 6
7 (b 3 ) Que tamanho deve ter a amostra para que seja de 95% a conança na estimativa 800 ± 7.84? 0.95 = γ = 1 = 5% Como e também: = z 0,975 = 1.96 z n = 7.84 Então temos que: n = z σ 7.84 n = 5 = 65 7
Estimação: (A) Propriedades e Distribuições Amostrais
Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação
Inferência Estatistica
Inferência Estatistica Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25
3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.
Estatística II. Intervalo de Confiança Lista de Exercícios
Estatística II Intervalo de Confiança Lista de Exercícios 1. IC da Média com a Variância Populacional Desconhecida De 50.000 válvulas fabricadas por uma companhia, retira-se uma amostra de 400 válvulas,
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
Probabilidade e Estatística
Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo
6. Amostragem e estimação pontual
6. Amostragem e estimação pontual Definição 6.1: População é um conjunto cujos elementos possuem qualquer característica em comum. Definição 6.2: Amostra é um subconjunto da população. Exemplo 6.1: Um
Teoria da Estimação. Fabricio Goecking Avelar. junho Universidade Federal de Alfenas - Instituto de Ciências Exatas
Teoria da Estimação Fabricio Goecking Avelar Universidade Federal de Alfenas - Instituto de Ciências Exatas junho - 2018 Algumas distribuições importantes Sumário 1 Algumas distribuições importantes 2
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
Distribuição Amostral e Estimação Pontual de Parâmetros
Roteiro Distribuição Amostral e Estimação Pontual de Parâmetros 1. Introdução 2. Teorema Central do Limite 3. Conceitos de Estimação Pontual 4. Métodos de Estimação Pontual 5. Referências População e Amostra
Aula 9: Introdução à Inferência Estatística
Aula 9: Introdução à Inferência Estatística Professor: José Luiz Padilha da Silva email: [email protected] Departamento de Estatística Universidade Federal do Paraná Curitiba, 2018 José Luiz Padilha da
Lista de Exercicios 1. Medidas Resumo. Estimação. Distribuições Amostrais
Introcução à Inferência Estatística. Departamento de Física é Matemática. USP-RP. Prof. Rafael A. Rosales 15 de agosto de 007 Lista de Exercicios 1 Medidas Resumo. Estimação. Distribuições Amostrais 1
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
308 CAPfTU LO 11 - ESTIMAÇÃO Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por ( 11.40) e um r
308 CAPfTU LO 11 - ESTIMAÇÃO Observe que o primeiro intervalo tem amplitude menor que o segundo. Outra observação importante é que por ( 11.40) e um r fixo, os intervalos que podemos obter para amostras
Inferência estatística
Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória
Intervalos Estatísticos para uma única Amostra - parte I
Intervalos Estatísticos para uma única Amostra - parte I Intervalo de confiança para média 14 de Janeiro Objetivos Ao final deste capítulo você deve ser capaz de: Construir intervalos de confiança para
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Introdução em Probabilidade e Estatística II
Introdução em Probabilidade e Estatística II Lista 7 Exercicio Em estudo genético um gene A foi destacado para detectar uma doença. Se dita que em pessoas doentes (pacientes) este gene mostra atividade
MAE0229 Introdução à Probabilidade e Estatística II
Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de
Introdução à Probabilidade e à Estatística II
Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36
INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS
INTERVALOS DE CONFIANÇA: DIFERENÇA ENTRE DUAS MÉDIAS Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 09 de outubro de 2017 Há situações em que o interesse do
Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados
Modelos Lineares Generalizados - Estimação em Modelos Lineares Generalizados Erica Castilho Rodrigues 23 de Maio de 207 Introdução 2 3 Vimos como encontrar o EMV usando algoritmos numéricos. Duas possibilidades:
Estatística Indutiva
Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição
Introdução à Inferência Estatística
Introdução à Inferência Estatística Prof. Dr. Francisco Marcelo M. da Rocha 10 de Setembro de 2018 Rocha, F.M.M. (EPPEN - UNIFESP) Estatística I 10 de Setembro de 2018 1 / 60 Índice 1 Objetivo da Aula
Estatística Aplicada
Estatística Aplicada Intervalos de Confiança Professor Lucas Schmidt www.acasadoconcurseiro.com.br Estatística Aplicada INTERVALOS DE CONFIANÇA Processos de estimação Estimação por ponto: o processo em
x P(X = x) 0,1 0,7 0,2
GET001 Fundamentos de Estatística Aplicada Exercícios de revisão para a 3 rofa. Ana Maria Farias 2018-1 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade da idade de
Gabarito - Lista 5 - Questões de Revisão
Gabarito - Lista 5 - Questões de Revisão Monitores: Camila Steffens e Matheus Rosso Parte I - Teoria assintótica 1. Enuncie a lei dos grandes números e o teorema central do limite. A LGN em sua expressão
PE-MEEC 1S 09/ Capítulo 7 - Estimação por intervalos. 7.2 Intervalos de. confiança para. média de uma. normal 7.
Capítulo 7 - Estimação por intervalos 7.1 Noções básicas 7.2 Intervalos de confiança para a média de uma população normal 7.3 Intervalos de confiança para a diferença de duas médias de populações normais
Estatística Aplicada II. } Estimação e Intervalos de Confiança
Estatística Aplicada II } Estimação e Intervalos de Confiança 1 Aula de hoje } Tópicos } Revisão } Estimação } Intervalos de Confiança } Referências } Barrow, M. Estatística para economia, contabilidade
Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.
1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento
Introdução à Inferência Estatística
Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) 2a AULA 02/03/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 2a aula (02/03/2015) MAE229 1 / 16
X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2
Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,
Heleno Bolfarine Mônica Carneiro Sandoval ESTATÍSTICA
Heleno Bolfarine Mônica Carneiro Sandoval INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA V VI CONTEÚDO PREFÁCIO... iv CAPÍTULO 1. ELEMENTOS BÁSICOS... 1 1.1. Alguns Modelos Especiais........1 1.1.1. O modelo normal...1
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG /2012
PROVA DE ESTATÍSTICA e PROBABILIDADES SELEÇÃO - MESTRADO/UFMG - 0/0 Instruções:. Cada questão respondida corretamente vale (um) ponto.. Cada questão respondida incorretamente vale - (menos um) ponto. 3.
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
Professora Ana Hermínia Andrade. Período
Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como
AULA 7 - Inferência em MQO: ICs e Testes de
AULA 7 - Inferência em MQO: ICs e Testes de Hipóteses Susan Schommer Econometria I - IE/UFRJ Nosso primeiro objetivo aqui é relembrar a diferença entre estimação de ponto vs estimação de intervalo. Vamos
Teorema central do limite e es/mação da proporção populacional p
Teorema central do limite e es/mação da proporção populacional p 1 RESULTADO 1: Relembrando resultados importantes Seja uma amostra aleatória de tamanho n de uma variável aleatória X, com média µ e variância
Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril
Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola
AULA 17 - Distribuição Uniforme e Normal
AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
1. (a) Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus valores, com as probabilidades sendo os pesos.
GET00172 - Fundamentos de Estatística Aplicada Gabarito da Lista de Exercícios Inferência rofa. Ana Maria Farias 1. a Lembre-se que a média de uma variável aleatória discreta é uma média ponderada de seus
Inferência Estatística:
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Inferência Estatística: Princípios de Bioestatística decidindo na presença de incerteza Aula 8: Intervalos
Testes de Hipóteses II
Testes de Hipóteses II Capítulo 12, Estatística Básica (Bussab&Morettin, 8a Edição) 6a AULA 06/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 5a aula (06/04/2015) MAE229 1 / 23 1. Teste para
Análise de Dados e Simulação
Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Análise Estatística. Análise Estatística Motivação: Fila de 1 servidor. Clientes chegam em um banco (sistema)
Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba
Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição t de Student 02/14 1 / 1 A distribuição t de Student é uma das distribuições
Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida
Aula 9 Intervalo de confiança para a média da N(μ; σ 2 ), σ 2 desconhecida Nesta aula você completará seu estudo básico sobre intervalos de confiança, analisando o problema de estimação da média de uma
Intervalos de Confiança
Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva
Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos
CE085 - Estatística Inferencial. derivadas. Prof. Wagner Hugo Bonat. 5 de setembro de Curso de Bacharelado em Estatatística
CE085 - Estatística Inferencial Função de Verossimilhança e suas derivadas Prof. Wagner Hugo Bonat Laboratório de Estatística e Geoinformação - LEG Curso de Bacharelado em Estatatística Universidade Federal
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.
Cálculo das Probabilidades e Estatística I
Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB [email protected] Introdução O curso foi dividido em três etapas:
CE219 - Controle Estatístico de Qualidade
CE219 - Controle Estatístico de Qualidade Cesar Augusto Taconeli 30 de maio, 2017 Cesar Augusto Taconeli CE219 - Controle Estatístico de Qualidade 30 de maio, 2017 1 / 96 Aula 2 - Métodos estáticos para
AULA 03 Estimativas e tamanhos amostrais
1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade
Estimador: combinação dos elementos da amostra, construída com a finalidade de representar, ou estimar, um parâmetro de interesse na população.
Objetivo: tirar conclusões sobre uma população com base na informação de uma amostra. estimação testes de hipóteses Parâmetro metro: quantidades desconhecidas da população e sobre as quais temos interesse.
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA
UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Podemos
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron
3. Considere uma amostra aleatória de tamanho 7 de uma normal com média 18. Sejam X e S 2, a média e a variância amostral, respectivamente.
1 Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Departamento de Ciências Exatas Professores: Clarice Demétrio, Roseli Leandro e Mauricio Mota Lista 3- Distribuições Amostrais-
Testes de hipóteses. Wagner H. Bonat Fernando P. Mayer Elias T. Krainski
Testes de hipóteses Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 07/06/2018 WB, FM, EK ( LEG/DEST/UFPR
Introdução à Bioestatística Turma Nutrição
Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Estatística Introdução à Bioestatística Turma Nutrição Aula 8: Intervalos de Confiança para Média e Proporção Distribuição
x, x < 1 f(x) = 0, x 1 (a) Diga o que entende por amostra aleatória. Determine a função densidade de probabilidade
Probabilidades e Estatística 2004/05 Colectânea de Exercícios LEIC, LERCI, LEE Capítulo 6 Estimação Pontual Exercício 6.1. Considere a população X com função densidade de probabilidade { x, x < 1 f(x)
Introdução à probabilidade e estatística II
Introdução à probabilidade e estatística II Testes de hipóteses para duas médias populacionais Prof. Alexandre G Patriota Sala: 98A Email: [email protected] Site: www.ime.usp.br/ patriota Testes de hipóteses
x P(X = x) 0,1 0,7 0,2
GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade
Inferência Estatística
Inferência Estatística Estimação Intervalar Média e Proporção Estimação Pontual x Estimação Intervalar Exemplo Inicial: Um estudo pretende estimar o valor de µ, a renda média familiar dos alunos da UFMG.
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM
Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística PPGEMQ / PPGEP - UFSM Estimação de Parâmetros O objetivo da Estatística Indutiva é tirar conclusões probabilísticas sobre aspectos da população,
Inferência para duas populações
Inferência para duas populações Capítulo 13, Estatística Básica (Bussab&Morettin, 8a Edição) 7a AULA 27/04/2015 MAE229 - Ano letivo 2015 Lígia Henriques-Rodrigues 7a aula (27/04/2015) MAE229 1 / 27 1.
CONHECIMENTOS ESPECÍFICOS
CONHECIMENTOS ESPECÍFICOS 2003 2004 2005 2006 2007 2008 2009 2010 X 39,0 39,5 39,5 39,0 39,5 41,5 42,0 42,0 Y 46,5 65,5 86,0 100,0 121,0 150,5 174,0 203,0 A tabela acima mostra as quantidades, em milhões
Testes de Hipóteses. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo
Testes de Hipóteses Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução e notação Em geral, intervalos de confiança são a forma mais
