Análise de Dados e Simulação
|
|
|
- Irene Pinto Quintanilha
- 7 Há anos
- Visualizações:
Transcrição
1 Universidade de São Paulo Instituto de Matemática e Estatística mbranco Análise Estatística.
2 Análise Estatística Motivação: Fila de 1 servidor. Clientes chegam em um banco (sistema) segundo um PPNH com função intensidade λ(t), t > 0. O banco possue um único caixa (servidor). Se ele esta livre o cliente é atendido, caso contrário, espera na fila. O tempo de atendimento do cliente pelo servidor é uma v.a. Y com distribuição G, independente do processo de ingresso no sistema e do atendimento do cliente anterior. Existe um tempo T 0 a partir do qual não é mais permitido a entrada no sistema. Todos os clientes que já entraram serão atendidos.
3 Análise Estatística Possíveis interesses: (1) Determinar o tempo médio gasto por um cliente no banco. T E : tempo de entrada no sistema. T S : tempo de saída do sistema Tempo de permanência: X = T S T E. Parâmetro de interesse: θ 1 = E[X]. (2) Determinar o tempo extra de trabalho. T Su : tempo de saída do último cliente (máximo T S ). Tempo extra: Y = T Su T 0. Parâmetro de interesse: θ 2 = E[Y ].
4 Análise Estatística Questão de simulação: Quantos dias devem ser simulados? Similar ao problema estatístico de determinar o tamanho da amostra. Primeiro devemos estabelecer o parâmetro de interesse e seu estimador. Em geral estamos interessados em estimar uma média populacional: E[X]. Usamos como estimador a média amostral X = 1 n n i=1 X i. Considerando as propriedades usuais da média amostral, estabelecemos uma expressão para o tamanho da amostra que depende da confiança (1 α) e da precisão (2ǫ) desejadas.
5 Análise Estatística Lembre que, para n grande, com S 2 n = 1 n 1 n (X i X) 2 e i=1 ǫ = Z 1 α/2 S n n Z 1 α/2 o percentil de ordem 1 α/2 da N(0, 1). A seguinte estratégia de simulação pode ser usada. (i) Simular n 0 valores iniciais de X. (ii) Fixado α 0 e ǫ 0, segue simulando novos valores de X até obter Z 1 α/2 S n n ǫ 0.
6 Análise Estatística Caso especial: Proporção X i = 1 com probabilidade p e X i = 0, com probabilidade 1 p. Então E[X i ] = p e V ar[x i ] = p(1 p). Note que X = ˆp é a proporção de 1 s na amostra. Neste caso ˆp(1 ˆp) ǫ = Z 1 α/2. n OBS: Dependendo do parâmetro de interesse pode não haver fórmula explicita para o erro padrão do estimador. Neste caso, devemos estimá-lo. Métodos de reamostragem são úteis para este propósito.
7 Métodos de reamostragem (bootstrap e Jackknife) O método de bootstrap foi introduzido por Efron (1979). Para mais informação sobre a metodologia ver o livro de Efron and Tibshirani(1998). Chapman and Hall/CRC. O termo provem de uma frase do romance As aventuras do Barão de Munchausen escrito por Rudolph Raspe, to pull oneself up by one s bootstrap. Na ĺıngua portuguesa poderia ser interpretado como pular sobre suas próprias botas ou subir com seus próprios esforços. O método de Jackknife é mais simples e anterior ao bootstrap. O objetivo dos métodos é estimar a variabilidade de um estimador reamostrando da própria amostra observada.
8 O método de Jackknife Considere x 1, x 2,...,x n a amostra observada. As amostras de Jack serão construídas retirando-se um elemento da amostra original, x (i) = (x 1,...,x i 1, x i+1,...,x n ), i = 1,...,n 1. Obtemos assim n amostras de Jack. Para cada uma destas amostras calcula-se o valor do estimador de interesse ˆθ(i). A estimativa de Jackknife para o Erro Quadrático Médio (EQM) do estimador ˆθ é dada por com θ = 1 n EQM Jack (ˆθ) = n 1 n n θ(i). ˆ i=1 n [ θ(i) ˆ θ] 2 i=1
9 Exemplo 1: Estimando a média populacional Parâmetro de interesse µ = E[X]. Estimador X. Considere a amostra x = (10, 27, 31, 40, 46, 50, 52, 104, 146). Amostras de Jack de tamanho (n-1): x (i) x mediana (27,31,40,46,50,52,104,146) (10,31,40,46,50,52,104,146) (10,27,40,46,50,52,104,146) (10,27,31,46,50,52,104,146) (10,27,31,40,50,52,104,146) (10,27,31,40,46,52,104,146) (10,27,31,40,46,50,104,146) (10,27,31,40,46,50,52,146) (10,27,31,40,46,50,52,104)
10 θ = 56.22, o qual é igual a média amostra é x. EQM Jack ( X) = [ x(i) θ] 2 = i=1 O real valor de erro quadrático médio para X é dado por V ar(x) n Usando a variância amostral s 2 = 1 n 1 n (x i x) 2 como estimador de V ar(x), temos que EQM ˆ = /9 = É possível mostrar que i=1 EQM Jack ( X) = s2 n
11 Problema com o Jackknife: uso de funções não suaves. Considere ˆθ = med(x), então EQM Jack (md) = Se utilizarmos a metodologia de bootstrap obtemos EQM Boot = com base em 1000 amostras simuladas.
12 O método de bootstrap não paramétrico Um amostra de bootstrap é obtida simulando, com reposição, n valores segundo a distribuição empírica F e. Denotada por x = (x 1, x 2,...,x n). Simula-se um número B de amostras e para cada uma avalia-se o estimador. Obtendo-se ˆθ 1,..., ˆθ B. No exemplo, possíveis amostras (ou réplicas) são: x x mediana (10,27,31,40,46,50,52,104,146) (10,10,27,27,40,40,50,50,104) (10,10,27,40,40,50,50,104,104) (10,27,27,27,46,50,52,104,104) (27,27,31,46,50,140,140,146,146) (40,50,52,52,104,104,104,104,146)
13 A função de distribuição empírica é F e (x i ) = numero de valores menores ou iguais a x i n Como simular de uma v.a. discreta? (i) Gerar u U (0,1) (ii) Se F e (x (i 1) ) < u F e (x (i) ) fazer x = x (i) i = 1, 2,...,k. F e (x (0) ) = e x (1) < x (1) < < x (k) são as estatísticas de ordem.
14 O erro quadrático médio de bootstrap é definido como EQM Boot (ˆθ) = E Fe [(ˆθ(X) θ) 2 ] e denominado estimativa ideal de bootstrap para o EQM. No caso particular θ = µ e ˆθ = X obtemos EQM Boot (ˆθ) = 1 n 2 n (x i x) 2 a qual difere levemente da usual estimativa do EQM( X) dada por 1 n(n 1) i=1 n (x i x) 2 i=1
15 Uma medida de interesse em estatística é o erro padrão do estimador (desvio padrão do estimador). O algoritmo proposto por Efron e Tibshirani para estimar o ep(ˆθ) é dado por: (i) Considere x 1, x 2,...,x B réplicas de Boot. (ii) Calcule o estimador em cada amostra obtida, ˆθ(x j ), j = 1,...,B. (iii) Estime o erro padrão ( ep ˆ B ) por com θ = 1 B B ˆθ(x j ). j=1 B [ˆθ(x j ) θ ] 2 j=1 B 1 1/2
16 Exemplo: Em uma amostra de 15 turmas de uma escola de direito duas medidas foram consideradas: LSAT, o escore médio da turma no exame nacional de admissão ao curso, e GPA, a nota média do curso de graduação. LSTA GPA LSTA GPA O coeficiente de correlação amostral é r xy = Qual o erro associado a esta estimativa?
17 A tabela a seguir apresenta a estimativa de bootstrap para o erro padrão do coeficiente de correlação amostral. B ep ˆ B Foi observada uma forte assimetria na distribuição de frequências dos valores obtidos para r xy, indicando que o uso da aproximação normal para este estimador não é aconselhável. Assumindo que as observações tem distribuição normal é possível mostrar que o erro padrão de r xy é 0.115, próximo dos valores obtidos
18 O método de bootstrap paramétrico A versão paramétrica do algoritmo de bootstrap assume parcialmente conhecida a distribuição de probabilidade F geradora dos dados observados, sendo necessário apenas definir os parâmetros dessa distribuição. O algoritmo para estimar o erro padrão de um estimador é igual ao estabelecido anteriormente, a única alteração é a maneira como simular as réplicas. A função empírica é substituída pela verdadeira F com os parâmetros estimados via amostra original.
ESTATÍSTICA COMPUTACIONAL
ESTATÍSTICA COMPUTACIONAL Ralph dos Santos Silva Departamento de Métodos Estatísticos Instituto de Matemática Universidade Federal do Rio de Janeiro Sumário (bootstrap) Este método foi proposto por Efron
BOOTSTRAP. - APLICAÇÃO DO MB: podem ser aplicados quando existe, ou não, um modelo probabilístico bem definido para os dados.
OOTSTRAP INTRODUÇÃO - IDEIA ÁSICA: reamostrar de um conjunto de dados, diretamente ou via um modelo ajustado, a fim de criar replicas dos dados, a partir das quais podemos avaliar a variabilidade de quantidades
1) Deseja-se usar o algoritmo de rejeição para simular de uma v.a. normal positiva, cuja densidade é dada por. 2 x > 0.
MAE0399 - Análise de Dados e Simulação - o semestre de 208 - IME - USP 2 a Lista de Exercícios ) Deseja-se usar o algoritmo de rejeição para simular de uma v.a. normal positiva, cuja densidade é dada por
ESTIMAÇÃO DE PARÂMETROS
ESTIMAÇÃO DE PARÂMETROS Um dos principais objetivos da estatística inferencial consiste em estimar os valores de parâmetros populacionais desconhecidos (estimação de parâmetros) utilizando dados amostrais.
Estatística Computacional e Simulação
Estatística Computacional e Simulação Capítulo MEIO MSc ESTATÍSTICA e INVESTIGAÇÃO OPERACIONAL MGI MSc GESTÃO DE INFORMAÇÃO MAEG MSc MATEMÁTICA APLICADA À ECONOMIA E GESTÃO DEIO - FCUL 1 0 Ano - 2 0 Semestre
Técnicas computacionais em probabilidade e estatística II
Técnicas computacionais em probabilidade e estatística II Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco AULA 1: Problemas Computacionais em Inferência Estatística.
Inferência estatística
Inferência estatística Susana Barbosa Mestrado em Ciências Geofísicas 2013-2014 Inferência estatística Obtenção de conclusões sobre propriedades da população a partir das propriedades de uma amostra aleatória
Comparação entre intervalos de confiança calculados com métodos bootstrap e intervalos assintóticos
Comparação entre intervalos de confiança calculados com métodos strap e intervalos assintóticos Selene Loibel Depto. de Estatística, Matemática Aplicada e Computação, IGCE, UNESP, Rio Claro, SP E-mail:[email protected],
Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança
Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo
4.1 Conceitos Básicos em Reamostragem
4 Reamostragem O tipo de estatística não-paramétrica que foi ensinado no passado desempenhou um importante papel na análise de dados que não são contínuos e, portanto, não podem empregar a distribuição
Estimação: (A) Propriedades e Distribuições Amostrais
Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação
MAE0212 Introdução à Probabilidade e Estatística II
MAE01 Introdução à Probabilidade e Estatística II Gabarito-Lista 3 Exercicio 1 (a) Cada X i N(µ, σ ). Tamanho da amostra n = 9, desvio padrão σ =. A amostra é: 4.9, 7.0, 8.1, 4.5, 5.6, 6.8, 7., 5.7, 6..
Análise de Dados e Simulação
Universidade de São Paulo Instituto de Matemática e Estatística http:www.ime.usp.br/ mbranco Simulação de Variáveis Aleatórias Contínuas. O método da Transformada Inversa Teorema Seja U U (0,1). Para qualquer
Intervalos de Confiança
Intervalos de Confiança Jorge M. V. Capela, Marisa V. Capela, Instituto de Química - UNESP Araraquara, SP [email protected] Araraquara, SP - 2016 1 2 Teorema do Limite Central Se amostras de tamanho n
Capítulo 4 Inferência Estatística
Capítulo 4 Inferência Estatística Slide 1 Resenha Intervalo de Confiança para uma proporção Intervalo de Confiança para o valor médio de uma variável aleatória Intervalo de Confiança para a diferença de
Solução dos Exercícios - Capítulos 1 a 3
Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral
Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise. Período 2017.
Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Distribuições Amostrais O intuito de fazer uma amostragem
Cap. 4 - Estimação por Intervalo
Cap. 4 - Estimação por Intervalo Amostragem e inferência estatística População: consiste na totalidade das observações em que estamos interessados. Nº de observações na população é denominado tamanho=n.
Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média
Exemplo 7.0 Numa linha de produção, os pesos de pacotes de pó de café embalados por uma máquina têm distribuição Normal, com média µ = 505g e desvio padrão σ = 9g. a) Selecionado ao acaso um pacote embalado
Inferência Estatistica
Inferência Estatistica Ricardo Ehlers [email protected] Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns
Simulação com Modelos Teóricos de Probabilidade
Simulação com Modelos Teóricos de Probabilidade p. 1/21 Algumas distribuições teóricas apresentam certas características que permitem uma descrição correta de variáveis muito comuns em processos de simulação.
Estimativas e Tamanhos de Amostras
Estimativas e Tamanhos de Amostras 1 Aspectos Gerais 2 Estimativa de uma Média Populacional: Grandes Amostras 3 Estimativa de uma Média Populacional: Pequenas Amostras 4 Tamanho Amostral Necessário para
Turma: Engenharia Data: 12/06/2012
DME-IM-UFRJ - 2ª Prova de Estatística Unificada Turma: Engenharia Data: 12/06/2012 1 - Admita que a distribuição do peso dos usuários de um elevador seja uma Normal com média 75kg e com desvio padrão 15kg.
Uma estatística é uma característica da amostra. Ou seja, se
Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral
CONHECIMENTOS ESPECÍFICOS
fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
MAE Introdução à Probabilidade e Estatística II Resolução Lista 5
MAE 229 - Introdução à Probabilidade e Estatística II Resolução Lista 5 Professor: Pedro Morettin e Profa. Chang Chian Exercício 1 (a) De uma forma geral, o desvio padrão é usado para medir a dispersão
AULA 03 Estimativas e tamanhos amostrais
1 AULA 03 Estimativas e tamanhos amostrais Ernesto F. L. Amaral 03 de outubro de 2013 Centro de Pesquisas Quantitativas em Ciências Sociais (CPEQS) Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade
Métodos Computacionais em Física
Métodos Computacionais em Física Tatiana G. Rappoport [email protected] 2014-1 Integração usando o método da rejeição Queremos calcular a integral Definimos um retângulo de altura H que contenha a
Estimação e Testes de Hipóteses
Estimação e Testes de Hipóteses 1 Estatísticas sticas e parâmetros Valores calculados por expressões matemáticas que resumem dados relativos a uma característica mensurável: Parâmetros: medidas numéricas
Professora Ana Hermínia Andrade. Período
Estimação intervalar Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2017.1 Estimação Intervalar Vimos que como
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Inferência. 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média. Renata Souza
Inferência 1 Estimativa pontual de uma média 2 Estimativa intervalar de uma média Renata Souza Aspectos Gerais A estatística descritiva tem por objetivo resumir ou descrever características importantes
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
3. Estimação pontual USP-ICMC-SME. USP-ICMC-SME () 3. Estimação pontual / 25
3. Estimação pontual USP-ICMC-SME 2013 USP-ICMC-SME () 3. Estimação pontual 2013 1 / 25 Roteiro Formulação do problema. O problema envolve um fenômeno aleatório. Interesse em alguma característica da população.
DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL INTRODUÇÃO ROTEIRO POPULAÇÃO E AMOSTRA. Estatística Aplicada à Engenharia
ROTEIRO 1. Introdução; DISTRIBUIÇÃO AMOSTRAL E ESTIMAÇÃO PONTUAL. Teorema Central do Limite; 3. Conceitos de estimação pontual; 4. Métodos de estimação pontual; 5. Referências. 1 POPULAÇÃO E AMOSTRA População:
Método de amostragem por conglomerados em dois estágios para estimativa de população canina/felina domiciliada.
étodo de amostragem por conglomerados em dois estágios para estimativa de população canina/felina domiciliada. Fernando Ferreira, Ricardo Augusto Dias, José Soares Ferreira Neto, arcos Amaku 1 de fevereiro
Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva
Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos
Estatística e Probabilidade Aula 08 Estimativas e Tamanho Amostral. Prof. Gabriel Bádue
Estatística e Probabilidade Aula 08 Estimativas e Tamanho Amostral Prof. Gabriel Bádue Motivação Estatística Inferencial Conjunto de métodos e procedimentos pelo meio dos quais tiramos conclusões sobre
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros ESQUEMA DO CAPÍTULO 7.1 INTRODUÇÃO 7.2 DISTRIBUIÇÕES AMOSTRAIS E TEOREMA DO LIMITE CENTRAL 7.3 CONCEITOS GERAIS DE ESTIMAÇÃO PONTUAL 7.3.1 Estimadores
Distribuições Amostrais e Estimação Pontual de Parâmetros
Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 2012/02 1 Introdução 2 3 4 5 Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição
Distribuições Amostrais
Distribuições Amostrais 1 Da população, com parâmetro, retira-se k amostras de tamanho n e calcula-se a estatística. Estas estatísticas são as estimativas de. As estatísticas, sendo variáveis aleatórias,
1 Que é Estatística?, 1. 2 Séries Estatísticas, 9. 3 Medidas Descritivas, 27
Prefácio, xiii 1 Que é Estatística?, 1 1.1 Introdução, 1 1.2 Desenvolvimento da estatística, 1 1.2.1 Estatística descritiva, 2 1.2.2 Estatística inferencial, 2 1.3 Sobre os softwares estatísticos, 2 1.4
Intervalos de Confiança
Intervalos de Confiança Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques e Nuno Bastos (DepMAT) Intervalos de Confiança 2010/2011 1 / 33 Introdução
SUMÁRIO. 1.1 Introdução, Conceitos Fundamentais, 2
SUMÁRIO 1 CONCEITOS BÁSICOS, 1 1.1 Introdução, 1 1.2 Conceitos Fundamentais, 2 1.2.1 Objetivo, 2 1.2.2 População e amostra, 2 1.3 Processos estatísticos de abordagem, 2 1.4 Dados estatísticos, 3 1.5 Estatística
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas
Aula 3 - Revisão de Probabilidade e Estatística: Esclarecimento de Dúvidas Matheus Rosso e Camila Steffens 19 de Março de 2018 Independência de variáveis aleatórias Duas V.A. são independentes se, e somente
MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel
MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel [email protected] www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,
Universidade Federal de Lavras
Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 6 a Lista de Exercícios Teoria da Estimação pontual e intervalar 1) Marcar como verdadeira ou falsa as seguintes
Inferência Estatística: Conceitos Básicos II
Inferência Estatística: Conceitos Básicos II Distribuição Amostral e Teorema do Limite Central Análise Exploratória de dados no SPSS Flávia F. Feitosa BH1350 Métodos e Técnicas de Análise da Informação
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA
Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Engenharia Prof. Mariana Albi 8 a Lista de Exercícios Assuntos: Inferência Estatística.
Análise Exploratória e Estimação PARA COMPUTAÇÃO
Análise Exploratória e Estimação MONITORIA DE ESTATÍSTICA E PROBABILIDADE PARA COMPUTAÇÃO Médias Média Aritmética (valor médio de uma distribuição) n x = 1 n i=1 x i = 1 n x 1 + + x n Média Aritmética
Inferência Estatística:
Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que
Tamanho Amostral. Tiago Viana Flor de Santana
ESTATÍSTICA BÁSICA Tiago Viana Flor de Santana www.uel.br/pessoal/tiagodesantana/ [email protected] sala 07 Curso: MATEMÁTICA Universidade Estadual de Londrina UEL Departamento de Estatística DSTA
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Capítulo 3 Introdução à Probabilidade e à Inferência Estatística INTERVALOS DE CONFIANÇA: Diferentes pesquisadores, selecionando amostras de uma mesma
Medidas resumo. Wagner H. Bonat Elias T. Krainski Fernando P. Mayer
Medidas resumo Wagner H. Bonat Elias T. Krainski Fernando P. Mayer Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação 28/03/2018 WB, EK, FM ( LEG/DEST/UFPR
3 Modelo Matemático Definições Iniciais. Denote-se, em geral, o desvio-padrão do processo por σ = γσ 0, sendo σ 0 o
Modelo Matemático 57 3 Modelo Matemático Este trabalho analisa o efeito da imprecisão na estimativa do desvio-padrão do processo sobre o desempenho do gráfico de S e sobre os índices de capacidade do processo.
1 Inferência Estatística - Teoria da Estimação
1 Inferência Estatística - Teoria da Estimação 1.1 Introdução Neste capítulo abordaremos situações em que o interesse está em obter informações da população a partir dos resultados de uma amostra. Como
TAMANHO AMOSTRAL. Lucas Santana da Cunha 31 de julho de Universidade Estadual de Londrina. Tamanho da Amostra
TAMANHO AMOSTRAL Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 31 de julho de 2017 Tamanho da Amostra É muito comum ao pesquisador indagar sobre o número de
ANÁLISE DE RESULTADOS
ANÁLISE DE RESULTADOS Conteúdo 2 1. Planejamento de Experimentos 2. Introdução Medidas de Desempenho Análise Estatística dos Resultados Comparação de Resultados Procedimento para análise de resultados
ESTATÍSTICA. Lucas Santana da Cunha 18 de setembro de Universidade Estadual de Londrina
INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 18 de setembro de 2017 Introdução Estatística Descritiva: Preocupa-se com
LEEC Probabilidades e Estatística 1 a Chamada 13/06/2005. Parte Prática C (C) M 1% 9% 10% (M) 4% 86% 90% 5% 95% 100%
. Definição dos acontecimentos: M T-shirt tem manchas C T-shirt tem costuras defeituosas D T-shirt é defeituosa A Preço da t-shirt é alterado a) PM) = % PC) = 5% PM C) = % LEEC Probabilidades e Estatística
Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:
Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a
X 2. (σ 2 + µ 2 ) = 1 n (nσ 2 + nµ 2 ) = σ 2 + µ 2. µ = 0 E(T ) = σ 2
Estatística II (GET00182) Turma A1 Prova 1 20/10/2017 2/2017 NOME: GABARITO 1. Seja X 1, X 2,, X n uma amostra aleatória simples de uma população X com média µ e variância σ 2. (a) Mostre que, se µ = 0,
MEDIDAS DE DISPERSÃO. Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões
MEDIDAS DE DISPERSÃO Os dados a seguir referem-se ao índice pluviométrico de três cidades no Estado de São Paulo, em 3 diferentes ocasiões Cidade A: 185, 185, 185 x 185mm Cidade B: 18, 184, 189 x 185mm
MAE0229 Introdução à Probabilidade e Estatística II
Exercício Entre jovens atletas, um nível alto de colesterol pode ser considerado preocupante e indicativo para um acompanhamento médico mais frequente. Suponha que são classificados como tendo taxa de
Introdução à Probabilidade e à Estatística II
Introdução à Probabilidade e à Estatística II Introdução à Inferência Estatística Capítulo 10, Estatística Básica (Bussab&Morettin, 7a Edição) Lígia Henriques-Rodrigues MAE0229 1º semestre 2018 1 / 36
x P(X = x) 0,1 0,7 0,2
GET001 Fundamentos de Estatística Aplicada Lista de Exercícios Módulo IV Parte a Profa. Ana Maria Farias 2017-1 CAPÍTULOS 1 e 2 1. Com objetivo de planejamento, um banco determinou a distribuição de probabilidade
6EMA Lucas Santana da Cunha 19 de abril de Universidade Estadual de Londrina
ESTATÍSTICA ECONÔMICA 6EMA020-2000 [email protected] http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de abril de 2017 1 o Bimestre Plano do Curso Cronograma Critério de Avaliação Bibliografia
Fernando de Pol Mayer
Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative
ESTATÍSTICA RESUMO E EXERCÍCIOS DE PROVAS ANTERIORES * *Resoluções destes exercícios grátis em simplificaaulas.com
ESTATÍSTICA RESUMO E EXERCÍCIOS DE PROVAS ANTERIORES * *Resoluções destes exercícios grátis em Conceitos e Fundamentos População: conjunto de elementos, número de pessoas de uma cidade. Amostra: parte
Estatística Descritiva
C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística
A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.
UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Prof. Tarciana Liberal Departamento de Estatística INTRODUÇÃO A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através
Introdução ao Planejamento e Análise Estatística de Experimentos 1º Semestre de 2013 Capítulo 3 Introdução à Probabilidade e à Inferência Estatística
Introdução ao Planejamento e Análise Estatística de Experimentos Capítulo 3 Introdução à Probabilidade e à Inferência Estatística Introdução ao Planejamento e Análise Estatística de Experimentos Agora,
Testes de Hipóteses Paramétricos
Testes de Hipóteses Paramétricos Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução Exemplos Testar se mais de metade da população irá consumir um novo produto
