Instituto de Física da Universidade de São Paulo

Tamanho: px
Começar a partir da página:

Download "Instituto de Física da Universidade de São Paulo"

Transcrição

1 Instituto de Física da Universidade de São Paulo FEP196 - Física para Engenharia II Lista de exercícios 3 Outubro de Considere uma situação em que você está examinando as características do sistema de suspensão de um automóvel. A suspensão cede 10 cm, quando o peso do automóvel inteiro é colocado sobre ela. Além disso, a amplitude da oscilaão diminui 50% durante uma oscilação completa. Estime os valores de k e ρ (a constante de amortecimento) para o sistema de mola e amortecedor em uma roda, considerando que cada uma suporta 500 Kg. R: k=5, N/m e ρ = 1, Kg/s. Uma partícula de massa m move-se na direção z no interior de um fluido, cuja resistência de atrito é da forma ρż, ou seja, é proporcional à velocidade (ρ > 0). A força peso é desprezível em confronto com a resistência de atrito durante o intervalo de tempo considerado. Dadas a posição inicial z 0 e a velocidade inicial v 0, ache z(t). R: z(t) = z 0 + (v 0 /γ)(1 e γt ), onde γ = ρ/m 3. Um oscilador criticamente amortecido, partindo da posição de equilíbrio, recebe um impulso que lhe comunica uma velocidade inicial v 0. Verifica-se que ele passa por seu deslocamento máximo, igual a 3,68 m, após 1 segundo. (a) Qual é o valor de v 0? (b) Se o oscilador tivesse um deslocamento inicial x 0 = m com a mesma velocidade inicial v 0, qual seria o valor de x no instante t? R: (a) v 0 = 10 m/s e (b) x(t) = e t (+1t) 4. (Poli 006) O Gráfico de x(t), mostrado na figura abaixo, representa a equação horária de um oscilador criticamente amortecido, para um sistema composto de um corpo de massa m = 1, 0 Kg preso a uma mola de constante elástica k e imerso em um líquido viscoso, de coeficiente de resistência viscosa ρ. (a) Em que instante de tempo a velocidade do corpo será nula, no intervalo de tempo mostrado no gráfico? (b) A equação horária x(t) pode ser escrita como: x(t) = e γ/t (a + bt). Determine os valores de a e b. (c) Determine a constante de decaimento γ e a constante elástica k da mola. (d) Determine o valor da velocidade inicial do oscilador. R: (a) t=3s; (b) a = 0, 5 m e b = 0, 5 m/s; (c) γ = 1 s 1 ; (d) v 0 = 0.75 m/s. 5. Um corpo de massa m = 1000 kg cai de uma altura H = 1 m sobre uma plataforma de massa desprezível. Deseja-se projetar 1

2 um sistema constituído por uma mola e um amortecedor sobre o qual se montará a plataforma de modo que ela fique em equilíbrio a uma distância d = m abaixo de sua posição inicial, após o impacto. O equilíbrio deve ser atingido tão rápido quanto possível, sem oscilações. (a) Obtenha a constante k da mola e a constante de amortecimento ρ do amortecedor. (b) Obtenha a equação que descreve o movimento do bloco após entrar em contato com a plataforma. R: (a) k = N/m e ρ = kg/s e (b) x(t) = 5e 5t t 6. Um oscilador não amortecido de massa m e freqüência própria ω 0 move-se sob a ação de uma força externa F = F 0 sen(ωt), partindo da posição de equilíbrio com velocidade inicial nula. Ache o deslocamento x(t). R: x(t) = F 0 m(ω 0 ω ) [ sen(ωt) ω ω 0 sen(ω 0 t) 7. (Poli 006) Um corpo de massa m desliza sobre um plano horizontal sem atrito sujeito a três forças: uma força elástica resultante da ação de uma mola de constante elástica k, uma força devido à resistência viscosa do meio, caracterizada por uma resistência viscosa ρ, e uma força externa periódica F(t) = F 0 cos Ωt. (a) Escreva a equação diferencial que descreve o movimento do corpo, e sua solução estacionária. (b) Considerando que m = 50 Kg, k = 5000 N/m, F 0 = 50 N e ρ = 500 Kg/s, calcule a frequência natural do sistema e seu fator de qualidade. (c) No regime estacionário, usando os valores do item anterior, determine o valor de Ω para o qual a amplitude do movimento é máxima. (d) Qual é essa amplitude máxima? ] R: (a) d x + γ dx + dt dt ω 0x = F 0 cos Ωt, x(t) = A cos [Ωt + Φ], onde A = F 0 1 m (ω0 Ω ) +γ ω ( γω e Φ = -arctan ); (b) ω ω0 0 = 10 s 1 e Ω Q = 1; (c) Ω R = 5 s 1 ; (d) A R = m. 8. (Poli 007) Um corpo de massa 50 g está preso numa mola de constante k = 0 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente colocado num meio cujo coeficiente de atrito viscoso é ρ = 0, 9 Kg/s. Depois disso o oscilador, ainda no meio viscoso, é excitado por uma força externa F = F 0 cos Ωt, onde F 0 = 9, 0 N e Ω = 0, 0 rad/s. (a) Determine a frequência natural do sistema (b) Qual o regime de oscilação do sistema quando imerso no meio viscoso, mas antes de ser excitado pela força externa? Justifique sua resposta. (c) Depois que a força externa é aplicada e que o sistema entrou no regime estacionário, qual o valor da amplitude do movimento? (d) Qual deveria ser o valor exato da frequência externa de excitação para que a amplitude da oscilação, no estado estacionário, fosse máxima? R: (a) ω 0 = 0 s 1 ; (b) Regime sub-crítico de oscilação (ω 0 > γ/); (c) A = 0,5 m; (d) Ω R = 38 s Um corpo de massa m = 50, 0 kg está suspenso por uma mola de constante elástica k = 1, N/m. Uma força harmônica de amplitude f max = 45, 0 N atua sobre o corpo ao longo da direção vertical. Considerando-se a existência de atrito viscoso com coeficiente ρ = 100 N.s/m, determine para o regime estacionário: (a) a freqüência de ressonância, (b) a amplitude máxima na ressonância,

3 (c) (c) a defasagem entre o máximo da força harmônica e o máximo da amplitude. l l R: (a) ω 0 = 15, 8 rad/s, (b) A MAX = 0, 03 m e (c) ϕ = π. 10. Uma pessoa está segurando uma extremidade A de uma mola de massa desprezível e constante elástica 80 N/m. Na outra extremidade B, há uma massa de 0,5 kg suspensa, inicialmente em equilíbrio. No instante t = 0, a pessoa começa a sacudir a extremidade A (figura abaixo), fazendo-a oscilar harmonicamente com amplitude de 5 cm e período de 1 s. (a) Calcule o deslocamento z da massa em relação à posição de equilíbrio, para t > 0. (b) Calcule a força total F(t) exercida sobre a extremidade A para t > 0. A k 1 v 1. Considere duas partículas A e B cada uma com massa m conectadas por uma mola de constante elástica k e comprimento natural a. Cada partícula está ligada a dois suportes C e D por duas molas com as mesmas características da primeira mola. Os dois suportes são separados por uma distância 3b, como mostrado na figura (a). Em um dado instante de tempo t o deslocamento das partículas A e B é x e y a partir da posição de equilíbrio resultando nas forças mostradas na figura. Calcule as freqüências de oscilação do sistema. C k m A m B k D x y B 1 3 R: (a) z(t) = 0, 666 sin(πt) (em m); (b) F = 4, 9 1, 31 sin(πt) (em N) 11. Duas partículas de mesma massa, igual a 50 g, estão suspensas do teto por barras idênticas, de 0,5 m de comprimento e massa desprezível, e estão ligadas uma à outra por uma mola de constante elástica 5 N/m. No instante t = 0, a partícula (figura abaixo) recebe um impulso que lhe transmite uma velocidade de 10 cm/s. Determine os deslocamentos x 1 (t) e x (t) das posições de equilíbrio das duas partículas (em cm) para t > 0. R: x 1 (t) = 1, 13sen(4, 43t) 0, 34sen(14, 8t) e x (t) = 1, 13sen(4, 43t)+ 0, 34sen(14, 8t) R: ω 1 = k m e ω = 3k m 13. Mostrar explicitamente que as seguintes funções são soluções da equação de onda: (a) y(x, t) = k(x + vt); (b) y(x, t) = A exp[ik(x vt)], onde A e k são constantes e i = 1; (c) y(x, t) = ln[k(x vt)]. 14. A função de onda de uma onda harmônica numa corda é y(x, t) = 0, 001sen[6, 8x + 314t] onde as unidades utilizadas são o metro e o segundo. (a) Em que direção a onda avança e qual a sua velocidade? 3

4 (b) Calcular o comprimento de onda, a freqüência e o período da onda. (c) Qual a aceleração máxima de um ponto da corda. R: (a) A onda avança no sentido negativo do eixo x com velocidade v = 5 m/s. (b) λ = 10 cm, = 0, 0 s e f = 50 Hz. (c) a MAX = 98, 6 m/s. 15. Um fio longo, de massa 5, 0kg e 100m de comprimento, é esticado até que a tensão seja de 5, 0N. A ponta esquerda é movida para cima e para baixo com movimento harmônico simples, tendo um período de 0, 5s e amplitude de 0, 5m. Suponha que a tensão seja constante do princípio ao fim do movimento. (a) Ache a velocidade da onda gerada no fio. (b) Determine o comprimento de onda. (c) Escreva uma expressão para y(x, t) em qualquer ponto do fio, sabendo-se que em y( 5, 0) = 1 8 e y t (5, 0) > 0 8 R: (a) 10m/s (b) 5m (c) y(x, t) = 0, 5 sin ( π 5 x 4πt + π) (m) 16. Um pulso, que se desloca com uma velocidade de 50m/s em uma corda de 10m de comprimento, é descrito pela função y(x, t) = e (x vt) + e (x+vt) (SI). (a) Qual o valor de x para o qual a velocidade transversal da corda seja extremal em t = 0? (b) Se a massa da corda for 1kg, qual a tensão nesta? R: (a) x = 0, 5m (b) 50N 17. Uma onda estacionária resulta da soma de duas ondas transversais progressivas dadas por: y 1 = 0, 05cos(πx 4πt) y = 0, 05cos(πx + 4πt) onde x, y 1 e y estão em metros e t em segundos. (a) Qual é o menor valor positivo de x que corresponde a um nó? (b) Em quais instantes no intervalo 0 t 0, 5 a partícula em x = 0 terá velocidade zero? R: (a) x = 0, 5 m. (b) t = 0, 0, 5 e 0, 5 s. 18. Determine a amplitude da onda resultante da combinação de duas ondas senoidais que se propagam no mesmo sentido, possuem mesma freqüência, têm amplitudes de 3, 0 cm e 4, 0 cm e diferença de fase de π/ rad R: y(x, t) = 0, 05sen(kx ωt + 0, 64) 19. Uma corda oscila de acordo com a equação y = (0, 50)sen[ π x] cos[40πt] 3 onde as unidades utilizadas são o cm e o segundo. (a) Quais são a amplitude e a velocidade escalar das ondas cuja superposição dá essa oscilação? (b) Qual é a distância entre os nós? (c) Qual é a velocidade escalar de uma partícula da corda na posição x = 1.5 cm quando t = 9 8 s? R: (a) A = 0, 5 cm e v = 10 cm/s. (b) D = 3 cm. (c) y t = 0 0. (Poli 006) Uma corda uniforme, de comprimento 0 m e massa Kg, está esticada sob uma tensão de 10 N. Faz-se oscilar transversalmente uma extremidade da corda, com aplitude 3 cm e frequência de 5 oscilações por segundo. O deslocamento inicial da extremidade é de 1,5 cm para cima. 4

5 (a) Ache a velocidade de propagação v e o comprimento de onda λ da onda transversal progressiva que é produzida na corda. (b) Escreva, como função do tempo, o deslocamento transversal y de um ponto da corda situado a uma distância x da extremidade que se faz oscilar, após ser atingido pela onda e antes que ela chegue à outra extremidade. (c) Calcule a intensidade I da onda progressiva gerada. R: (a) v= 10 m/s e λ =,0 m; (b) y(x, t) = 0, 03 cosπx 10πt + π/3 m; (c) I = 9π 00 W. 1. (Poli 007) A corda de um violino tem uma densidade linear de massa de 0,5 g/m e está sujeita a uma tensão de 80 N, afinada para uma frequência ν = 660 Hz no primeiro harmônico. (a) Qual a velocidade de propagação da onda nessa corda? (b) Qual o comprimento da corda? (c) Para tocar a nota lá, cuja frequência é ν= 880 Hz, prende-se a corda com um dedo, de forma a utilizar apenas uma fração f de seu comprimento. Qual o valor de f? R: (a) v = 400 m/s; (b) L = 10 m; (c) 33 f = 3/4.. Uma corda sob tensão i oscila no terceiro harmônico com uma freqüência f 3, e as ondas na corda tem comprimento de onda λ 3. Se aumentarmos a tensão da corda para f = 4 i de forma que a corda continue a oscilar no terceiro harmônico, qual será: (a) a freqüência de oscilação em termos de f 3 ; (b) o comprimento da onda em termos de λ 3? R: (a) f = f 3. (b) λ = λ 3 3. Uma corda de 10 cm de comprimento é esticada entre suportes fixos. Quais são os três comprimentos de onda mais longos para ondas estacionárias nesta corda? Esboce as ondas estacionárias correspondentes. O que muda em relação aos três comprimentos de onda mais longos se esta mesma corda estiver fixa em apenas um suporte, de forma que a outra extremidade é presa em um anel sem peso que pode deslizar ao longo de uma haste sem atrito? R: Corda fixa nas duas extremidades: λ 1 =, 40 m, λ = 1, 0 m e λ 3 = 0, 80 m. Corda presa em uma extremidade: λ 1 = 4, 80 m, λ = 1, 60 m e λ 3 = 0, 96 m. 4. Uma corda, submetida a uma tensão de 00 N e presa em ambas as extremidades, oscila no segundo harmônico de uma onda estacionária. O deslocamento da corda é dado por: y = (0, 10) sen(πx/) sen(1πt) onde x = 0 numa das extremidades da corda, x é dado em metros e t em segundos. (a) Qual é o comprimento da corda? (b) Qual é a velocidade escalar das ondas na corda? (c) Qual é a massa da corda? (d) Se a corda oscilar num padrão de onda referente ao terceiro harmônico, qual será o período de oscilação? R: (a) L = 4 m, (b) v = 4 m/s, (c) µ = 0, 347 kg/m e (d) = 0, 11 s 5. Duas ondas transversais de mesma freqüência ν = 100 s 1 são produzidas num fio de aço de 1 mm de diâmetro e densidade 8 g/cm 3, submetido a uma tensão = 500 N. As ondas são dadas por ( y 1 = A cos kx ωt + π ) 6 onde A = mm. y = A sen(ωt kx) 5

6 (a) Escreva a expressão da onda harmônica progressiva resultante da superposição dessas duas ondas. (b) Calcule a intensidade da resultante. (c) Se fizermos variar a diferença de fase entre as duas ondas, qual é a razão entre os valores máximo e mínimo possíveis da intensidade da resultante? R: (a) y = 5, cos(, 3x 68t + 1, 4). (b) 9, 8 W. (c) I MAX I MIN = Em um teste, um jato subsônico voa a uma altitude de 100 m. A intensidade do som no solo quando o jato passa exatamente acima de um detector é de 150 db. A que altitude o jato precisa voar para que o ruído no solo não ultrapasse 10 db, o limite da sensação dolorosa? Sugestão: Ignore o tempo necessário para o som alcançar o chão. R: 3, 16 km 7. Um avião voa a 5 da velocidade do som. A 4 explosão sônica alcança um homem no solo exatamente 1 minuto depois de o avião ter 4 passado sobre sua cabeça. Qual a altitude do avião? Considere a velocidade do som como sendo 330 m/s. R: 8, km 8. Um avião sobrevoa uma cidade a uma altitude de 3 km e a uma velocidade v igual a 1,35 vezes a velocidade do som. A temperatura do ar é de 303 K e o vento está num sentido oposto ao do avião e com velocidade de 10 m/s. (a) Qual é a velocidade do avião? (b) Para um observador no solo, qual é o tempo decorrido entre ver o avião passar sobre sua cabeça e ouvi-lo? Sugestão: Considere que a velocidade do kr som no ar é dada por, onde M k = 1, 40 é uma constante, R = 8, 314 J/(molK) é a constante universal dos gases e M = kg/mol é a massa molecular do ar. R: (a) 471 m/s. (b) 5, 9 s. 9. (Poli 007) Um trem-bala move-se com velocidade de 60 m/s para leste. O apito do trem emite um som com frequência de 400 Hz. Considere a velocidade do som no referencial de repouso da atmosfera como 340 m/s. (a) Determine a frequência do som do apito que uma pessoa na estação ouve ao observar o trem passando. (b) Considere agora a presença de um vento soprando para oeste com velocidade de 10 m/s. Determine a frequência do som que a pessoa na estação vai ouvir. (c) Considere agora que o trem movimenta-se numa trajetória circular. Qual a frequência do som percebida por alguém no centro da circunferência descrita pelo trem? R: (a) ν S = 340 Hz; (b) ν P = 341 Hz; (c) ν C = 400 Hz. 30. Dois diapasões idênticos podem oscilar a 440 Hz. Um indivíduo está localizado em algum lugar na linha entre os dois diapasões. Calcule a freqüência de batimentos captada por esse indivíduo se: (a) ele permanece parado e os diapasões se movem para a direita com velocidade de 30 m/s, e (b) os diapasões estiverem parados e o indivíduo se movendo para a direita com velocidade de 30 m/s. R: (a) 80, 7 Hz. (b) 80 Hz. 31. Um morcego voa dentro de uma caverna, orientando-se efetivamente por meio de bips ultra-sônicos (emissões curtas de 6

7 alta freqüência com duração de um milisegundo). Suponha que a freqüência da emissão do som pelo morcego seja de 39, khz. Durante uma arremetida veloz, diretamente contra a superfície plana de uma parede o morcego desloca-se a 8, 58 m/s. Calcule a freqüência do som refletido pela parede que chega aos ouvidos do pobre morcego. R: 41, 3 khz 7

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009

Universidade de São Paulo. Instituto de Física. FEP112 - FÍSICA II para o Instituto Oceanográfico 1º Semestre de 2009 Universidade de São Paulo nstituto de Física FEP11 - FÍSCA para o nstituto Oceanográfico 1º Semestre de 009 Segunda Lista de Exercícios Oscilações 1) Verifique quais funções, entre as seguintes, podem

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP96 - Física para Engenharia II Prova P - Gabarito. Uma plataforma de massa m está presa a duas molas iguais de constante elástica k. A plataforma pode oscilar sobre uma superfície horizontal sem atrito.

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP2196 - Física para Engenharia II Prova P1-25/10/2007 - Gabarito 1. Um corpo de massa 50 g está preso a uma mola de constante k = 20 N/m e oscila, inicialmente, livremente. Esse oscilador é posteriormente

Leia mais

LISTA DE EXERCÍCIOS 2

LISTA DE EXERCÍCIOS 2 LISTA DE EXERCÍCIOS 2 Esta lista trata de vários conceitos associados ao movimento harmônico forçado e/ou amortecido. Tais conceitos são abordados no capítulo 4 do livro-texto (seções 4.1 a 4.5): Moysés

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. A equação de uma onda transversal se propagando ao longo de uma corda muito longa é, onde e estão expressos em centímetros e em segundos. Determine (a) a amplitude, (b) o comprimento de onda,

Leia mais

Lista de exercícios n 2 - Ondas Prof. Marco

Lista de exercícios n 2 - Ondas Prof. Marco o Lista de exercícios n 2 - Ondas Prof. Marco Ondas periódicas 1 Uma onda tem velocidade escalar igual a 240 m/s e seu comprimento de onda é 3,2 m. Quais são: (a) A freqüência; (b) O período da onda? [Resp.

Leia mais

Física para Engenharia II - Prova P a (cm/s 2 ) -10

Física para Engenharia II - Prova P a (cm/s 2 ) -10 4320196 Física para Engenharia II - Prova P1-2012 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

LISTA DE EXERCÍCIOS - ONDAS

LISTA DE EXERCÍCIOS - ONDAS UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE FÍSICA - DEPARTAMENTO DE FÍSICA GERAL DISCIPLINA: FIS 1 - FÍSICA GERAL E EXPERIMENTAL II-E www.fis.ufba.br/~fis1 LISTA DE EXERCÍCIOS - ONDAS 013.1 1. Considere

Leia mais

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI)

1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) 1) O deslocamento de uma onda progressiva em uma corda esticada é (em unidades do SI) a) Quais são a velocidade e a direção de deslocamento da onda? b) Qual é o deslocamento vertical da corda em t=0, x=0,100

Leia mais

LISTA DE EXERCÍCIOS 3

LISTA DE EXERCÍCIOS 3 LISTA DE EXERCÍCIOS 3 Esta lista trata dos conceitos de ondas harmônicas progressivas (função de onda, intensidade, interferência, velocidade de propagação, frequência, período, comprimento de onda, número

Leia mais

Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof: Álvaro Leonardi Ayala Filho

Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof: Álvaro Leonardi Ayala Filho UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - ONDAS I - Propagação, Interferência e Ondas Estacionárias. Prof:

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Perguntas: 1. A figura 1a mostra um instantâneo de uma onda que se propaga no sentido

Leia mais

LISTA DE EXERCÍCIOS Nº 2

LISTA DE EXERCÍCIOS Nº 2 LISTA DE EXERCÍCIOS Nº 2 Questões 1) A Figura 1a apresenta o retrato de uma onda propagante ao longo do sentido positivo do eixo x em uma corda sob tensão. Quatro elementos da corda são designados por

Leia mais

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um

As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um As Oscilações estão presentes no nosso dia a dia como o vento que balança uma linha de transmissão elétrica, as vibrações da membrana de um alto-falante, ou de um instrumento de percussão. Um terremoto

Leia mais

FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010.

FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010. FGE 0357 Oscilações e Ondas 4ª Lista de exercícios 30/junho/2010. 1) (Halliday) A densidade linear de uma corda vibrante é 1,3 x 10-4 kg/m. Uma onda transversal propaga-se na corda e é descrita pela equação:

Leia mais

Lista 14: Oscilações. Questões

Lista 14: Oscilações. Questões Lista 14: Oscilações NOME: Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Siga a estratégia para resolução

Leia mais

Exercício 1. Exercício 2.

Exercício 1. Exercício 2. Exercício 1. Em um barbeador elétrico, a lâmina se move para frente e para trás ao longo de uma distância de 2,0 mm em movimento harmônico simples, com frequência de 120 Hz. Encontre: (a) a amplitude,

Leia mais

Exercícios de Física Movimento Harmônico Simples - MHS

Exercícios de Física Movimento Harmônico Simples - MHS Exercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função x = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Ondas e oscilações. 1. As equações de onda

Ondas e oscilações. 1. As equações de onda Ondas e oscilações 1. As equações de onda Por que usamos funções seno ou cosseno para representar ondas ou oscilações? Essas funções existem exatamente para mostrar que um determinado comportamento é cíclico

Leia mais

Aula do cap. 16 MHS e Oscilações

Aula do cap. 16 MHS e Oscilações Aula do cap. 16 MHS e Oscilações Movimento harmônico simples (MHS). Equações do MHS soluções, x(t), v(t) e a(t). Relações entre MHS e movimento circular uniforme. Considerações de energia mecânica no movimento

Leia mais

Problemas sobre osciladores simples

Problemas sobre osciladores simples Universidade de Coimbra mecânica Clássica II 2009.2010 Problemas sobre osciladores simples 1. Um objecto com 1 kg de massa está suspenso por uma mola e é posto a oscilar. Quando a aceleração do objecto

Leia mais

LISTA DE EXERCÍCIOS 1

LISTA DE EXERCÍCIOS 1 LISTA DE EXERCÍCIOS Esta lista trata de vários conceitos associados ao movimento harmônico simples (MHS). Tais conceitos são abordados no capítulo 3 do livro-texto: Moysés Nussenzveig, Curso de Física

Leia mais

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC

8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 8ª Série de Problemas Mecânica e Ondas MEBM, MEFT, LEGM, LMAC 1. Uma mola de constante k = 100 Nm -1 está ligada a uma massa m = 0.6 kg. A massa m pode deslizar sem atrito sobre uma mesa horizontal. Comprime-se

Leia mais

ONDAS. é solução da equação de propagação de onda

ONDAS. é solução da equação de propagação de onda ONDAS 1. Uma estação de rádio emite a uma frequência de 760 khz. A velocidade das ondas de rádio é igual a 3 10 8 m/s. Determine o respectivo comprimento de onda (c.d.o.). 2. Um diapasão oscila com a frequência

Leia mais

EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0

EN 2010 (A)0,8 (B) 1,0 (C) 2,0 (D) 3,0 (E) 4,0 EN 010 1. Uma pequena esfera de massa m está presa a um fio ideal de comprimento L = 0,4m, que tem sua outra extremidade presa ao teto, conforme indica a figura. No instante t = 0, quando o fio faz um

Leia mais

2ª Lista de exercícios de Fenômenos Ondulatórios

2ª Lista de exercícios de Fenômenos Ondulatórios 2ª Lista de exercícios de Fenômenos Ondulatórios Prof. Renato 1. Dada uma onda em uma corda como função de x e t. No tempo igual a zero essa onda é representada na figura seguir (y em função de x): 0,6

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

MHS Movimento Harmônico Simples

MHS Movimento Harmônico Simples 2010 ESCOLA ALUNO MHS Movimento Harmônico Simples 1. (Mackenzie) Uma partícula descreve um movimento harmônico simples segundo a equação X = 0,3. cos (π /3 + 2.t), no S.I.. O módulo da máxima velocidade

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova REC - Gabarito 1. Considere um cilindro oco de massa, raio externo R e raio interno r. (a) (1,0) Calcule o momento de inércia desse cilindro com relação ao eixo

Leia mais

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA

Instituto Politécnico co de Tomar Escola Superior de Tecnologia de Tomar ÁREA INTERDEPARTAMENTAL DE FÍSICA Ano lectivo 1-11 Engenharia Electrotécnica e de Computadores Exercícios de Física Ficha 8 Movimento Vibratório e Ondulatório Capítulo 5 Conhecimentos e capacidades a adquirir pelo aluno Aplicação dos conceitos

Leia mais

Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE I.

Lista de Problemas. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE I. Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Física FIS01044 UNIDADE I Lista de Problemas 1. Ao remar um barco, um menino produz ondas na superfície da água de um lago

Leia mais

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção.

Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. Lista 14: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

Física Módulo 2 Ondas

Física Módulo 2 Ondas Física Módulo 2 Ondas Ondas, o que são? Onda... Onda é uma perturbação que se propaga no espaço ou em qualquer outro meio, como, por exemplo, na água. Uma onda transfere energia de um ponto para outro,

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

Lista de Exercícios - OSCILAÇÕES

Lista de Exercícios - OSCILAÇÕES UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA Departamento de Física Disciplina: Física Básica II Lista de Exercícios - OSCILAÇÕES Perguntas: 1. O gráfico da figura 1 mostra a aceleração

Leia mais

Física II para a Escola Politécnica ( ) - P1 (04/09/2015) [0000]

Física II para a Escola Politécnica ( ) - P1 (04/09/2015) [0000] Física II para a Escola Politécnica (330) - P (0/09/0) [0000] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: Preencha completamente os círculos com os dígitos do seu número USP

Leia mais

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia

FÍSICA MÓDULO 17 OSCILAÇÕES E ONDAS. Professor Sérgio Gouveia FÍSICA Professor Sérgio Gouveia MÓDULO 17 OSCILAÇÕES E ONDAS MOVIMENTO HARMÔNICO SIMPLES (MHS) 1. MHS DEFINIÇÃO É o movimento oscilatório e retilíneo, tal que a aceleração é proporcional e de sentido contrário

Leia mais

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro.

Introdução. Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Capitulo 16 Ondas I Introdução Perturbação no primeiro dominó. Perturbação se propaga de um ponto a outro. Ondas ondas é qualquer sinal (perturbação) que se transmite de um ponto a outro de um meio com

Leia mais

7. Movimentos Oscilatórios

7. Movimentos Oscilatórios 7.1. Uma massa m = 90 g ligada a uma mola é largada com velocidade inicial zero de um ponto a 2 cm da posição de equilíbrio. A constante da mola é k = 81 N /m. Considere o movimento no plano horizontal

Leia mais

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2)

LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) LISTA DE EXERCÍCIOS - MOVIMENTO HARMÔNICO SIMPLES (MHS) (versão 2014/2) A CINEMÁTICA NO MHS 1.1.- (HALLIDAY, 4ª EDIÇÃO, CAP. 14, 1E) Um objeto sujeito a um movimento harmônico simples leva 0,25 s para

Leia mais

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T.

Física 2 - Movimentos Oscilatórios. Em um ciclo da função seno ou cosseno, temos que são percorridos 2π rad em um período, ou seja, em T. Física 2 - Movimentos Oscilatórios Halliday Cap.15, Tipler Cap.14 Movimento Harmônico Simples O que caracteriza este movimento é a periodicidade do mesmo, ou seja, o fato de que de tempos em tempos o movimento

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA

PROCESSO SELETIVO TURMA DE 2009 FASE 1 PROVA DE CONHECIMENTOS DE FÍSICA SELEÇÃO 9 PROCESSO SELETIVO TURMA DE 9 FASE PROVA DE CONHECIMENTOS DE FÍSICA Caro professor, esta prova tem questões de caráter objetivo (múltipla escolha) sobre física básica. A duração da prova é de

Leia mais

Física para Engenharia II - Prova P2-2013

Física para Engenharia II - Prova P2-2013 43296 Física para Engenharia II - Prova P2-23 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de 2 horas. Não somos responsáveis

Leia mais

ONDAS : Oscilação. Onda & Meio. MEIO : onde a onda se propaga. água. ondas na água. corda. ondas em cordas. luz. vácuo. som

ONDAS : Oscilação. Onda & Meio. MEIO : onde a onda se propaga. água. ondas na água. corda. ondas em cordas. luz. vácuo. som ONDAS : Oscilação MEIO : onde a onda se propaga Onda & Meio ondas na água ondas em cordas luz som água corda vácuo ar ONDAS : SÓ transporta energia NÃO transporta matéria http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/waves/lw.html

Leia mais

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto.

Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Uma oscilação é um movimento repetitivo realizado por um corpo em torno de determinado ponto. Exemplos: pêndulos, ponte ao ser submetida à passagem de um veículo, asas de um avião ao sofrer turbulência

Leia mais

Física para Engenharia II - Prova P2-2012

Física para Engenharia II - Prova P2-2012 430196 Física para Engenharia II - Prova P - 01 Observações: Preencha todas as folhas com o seu nome, número USP, número da turma e nome do professor. A prova tem duração de horas. Não somos responsáveis

Leia mais

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba]

Física II para a Escola Politécnica ( ) - P3 (02/12/2016) [z7ba] [z7ba] NUSP: 0 0 0 0 0 0 0 3 3 3 3 3 3 3 5 5 5 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 Instruções: preencha completamente os círculos com os dígitos do seu número USP (um em cada

Leia mais

Exercícios de Física Movimento Harmônico Simples - MHS

Exercícios de Física Movimento Harmônico Simples - MHS Eercícios de Física Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período,

Leia mais

FÍSICA. Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 2. Constante de Planck: 6,6 x J.s.

FÍSICA. Constantes físicas necessárias para a solução dos problemas: Aceleração da gravidade: 10 m/s 2. Constante de Planck: 6,6 x J.s. FÍSIC Constantes físicas necessárias para a solução dos problemas: celeração da gravidade: 10 m/s Constante de lanck: 6,6 x 10-34 J.s 01. Um barco de comprimento L = 80 m, navegando no sentido da correnteza

Leia mais

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO

MATEMÁTICA 1ª QUESTÃO. O valor do número real que satisfaz a equação =5 é. A) ln5. B) 3 ln5. C) 3+ln5. D) ln5 3. E) ln5 2ª QUESTÃO MATEMÁTICA 1ª QUESTÃO O valor do número real que satisfaz a equação =5 é A) ln5 B) 3 ln5 C) 3+ln5 D) ln5 3 E) ln5 ª QUESTÃO O domínio da função real = 64 é o intervalo A) [,] B) [, C), D), E), 3ª QUESTÃO

Leia mais

Prova P3 Física para Engenharia II, turma nov. 2014

Prova P3 Física para Engenharia II, turma nov. 2014 Questão 1 Imagine que você prenda um objeto de 5 g numa mola cuja constante elástica vale 4 N/m. Em seguida, você o puxa, esticando a mola, até 5 cm da sua posição de equilíbrio, quando então o joga com

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) Considere a função f definida por f()= + 1. Determine: a) o domínio da função. b) os intervalos onde o gráfico de f é crescente e onde é decrescente.

Leia mais

FEP Física para Engenharia II

FEP Física para Engenharia II FEP196 - Física para Engenharia II Prova P1-18/09/008 Nome:........................................... N o USP:...................... Assinatura:................................ Turma/Professor:.................

Leia mais

Exame Mecânica e Ondas Curso: MIEET data: 02/05/12. Nome:... Número:... Grupo I (10 valores)

Exame Mecânica e Ondas Curso: MIEET data: 02/05/12. Nome:... Número:... Grupo I (10 valores) Exame Mecânica e Ondas Curso: MIEET data: 02/05/12 Nome:... Número:... Pode utilizar uma calculadora e uma folha A4 (duas páginas) com fórmulas. Utilize g = 9,80 m/s 2. Grupo I (10 valores) Assinalar a

Leia mais

UniposRio FÍSICA. Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro. 10 de junho de Nome (legível):

UniposRio FÍSICA. Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro. 10 de junho de Nome (legível): UniposRio FÍSICA Exame Unificado de Acesso às Pós-Graduações em Física do Rio de Janeiro 10 de junho de 2010 Nome (legível): Assinatura : Leia atentamente as oito (8) questões a seguir e responda nas folhas

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

Uma onda é definida como um distúrbio que é auto-sustentado e se propaga no espaço com uma velocidade constante. Ondas podem ser classificados em

Uma onda é definida como um distúrbio que é auto-sustentado e se propaga no espaço com uma velocidade constante. Ondas podem ser classificados em Ondas I Tipos de ondas; Amplitude, fase, freqüência, período, velocidade de propagação de uma onda; Ondas mecânicas propagando ao longo de uma corda esticada; Equação de onda; Princípio da superposição

Leia mais

FIS-26 Prova 03 Maio/2013

FIS-26 Prova 03 Maio/2013 FIS-26 Prova 03 Maio/2013 Nome: Turma: Duração máxima da prova: 120 min. Responda às questões de forma clara, completa e concisa. Uma parte da pontuação de cada questão será atribuída para o resultado

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 1 Essa prova destina-se exclusivamente a alunos do 1 o e o anos e contém vinte (0) questões. Os alunos do 1 o ano devem escolher livremente oito (8) questões para

Leia mais

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE

EXERCÍCIOS PARA PROVA ESPECÍFICA E TESTÃO 1 ANO 4 BIMESTRE 1. (Unesp 89) Um cubo de aço e outro de cobre, ambos de massas iguais a 20 g estão sobre um disco de aço horizontal, que pode girar em torno de seu centro. Os coeficientes de atrito estático para aço-aço

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1

ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez Versão 1 ESCOLA SECUNDÁRIA DE CASQUILHOS 3º Teste sumativo de FQA 14. Dez. 2015 Versão 1 11º Ano Turma A e B Duração da prova: 90 minutos. Este teste é constituído por 10 páginas e termina na palavra FIM Nome:

Leia mais

8. Uma conta de massa m, enfiada num aro vertical fixo de raio r, no qual desliza sem atrito, desloca-se em torno do ponto mais baixo.

8. Uma conta de massa m, enfiada num aro vertical fixo de raio r, no qual desliza sem atrito, desloca-se em torno do ponto mais baixo. . Para um sistema massa-mola na horizontal, sem atrito, escreva a segunda lei de Newton e a resolva, encontrando a função x(t) correspondente à solução geral do problema. (c) Esboce um gráfico para as

Leia mais

FIS-26 Prova 03 Junho/2012

FIS-26 Prova 03 Junho/2012 FIS-26 Prova 03 Junho/2012 Nome: Turma: Duração máxima da prova: 120 min. 1. (10 pontos) Em um terremoto, ambas as ondas S (transversais) e P (longitudinais) se propagam a partir do foco do terremoto.

Leia mais

Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1. 3 a prova 07/01/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 3 a prova 07/01/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua

Leia mais

MOVIMENTO OSCILATÓRIO

MOVIMENTO OSCILATÓRIO MOVIMENTO OSCILATÓRIO 1.0 Noções da Teoria da Elasticidade A tensão é o quociente da força sobre a área aplicada (N/m²): As tensões normais são tensões cuja força é perpendicular à área. São as tensões

Leia mais

Física - 1. Dados numéricos

Física - 1. Dados numéricos Física - 1 Dados numéricos celeração da gravidade: 1 m/s Densidade da água: 1, g/cm 3 Velocidade da luz no vácuo: 3, x 1 8 m/s 1 atm = 1, x 1 5 N/m = 1 4 π o = 9, x 1 9 N.m C 1. O gráfico da velocidade

Leia mais

Ciências da Natureza e Matemática

Ciências da Natureza e Matemática 1 CEDAE Acompanhamento Escolar 2 CEDAE Acompanhamento Escolar 3 CEDAE Acompanhamento Escolar 4 CEDAE Acompanhamento Escolar 1. Considere as afirmações a seguir: I - As ondas luminosas são constituídas

Leia mais

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário

Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário 1 de 8 05/05/2008 11:32 Guia de Estudo Demonstrações Exercícios Extras Vídeos Referências Glossário Aplicações do Movimento Harmônico Simples, Amortecimento, Oscilações Forçadas e Ressonância) Guia de

Leia mais

Dinâ micâ de Mâ quinâs e Vibrâçõ es II

Dinâ micâ de Mâ quinâs e Vibrâçõ es II Dinâ micâ de Mâ quinâs e Vibrâçõ es II Aula 1 Revisão e princípios básicos: O objetivo desta aula é recapitular conceitos básicos utilizados em Dinâmica e Vibrações. MCU Movimento circular uniforme 1.

Leia mais

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2015 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE 2016 FASE 1 PROVA DE FÍSICA E SEU ENSINO Caro professor, cara professora, esta prova tem 2 partes; a primeira parte é objetiva, constituída por 14 questões de múltipla escolha,

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Farias Arquivo em anexo Conteúdo Programático Bibliografia

Leia mais

GOIÂNIA, _28 / 10 / DISCIPLINA: Física SÉRIE: 3º. ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016

GOIÂNIA, _28 / 10 / DISCIPLINA: Física SÉRIE: 3º. ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016 GOIÂNIA, _28 / 10 / 2016 PROFESSOR: Jonas Tavares DISCIPLINA: Física SÉRIE: 3º ALUNO(a): L1 4º Bim Data da Prova: 28/10/2016 No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente

Leia mais

Física 1 VS 15/07/2017. Atenção: Leia as recomendações antes de fazer a prova.

Física 1 VS 15/07/2017. Atenção: Leia as recomendações antes de fazer a prova. Física 1 VS 15/07/2017 Atenção: Leia as recomendações antes de fazer a prova. 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas. 2- Leia os enunciados com atenção. 3- Analise sua resposta.

Leia mais

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações.

Lista 10: Energia. Questões. encontrar razões plausíveis para justificar suas respostas sem o uso de equações. Lista 10: Energia Importante: 1. Ler os enunciados com atenção. 2. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. 3. Siga a estratégia para resolução de problemas

Leia mais

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular.

Lista de exercícios. isso que o torque de amortecimento seja linearmente proporcional à velocidade angular. Oscilações amortecidas Lista de exercícios Exercício 1 harmônica? Qualitativamente, o que é que distingue uma oscilação amortecida de uma oscilação Exercício 2 um deles? Quais são os três possíveis regimes

Leia mais

FÍSICA II. 02. Uma das extremidades de um fio de comprimento 3,0 m é presa a um diapasão elétrico; a outra passa por

FÍSICA II. 02. Uma das extremidades de um fio de comprimento 3,0 m é presa a um diapasão elétrico; a outra passa por FÍSICA II Esta prova tem por finalidade verificar seus conhecimentos das leis que regem a natureza. Interprete as questões do modo mais simples e usual. Não considere complicações adicionais por fatores

Leia mais

CAPÍTULO I ONDAS MECÂNICAS

CAPÍTULO I ONDAS MECÂNICAS CAPÍTULO I ONDAS MECÂNICAS QUESTÕES 1. Suponha que o vento esteja soprando. Isso causa um efeito Doppler sobre um som que esteja se deslocando através do ar? É como uma fonte em movimento ou um observador

Leia mais

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula

Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula Aula 3 010 Movimento Harmônico Simples: Exemplos O protótipo físico do movimento harmônico simples (MHS) visto nas aulas passadas um corpo de massa m preso a uma mola executando vibrações de pequenas amplitudes

Leia mais

2007 3ª. fase Prova para alunos 1º. e 2º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO:

2007 3ª. fase Prova para alunos 1º. e 2º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 2007 3ª. fase Prova para alunos 1º. e 2º. Ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Essa prova destina-se exclusivamente a alunos do 1o e 2o anos e contém vinte (20) questões. 02) Os alunos do 1o

Leia mais

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7

1 Movimento Circular Lista de Movimento circular Cinemática do Ponto Material 7 Sumário 1 Movimento Circular 3 1.1 Lista de Movimento circular................................... 3 2 Cinemática do Ponto Material 7 3 Equilíbrio de Corpos no Espaço 9 3.1 Equilíbrio de Partícula.....................................

Leia mais

Capítulo 5 DINÂMICA θ α

Capítulo 5 DINÂMICA θ α Capítulo 5 DINÂMICA θ α DISCIPLINA DE FÍSICA CAPÍTULO 5 - DINÂMICA 5.1 Considere um pêndulo cónico com uma massa m 1 suspensa por um cabo de comprimento igual a 2,5 metros. 5.1.1 Determine a velocidade

Leia mais

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP

Aula 18: Cordas Vibrantes e Intensidade de Uma Onda. Prof a Nair Stem Instituto de Física da USP Aula 18: Cordas Vibrantes e Intensidade de Uma Onda Prof a Nair Stem Instituto de Física da USP Cordas Vibrantes Considere vibrações transversais em uma corda distendida como as que encontramos em instrumentos

Leia mais

LISTA DE EXERCÍCIOS Nº 3

LISTA DE EXERCÍCIOS Nº 3 LISTA DE EXERCÍCIOS Nº 3 Questões 1) Na Figura 1, três longos tubos (A, B e C) são preenchidos com diferentes gases em diferentes pressões. A razão entre o módulo da elasticidade volumar e a densidade

Leia mais

Física para Engenharia II

Física para Engenharia II Física para Engenharia II 430196 (FEP196) Turma 01111 Sala C-13 3as 15h00 / 5as 9h0. Prof. Antonio Domingues dos Santos Depto. Física Materiais e Mecânica IF USP Ed. Mário Schemberg, sala 05 adsantos@if.usp.br

Leia mais

Primeira Lista de Exercícios.

Primeira Lista de Exercícios. Figure 1: Diagrama esquemático do MHS da partícula do exercício 1. Primeira Lista de Exercícios. 1. Uma partícula que se move num movimento harmônico simples de período T como o da Figura 1 está em x m

Leia mais

UNIDADE 15 OSCILAÇÕES

UNIDADE 15 OSCILAÇÕES UNIDADE 15 OSCILAÇÕES 557 AULA 40 OSCILAÇÕES OBJETIVOS: - DEFINIR O CONCEITO DE OSCILAÇÃO; - CONHECER AS GRANDEZAS QUE DESCREVEM O MOVIMENTO. 40.1 Introdução: Há, na Natureza, um tipo de movimento muito

Leia mais

Prof. Oscar 2º. Semestre de 2013

Prof. Oscar 2º. Semestre de 2013 Cap. 16 Ondas I Prof. Oscar º. Semestre de 013 16.1 Introdução Ondas são perturbações que se propagam transportando energia. Desta forma, uma música, a imagem numa tela de tv, a comunicações utilizando

Leia mais

Física 1. Resumo e Exercícios P1

Física 1. Resumo e Exercícios P1 Física 1 Resumo e Exercícios P1 Fórmulas e Resumo Teórico Parte 1 Derivada de polinômios - Considerando um polinômio P x = ax %, temos: d P x = anx%() dx Integral de polinômios - Considerando um polinômio

Leia mais

Solução Comentada da Prova de Física

Solução Comentada da Prova de Física Solução Comentada da Prova de Física 01. Uma partícula parte do repouso, no instante t = 0, na direção positiva do eixo x. O gráfico da aceleração da partícula ao longo eixo x, em função do tempo, é mostrado

Leia mais

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ).

A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = 2(τ sen θ). A forma do elemento pode ser aproximada a um arco de um círculo de raio R, cujo centro está em O. A força líquida na direção de O é F = (τ sen θ). Aqui assumimos que θ

Leia mais

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS

SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein SEGUE ABAIXO UMA LISTA COMPLEMENTAR DE EXERCÍCIOS SUGESTÃO DE ESTUDOS PARA O EXAME FINAL DE FÍSICA- 1 ANO Professor Solon Wainstein # Ler todas as teorias # Refazer todos os exercícios dados em aula. # Refazer todos os exercícios feitos do livro. # Refazer

Leia mais

Sabendo o momento do encontro, só é necessário aplicá-lo em uma das duas funções (do caminhão ou do carro).

Sabendo o momento do encontro, só é necessário aplicá-lo em uma das duas funções (do caminhão ou do carro). Engenharia Física Mecânica, prof. Simões Revisão para prova integradora 1. Um automóvel encontra-se parado diante de um semáforo. Logo quando o sinal abre, ele arranca com aceleração 5m/s², enquanto isso,

Leia mais

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo)

~é a força normal do bloco de cima sobre o bloco de baixo É o peso do bloco de cima (baixo) Q1. (2,0 pontos) O coeficiente de atrito estático entre os blocos da figura vale 0,60. O coeficiente de atrito cinético entre o bloco inferior e o piso é de 0,20. A força F, aplicada ao bloco superior,

Leia mais

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006 Segunda Etapa 2ª ETP 2º DI 11/12/2006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOOGI GEOGRFI PORTUGUÊS 2 ITERTUR INGÊS ESPNHO FRNCÊS TEORI MUSIC COMISSÃO DE PROCESSOS SEETIVOS E TREINMENTOS FÍSIC

Leia mais