Escola Secundária com 3ºCEB de Lousada
|
|
|
- Juan Almeida de Sousa
- 7 Há anos
- Visualizações:
Transcrição
1 Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar o primeiro prémio o sorteio) nº e rifas ompraas Resposta: O Anré omprou rifas. nº e rifas ompraas nº e rifas nº e rifas ompraas ompraas nº total e rifas.. A representação as retas Utilizano as equações aas esreve: i. um sistema impossível; Resposta: pois seno as retas paralelas ( têm o mesmo elive) faz om que não haja qualquer ponto em omum e por isso não há solução omum às uas equações. ii. um sistema possível e eterminao. Resposta: pois omo as retas são onorrentes têm um ponto em omum que é o ponto e interseção. As oorenaas esse ponto é a solução o sistem b. Resposta: 8 8. Resposta: - º Comeei por resolver a equação em orem a fiano. -º De seguia verifiquei que esta equação tinha o mesmo elive que as retas e equação e ( K). Por isso onstatei que a reta teria e ser paralela a estas uas. - º Uma vez que b- esta reta teria e passar no ponto e oorenaas (. -). Assim traei a reta paralela às outras uas e a intersetar o eio O em -.. Carros roubaos Quantos arros a mara B foram roubaos? eno nº e arros a mara A e nº e arros a mara B fia: Resposta: Foram roubaos arros a mara B.. Resposta: O menor número inteiro pertenente ao intervalo é -.. Gostar e inema e Gostar e Teatro P( Gostar e inema mas não gostar e teatro) {( )}
2 . Representa utilizano intervalos e números reais o onjunto-solução as onições: ] ] [ [ φ C b. ] ] ] ] C. Resolve pelo métoo que te pareer mais aequao as seguintes equações: { } b. ( )( ). ( )( ) ( ) ( ). ( ) ( ) 8. Resposta: O sistema é impossível. Por isso as retas orresponentes às uas equações são paralelas.. Resposta: (A) -. Observa a sequênia Completa a tabela: b. Resposta: A epressão que permite eterminar o número total e heágonos a figura é n.. Resposta: Eles voltam a enontrar-se segunos epois ou seja minutos.. Consiera as funções f g e h representaas grafiamente no referenial a figur Resposta: Toas as funções por serem afins lineares são o tipo k. Assim torna-se neessário eterminar o valor e k orresponente à orenaa e abissa. Função f : k logo ( ) f Função g : k logo ( ) g Função h : k logo ( ) h b. Resposta: ( ) h g f Figura Fig Fig. Fig. Fig Fig. Fig n Nº e Heágonos inzentos n Nº e heágonos laranja 8 n Nº total e heágonos n
3 . Resolve os seguintes sistemas e equações pelo métoo e substituição: ( ) b. ( ) { } 8. Resposta: eno preço as alças e preço a amisola fia: ( ) { } 8 8 As alças ustavam euros e a amisola euros.. A Confeção e um bolo Resposta: k b. Resposta: a f. Resposta:. Uma ampanha sobre egurança Rooviária Resposta: Determina-se o m m (8 ). Assim os programas foram emitios e em ias. Ou seja no º ia no º ia e no º i. equênia e Quaraos Resposta: Orem o termo Fig. Fig. Fig. Fig. Fig. Meia o lao 8 Meia a iagonal 8 b. Resposta: 8. Resposta: O par orenao (; ) é uma solução a equação:(d) pois oloao no lugar as inógnitas transforma a equação numa igualae numéria veraeir. A função representaa ao lao poe ser efinia por Resposta: (C) pois o elive é positivo ( k) e a orenaa na origem é ( ponto one o gráfio interseta o eio as orenaas.. Consiera as seguintes equações Resposta: (D) ( ; ). Área e um CD Resposta: m A π % 8 a(kg) f (kg) 8
4 . Resposta: O par orenao (;) é solução e um sistema em que uma as equações é - e a outra equação é (C).. Os telemóveis. Resposta: O telemóvel o João teria ustao euros.. Determina as imensões e um retângulo ujo perímetro é m e a altura é a base. eno meia a base e meia a altura fia: 8 {( 8;) } Resposta: A base mee 8 metros e a altura metros.. Outra sequênia e quaraos Qual é a meia eata o lao o quarao inzento o º termo? Figura n Lao o quarao n brano Diagonal o quarao brano Lao o quarao inzento Diagonal o quarao inzento 8 8 n 8 8 Resposta: n 8 Área total 8 b. Calula a área total os quaraos e aa um os ino primeiros termos a sequênia a figur Resposta:. A turma a Ana m Resposta: P(ter esolhio elusivamente um urso e aúe) b. Resposta: P(ter esolhio um urso e saúe e e Engenharia). Resposta: P(ter esolhio um urso e aúe ou e Engenharia). Resposta: M N P Q 8. A hipotenusa omum Determina o valor e. 8 Resposta: ( ). O Vítor tinha no bolso eno nº e notas e euros e nº e notas e euros fia: {( ;) } Resposta: O Vítor tina notas e euros e notas e euros.. Resposta: > <. Esreve na forma e epoente inteiro negativo: b... e. 8 f. n
5 . Resposta: B. ] ]. Consiera o ubo [ABCDEFGH] e a pirâmie [ABCDE] representaos na figura ao lao. P é o ponto méio a aresta [CH]. AB m. Inia utilizano letras a figura: i. Duas retas onorrentes perpeniulares. Resposta: AB e BC por eemplo. ii. Duas retas estritamente paralelas. Resposta: AB e DC por eemplo. iii. Duas retas não omplanares. Resposta: DE e BC por eemplo. iv. Uma reta e um plano perpeniulares. Resposta: CH e ABC por eemplo. v. Dois planos uja interseção seja a reta EB. Resposta: ABE e BCE por eemplo. b. Resposta: Cálulo e AE: AE AE m Cálulo e EB : EB AE 8 m Assim omo AE m AB m e EB 8 m o triângulo [ABE] é esaleno.. Resposta: oma as arestas AB BC CD AD AE CE EB ED 8 m. Resposta: Área a pirâmie [ABCDE] Abase A[ ADE] A[ ABE] A[ BCE]. m 8. O reservatório Ateneno às imensões iniaas na figura etermina: i. o iâmetro a parte superior o reservatório; b. Resposta: É neessário reorrer à semelhança e triângulos. Assim r r 8 m iâmetro m i. a apaiae em litros Resposta: Vtrono o one Vone grane Vone pequeno π π 8 m l ii. Resposta: É neessário eterminar o volume e um ilinro om m e altur Assim Vilinro π 8 m. Resposta: A B C D E. O jarim Quais são as imensões o anteiro antigo? Resposta: Comprimento é metros e a largura é e metros. b. Qual é a área o novo anteiro? Resposta:. O ponto A tem e abissa: Resposta: B A 8 m
6 8. Consiera os onjuntos: A { IR : } e B [ [ Resposta: A [ [ b. Resposta: e - B. Resposta: A [ [ A B [ [. Calula o valor as seguintes epressões apliano sempre que possível as regras operatórias as potênias: Resposta: b. Resposta:. Resposta:. em reorrer à alulaora mostra que:. Usa a representação na reta real para esrever sob a forma e intervalos os seguintes onjuntos: Resposta: ] ]. Resposta: O outro número é o. b. Resposta: [ ]. Resposta: O Xio tem moeas. Resposta: Gráfio D.. Pera papel ou tesoura Resposta:
Ficha de Trabalho de Matemática do 8º ano Soluções da ficha de preparação para a ficha de avaliação de Matemática Lições nº,, = 1 10
Escola Secunária com ºCEB e Lousaa Ficha e Trabalho e Matemática o 8º ano 00 Soluções a ficha e preparação para a ficha e avaliação e Matemática Lições nº,, Resolve caa uma as equações seguintes: 4 5 Resposta:
MATEMÁTICA MÓDULO 12 COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO 1. O PONTO NO PLANO 1.1. COORDENADAS CARTESIANAS
PROF. HAROLDO FILHO COORDENADAS NO PLANO E DISTÂNCIA ENTRE PONTOS INTRODUÇÃO Algumas as utiliaes são: atribuir um significao geométrico a fatos e natureza numérica, como o comportamento e uma função real
Matemática 8º ano TPC
Matemática 8º ano TPC 1. Sabe-se que f é uma função afim cujo gráfico passa pelos pontos de coordenadas A 5,1 e B,7. 1.1. Determina a expressão analítica da função f. 1.. Determina as coordenadas dos pontos
Proposta de teste de avaliação 2 Matemática 9
Proposta de teste de avaliação Matemática 9 Nome da Escola Ano letivo 0-0 Matemática 9.º ano Nome do Aluno Turma N.º Data Professor - - 0 Na resolução dos itens da parte A, podes utilizar a calculadora.
Caderno 1: (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja classificado.
Proposta de Teste [maio - 018] Nome: Ano / Turma: N.º: Data: - - Caderno 1: (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno ). Utiliza apenas caneta ou
Ficha de Trabalho de Matemática do 8º ano - nº Data / / x 2
Escola Secundária com ºCEB de Lousada Ficha de Trabalho de Matemática do 8º ano - nº Data _ / / 010 Assunto: Soluções da ficha de preparação para o Teste Lições nº _, _, x 1 Considera a equação + 1 10
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013-1 a Chamada Proposta de resolução 1. Como o João escolhe 1 de entre 9 bolas, o número de casos possíveis para as escolhas do João são 9. Como os números, 3, 5 e
Ficha de Trabalho de Matemática do 9º ano - nº Data / /
. Resolve as seguintes equações sem aplicar a fórmula resolvente: a. ; 9 b. ; c. ( ) ( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ) [ ] ( )( ) ( )( ) ; d. ( ) { } ; e. ( )( ) 9 f. ; g. { } 9 9. A soma das idades do André
2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014
a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor
01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?
EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.
Centro de Estudos Gilberto Gualberto Ancorando a sua aprendizagem Em um plano, munido do sistema Questão 01 - (UECE/2017)
Em um plano, munio o sistema Questão 01 - (UECE/017) e coorenaas cartesianas usual, as equações x y + 6 = 0 e x + 4y 1 = 0 representam uas retas concorrentes. A meia a área a região limitaa por essas retas
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP
Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila
a prova de Matemática da FUVEST 2ª fase
a prova e Matemática a FUVEST ª fase - 00 Matemática QUESTÃO 0 QUESTÃO 0 A iferença entre ois números inteiros positivos é 0. Ao multiplicar um pelo outro, um estuante cometeu um engano, teno iminuío em
Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o
TESTE INTERMÉDIO 11.º ANO
TESTE INTERMÉDIO 11.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / CLASSIFICAÇÃO: PROFESSOR(A): ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cinco itens deste grupo são de escolha múltipla.
O E. Se Q distasse 3,2 km de O, quais
Esola Seunária om 3º ilo D. Dinis º Ano e Matemátia A Tema I Geometria no Plano e no Espaço II Tarefa nº 4 O Círulo Trigonométrio. Num eran e raar o raio OP faz 5 om O E e a istânia e P à origem representa,8
QUESTÕES COMENTADAS DE MECÂNICA
QUESTÕES COMENTDS DE MECÂNIC Prof. Inácio Benvegnú Morsch CEMCOM Depto. Eng. Civil UFGS ) Calcule as reações em para a viga isostática representaa na figura () kn/m,5 m Solução: Este cálculo fica simplificao
BANCO DE EXERCÍCIOS - 24 HORAS
BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 06 GABARITO COMENTADO 1) De acordo com o texto, 10 alunos gostam de geometria mas não gostam de álgebra, logo
GABARITO PROVA A GABARITO PROVA B. Colégio Providência Avaliação por Área A B C D. Matemática e suas tecnologias. 2ª ETAPA Data: 31/08/2015
Colégio Providência Avaliação por Área Matemática e suas tecnologias 2ª ETAPA Data: 31/08/2015 1ª SÉRIE ENSINO MÉDIO GABARITO PROVA A A B C D 1 XXXX xxxxx xxxxx xxxxx 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CAPÍTULO 7. ( p)= -1 p2. Segue que a reta tangente no ponto de abscissa p é y 1. f( x)- f() Exercícios f( x)= sen px. Exercícios
CAPÍTULO 7 Eercícios 7 8 f 3-9 f sen p Eercícios 73 8 f ' ( p) - p Segue que a reta tangente no ponto e abscissa p é y - - ( - p) p p p Para y, - p e, portanto, p; ou seja, a reta tangente no ponto e abscissa
Propostas de resolução. Capítulo 5 Figuras geométricas F Na figura observam-se dois pares de ângulos verticalmente opostos.
Capítulo 5 Figuras geométricas F3 Pág 77 11 Na figura observam-se dois pares de ângulos verticalmente opostos Logo, x 160 x + x + 100 + 100 = 360 x = 360 00 x = 160 = x = 80 Portanto, x = 80 1 x = 90 +
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 2009-1 a Chamada Proposta de resolução 1. 1.1. Observando os dados da tabela, podemos verificar que o número total de viagens vendidas para Paris, nos meses de janeiro,
CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.
CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo
de Matemática Maria Augusta Ferreira Neves Luís Guerreiro António Pinto Silva Luísa Faria
de Matemática Maria ugusta erreira Neves Luís Guerreiro ntónio Pinto Silva Luísa aria o 1 2 Números racionais. Números reais Resumo e eemplos 6 ercícios e Problemas Propostos 1. Números racionais e dízimas
Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta
ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão
UFRJ - Instituto de Matemática
UFRJ - Instituto de Matemática Programa de Pós-Graduação em Ensino de Matemática www.pg.im.ufrj.br/pemat Mestrado em Ensino de Matemática Seleção 9 Etapa Questão. Determine se as afirmações abaio são verdadeiras
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA
MATEMÁTICA A - 11.º Ano TRIGONOMETRIA NOME: N.º 1. Na figura ao lado [ABCD] é um quadrado de lado 5 cm. O é o ponto de interseção das diagonais. Calcula: 1.1. AB BC 1.2. AB DC 1.3. AB BD 1.4. AO DC 2.
Controle do Professor
Controle do Professor Compensou as faltas CURSO: CIÊNCIA DA COMPUTAÇÃO DISCIPLINA: GEOMETRIA ANALÍTICA VETORIAL E INTRODUÇÃO À ÁLGEBRA LINEAR SÉRIE: 2º ANO TRABALHO DE COMPENSAÇÃO DE FALTAS DOS ALUNOS
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE
LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo
Prova final de MATEMÁTICA - 3o ciclo a Chamada
Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,
Prova de Aferição de MATEMÁTICA - 8o Ano 2018
Prova de Aferição de MATMÁTICA - 8o Ano 2018 Proposta de resolução 1. 1.1. Como os dados se reportam a um conjunto de 6 dados, podemos escrever os dados numa lista ordenada e dividi-la em duas com dados
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5
FICHA de AVALIAÇÃO de MATEMÁTICA A 6.º Teste.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 5/6/7 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma clara,
Resolução da Prova 735 (Matemática B)
Resolução da Prova 75 (Matemátia B) 1. 1.1 Proposta da Isabel: margaridas rosas violetas 7 arranjos tipo A 11 8 56 7 arranjos tipo B 56 56 56 Total de flores neessárias 168 84 11 Proposta do Dinis: margaridas
Nome N. Turma. Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens
A G R U P A M E N T O D E E S C O L A S 172 303 MÃES D ÁGUA SEDE - Escola Básica e Secundária Mães d Água Nome N. Turma Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens 1 1. Quais
2. Num referencial cartesiano ortogonal e monométrico, considera os pontos A 2,1
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Preparar a prova globalizante 8º Ano Mais do que um trabalho de casa, esta ficha tem como objetivo a preparação para a prova globalizante da disciplina, aceita-se
a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)
1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)
Gabarito: 1 3r 4r 5r 6 r. 2. 3r 4r ,5 m. 45 EG m, constituem uma. AA' AP 8km. Resposta da questão 1: [C]
Gabarito: Resposta da questão 1: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triângulo, com x, r 0. Aplicando o Teorema de Pitágoras, encontramos x r. Logo, os lados do triângulo medem r,
Caderno 1: 35 minutos. Tolerância: 10 minutos. É permitido o uso de calculadora.
Prova Final de Matemática Prova 92 2.ª Fase 3.º Ciclo do Ensino Básico 2017 Decreto-Lei n.º 139/2012, de 5 de julho Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30 minutos. Caderno
Exercício 2. Na figura abaixo, determine as medidas de x e y,
OBMEP na Escola 2017 Polo CPII Campus Niterói Professor Fábio Vinícius Lista de Exercícios do Encontro 1 da 2ª semana do Ciclo 5 Nível 3 Geometria Conteúdo: Teorema de Tales, Semelhança de triângulos,
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta.
Nome: Ano / Turma: N.º: Data: - - O teste é constituído por dois cadernos (Caderno e Caderno ). Utiliza apenas caneta ou esferográfica, de tinta azul ou preta. É permitido o uso de calculadora no Caderno.
FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 6
FICHA de AVALIAÇÃO de MATEMÁTICA A 6.º Teste 0.º Ano de escolaridade Versão 6 Nome: N.º Turma: Professor: José Tinoco 05/06/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma
Aula 18. Carlos Amaral Fonte: Cristiano Quevedo Andrea
Aula 8 Carlos Amaral Fonte: Cristiano Queveo Anrea UTFPR - Universiae Tecnológica Feeral o Paraná DAELT - Departamento Acaêmico e Eletrotécnica Curitiba, Junho e Comparação entre técnicas e controle Técnica
Teste de Avaliação. Nome N. o Turma Data / / Avaliação E. Educação Professor. Duração (Caderno 1 + Caderno 2): 90 minutos. MATEMÁTICA 9.
Teste de Avaliação Nome N. o Turma Data / / Avaliação E. Educação Professor MATEMÁTICA 9. o ANO Duração (Caderno 1 + Caderno ): 90 minutos O teste é constituído por dois cadernos (Caderno 1 e Caderno ).
Caderno 1. (É permitido o uso de calculadora.) Não é permitido o uso de corretor. Deves riscar aquilo que pretendes que não seja
Nome: Ano / Turma: N.º: Data: - - Caderno 1 (É permitido o uso de calculadora.) O teste é constituído por dois cadernos (Caderno 1 e Caderno 2). Utiliza apenas caneta ou esferográfica, de tinta azul ou
Novo Espaço Matemática A 11.º ano Proposta de Teste Intermédio [janeiro 2015]
Proposta de Teste Intermédio [janeiro 015] Nome: Ano / Turma: N.º: Data: - - GRUPO I Na resposta a cada um dos itens deste grupo, seleciona a única opção correta. Escreve, na folha de respostas: o número
EXAME NACIONAL DE ACESSO 2018 (21/10/2017)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] Para colorir os quatro triângulos, indicados na figura abaixo por A, B, C e D, pode-se usar uma mesma cor mais de uma vez, desde que dois triângulos com um lado
EXAME NACIONAL DE ACESSO 2018 (21/10/2017) 1 x 3. [01] O conjunto solução, nos reais, da inequação (A) (1, 2) (B) (, 2) (C) (, 2) (3, + ) (D) (2, 3)
EXAME NACIONAL DE ACESSO 08 (/0/07) [0] O conjunto solução, nos reais, da inequação (A) (, ) (B) (, ) (C) (, ) (, + ) (D) (, ) (E) x >, é: x [0] Na figura, os triângulos ABC, CDE, EFG e GH I são equiláteros,
Módulo Elementos Básicos de Geometria - Parte 3. Quadriláteros. Professores: Cleber Assis e Tiago Miranda
Módulo Elementos Básicos de Geometria - Parte 3 Quadriláteros. 8 ano/e.f. Professores: Cleber Assis e Tiago Miranda Elementos Básicos de Geometria - Parte 3. Quadriláteros. 1 Exercícios Introdutórios Exercício
Questão 01. Calcule o número de alunos que visitaram os dois museus. Questão 02
Questão 01 Um grupo de alunos de uma escola deveria visitar o Museu de Ciência e o Museu de História da cidade. Quarenta e oito alunos foram visitar pelo menos um desses museus. 20% dos que foram ao de
TIPO DE PROVA: A. Questão 3. Questão 1. Questão 4. Questão 2. alternativa D. alternativa E. alternativa D. alternativa D
Questão TIPO DE PROVA: A O algarismo das dezenas do número! é: a) 5 b) 0 c) d) 7 e) A quantidade de zeros com que termina o número n! é igual ao número de fatores 5 presentes em sua fatoração. Na fatoração
Proposta de teste de avaliação 4 Matemática 7
Nome da Escola Ano letivo 0-0 Matemática 7.º ano Nome do Aluno Turma N.º Data Professor - - 0 1. Num restaurante as cadeiras são colocadas como mostra a figura seguinte. 1.1. Quantas cadeiras são necessárias
Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que
Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo
RaizDoito. 1. Num referencial o.m. do plano, considere a reta r de equação x = -5.
1. Num referencial o.m. do plano, considere a reta r de equação x = -5. Qual dos seguintes pares de pontos define uma reta perpendicular à reta r? (A) (B) ( C) (D) 2. A condição que define o domínio plano
Prova final de MATEMÁTICA - 3o ciclo a Fase
Prova final de MATEMÁTICA - o ciclo 015 - a Fase Proposta de resolução Caderno 1 1. Calculando o valor médio das temperaturas registadas, temos Resposta: Opção B 19 + 0 + + + 5 7 0 = 5 0 =,6..1. O triângulo
(0,0,4). Qual a condição que define essa superfície esférica? (A) (C) (B) (D) define a. 7. A condição região do plano:
Escola Secundária de Francisco Franco Matemática A (métodos curriculares) 10.º ano Eercícios saídos em eames, provas globais e em testes intermédios Tema III: GEMETRIA ANALÍTICA 1. Num referencial o.n.
Exercícios de testes intermédios
Exercícios de testes intermédios 1. Na figura abaixo, está representado, num referencial o.n. Oxyz, o cubo [OPQRSTUV] de aresta 2. Os pontos, P, R e T pertencem aos semieixos positivos. Numa das opções
Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.
GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual
Proposta de teste de avaliação 4 Matemática 8
Nome da Escola Ano letivo 0-0 Matemática 8.º ano Nome do Aluno Turma N.º Data Professor - - 0 Este teste foi elaborado para o aluno dar a resposta no enunciado. Nas questões de escolha múltipla preenche
Preparar a prova globalizante de matemática 7.º ano
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano letivo 07/8 Preparar a prova globalizante de matemática 7.º ano Mais do que um trabalho de casa, esta ficha tem como objetivo a preparação para a prova
Proposta de teste de avaliação
Matemática A 0. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica
DERIVADAS., é igual ao valor da tangente trigonométrica do ângulo formado pela tangente geométrica à curva representativa de y = f (x)
Proessor Mauricio Lutz DERIVADAS A erivaa e uma unção y () num, é igual ao valor a tangente trigonométrica o ângulo ormao pela tangente geométrica à curva representativa e y (), no ponto, ou seja, a erivaa
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
Exercícios de Revisão Aulas 14 a 20
Exercícios e Revisão Aulas 14 a 20 1. Uma lata e tinta, com a forma e um paralelepípeo retangular reto, tem as imensões, em centímetros, mostraas na figura. Será prouzia uma nova lata, com os mesmos formato
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de f 1 = 2 e 1 e 2 e 3,
MAT2457 ÁLGEBRA LINEAR PARA ENGENHARIA I 2 a Lista de Exercícios - 1 o semestre de 2015 1 Sendo E = { e 1 e 2 e 3 } F = { f 1 f 2 f 3 } bases com: f 1 = 2 e 1 e 3 f 2 = e 2 + 2 e 3 f 3 = 7 e 3 e w = e
LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália
1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,
1. Na imagem ao lado está uma figura composta por três quadrados A, B e C. 230 cm
EXTERNATO JOÃO ALBERTO FARIA ARRUDA DOS VINHOS Ano letivo 013 / 14 1. Na imagem ao lado está uma figura composta por três quadrados A, B e C. Sabe-se que: A área total da figura é 30 cm A área do quadrado
RESPOSTAS EXERCÍCIOS EXTRAS
Matemática RESPOSTAS EXERCÍCIOS EXTRAS 1. a) x, cm e y cm b) x 7,5 cm e y 1 cm. a) Os pares de elementos congruentes são: tm(b C) m(d E) ( é ângulo comum) tm(b) m(d) (ângulos correspondentes de retas tm(c)
Colégio Santa Dorotéia
Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe
ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)
DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,
2. Calcula o valor numérico da seguinte expressão, usando, sempre que possível, as regras operatórias das potências. ( 5) 13 [( 5) 3 ] 4 ( 5) 2
Nome: Nº: Turma: Duração: 90 minutos Classificação: 1. Qual é o valor de 1 3 (2 3 2 ) ( 1)? [A] 5 6 [B] 1 6 [C] 5 6 [D] 1 6 2. Calcula o valor numérico da seguinte expressão, usando, sempre que possível,
Usando estas propriedades, provamos que:
Áreas de Polígonos Função área Uma função área é uma função que a cada região delimitada por um polígono, associa um número real com as seguintes propriedades: Regiões delimitada por polígonos congruentes
MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução
MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas
Entrelinha 1,5. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Entrelinha 1,5 Teste Intermédio Matemática Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 10.05.2012 9.º Ano de Escolaridade Decreto-Lei n.º
Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.
GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida
Versão 2. Utiliza apenas caneta ou esferográfica de tinta indelével, azul ou preta.
Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 10.05.01 9.º Ano de Escolaridade Decreto-Lei n.º 6/001, de 18 de janeiro Identifica claramente, na
04) 4 05) 2. ˆ B determinam o arco, portanto são congruentes, 200π 04)
RESOLUÇÃO DA PROVA FINAL DE MATEMÁTICA - ANO 007 a SÉRIE DO E.M. _ COLÉGIO ANCHIETA BA ELABORAÇÃO: PROF. OCTAMAR MARQUES. PROFA. MARIA ANTÔNIA GOUVEIA. QUESTÃO 0) Na figura, o raio do círculo é igual a
Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 2012
Teste Intermédio de MATEMÁTICA - 9o ano 10 de maio de 01 Proposta de resolução 1. 1.1. Como, na turma A os alunos com 15 anos são 7% do total, a probabilidade de escolher ao acaso um aluno desta turma
Força Elétrica. Sabendo que o valor de m 1 é de 30 g e que a aceleraçăo da gravidade local é de 10 m/s 2, determine a massa m 2
Força Elétrica 1. (Ueg 01) Duas partículas e massas m 1 e m estăo presas a uma haste retilínea que, por sua vez, está presa, a partir e seu ponto méio, a um fio inextensível, formano uma balança em equilíbrio.
01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =
EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do
